

<u>Binary</u>

Base two

Employs two unique symbols (0 and 1)

Largest decimal value that can be represented by 1 binary digit = 1 = base(2) - 1

Decimal value	Binary value	Decimal value	Binary value
0	0000	8	1000
1	0001	9	1001
2	0010	10	1010
3	0011	11	1011
4	0100	12	1100
5	0101	13	1101
6	0110	14	1110
7	0111	15	1111

Why Bother With Binary?

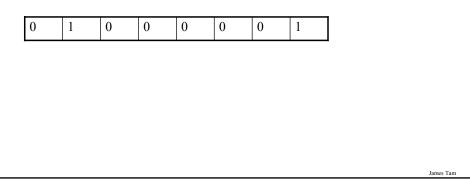
Representing information

- ASCII (American Standard Code for Information Interchange)
- Unicode

It's the language of the computer

James Tam

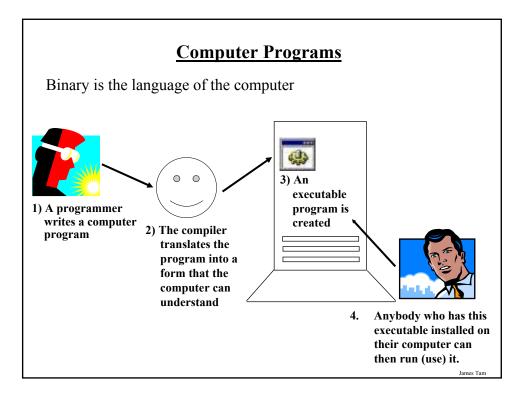
Representing Information: ASCII

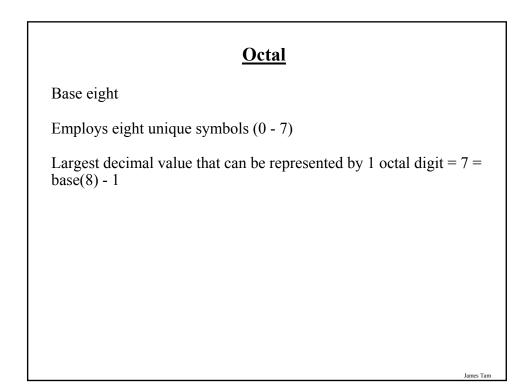

Binary	ASCII
00000000 - 00011111	Invisible (control characters)
00100000 - 00101111	Punctuation, mathematical operations
00110000 - 00111001	Characters 0 - 9
00111010 - 01000000	Comparators and other miscellaneous characters : ; ? @
01000001 - 01011010	Alphabetic (upper case A - Z)
01011011 - 01100000	More miscellaneous characters [\]^_'
01100001 - 01111010	Alphabetic (lower case a - z)
01111011 - 01111111	More miscellaneous characters { } ~ DEL
	0000000 - 00011111 00100000 - 00101111 00110000 - 00111001 00111010 - 01000000 01000001 - 01011010 01011011 - 01100000 01100001 - 01111010

Representing Information: ASCII (2)

Uses 7 bits to represent characters

Max number of possibilities = $2^7 = 128$ characters that can be represented


e.g., 'A' is 65 in decimal or 01000001in binary. In memory it looks like this:



Representing Information: Unicode

Uses 16 bits (or more) to represent information

Max number of possibilities = $2^{16} = 65536$ characters that can be represented (more if more bits are used)

Decimal value	Octal value	Decimal value	Octal value
)	0	8	10
	1	9	11
2	2	10	12
	3	11	13
	4	12	14
	5	13	15
	6	14	16
	7	15	17

Uses Of Octal (Assembly Language)

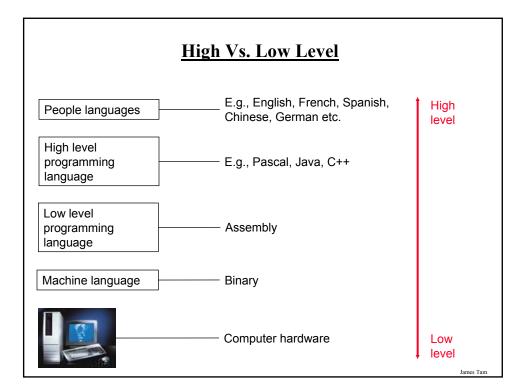
Machine	Octal	PDP -11 assembly		
language	value	language		
1010111000000	012700	MOV #4, R0		
1001010000101	011205	MOV (R2), R5		

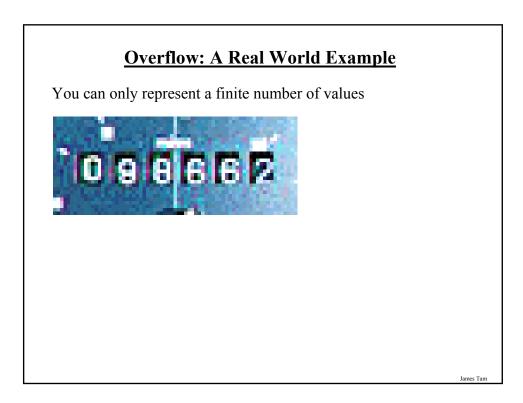
Example from Introduction to the PDP-11 and its Assembly Language by Frank T.

Hexadecimal (Hex)

Base sixteen

Employs sixteen unique symbols (0 - 9, followed by A - F)


Largest decimal value that can be represented by 1 hex digit = 15


Decimal value		Decimal value	Hexadecima
	value		value
0	0	9	9
1	1	10	Α
2	2	11	В
3	3	12	С
4	4	13	D
5	5	14	Е
6	6	15	F
7	7	16	10
8	8	17	11

Uses Of Hexadecimal (Assembly Language)

Machine	Hexadecimal	680X0 assembly
language	value	language
1010011000001	14C1	MOV.B D1, (A2)+
110000011100000	60E0	BRA NEXT
110000011100000	60E0	BRA NEXT
	anguage by Clements A.	

Decimal	Binary	Octal	Hex	Decimal	Binary	Octal	Hex
0	0000	0	0	8	1000	10	8
1	0001	1	1	9	1001	11	9
2	0010	2	2	10	1010	12	A
3	0011	3	3	11	1011	13	В
4	0100	4	4	12	1100	14	C
5	0101	5	5	13	1101	15	D
6	0110	6	6	14	1110	16	E
7	0111	7	7	15	1111	17	F

"wraps		и аон г на	ve enough bi	its to represe	ent a value	,
1	around	' to zero)	0			
Binary (1 bit)	Value	Binar (2 bit		Binary (3 bits)	Value	
0	0	00	0	000	0	
1	1	01	1	001	1	
0	0	10	2	010	2	
1	1	11	3	011	3	
	:	00	0	100	4	
•	•	01	1	101	5	
			-	110	6	
		10	2	111	7	
		11	3	000	0	
		:	:	001	1	
				501	1	
				:	:	Jam

Arbitrary Number Bases

Base N

Employs N unique symbols

Largest decimal value that can be represented by 1 digit = Base (N) - 1

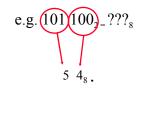
Converting Between Different Number Systems

Binary to/from octal

Binary to/from hexadecimal

Octal to/from hexadecimal

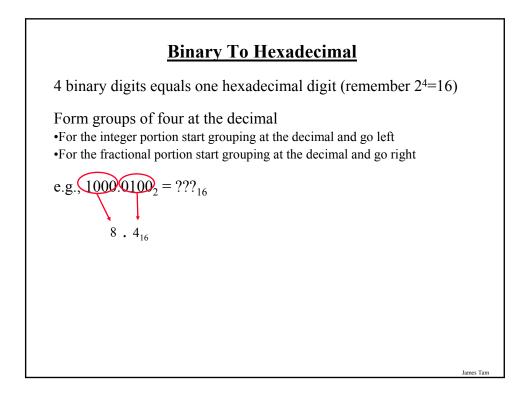
Decimal to any base


Any base to decimal

3 binary digits equals one octal digit (remember 2³=8)

Form groups of three starting at the decimal

- For the integer portion start grouping at the decimal and go left
- For the fractional portion start grouping at the decimal and go right

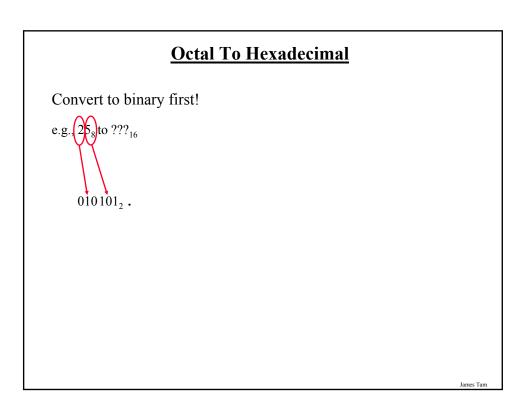


Octal To Binary

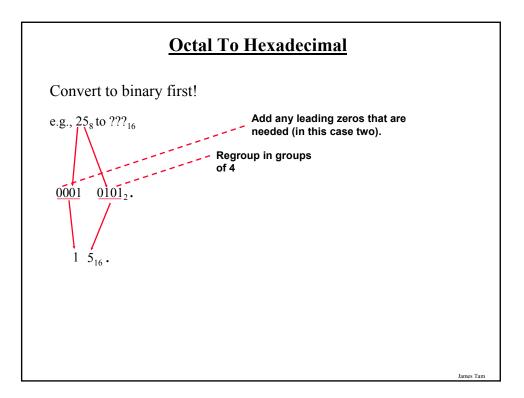
1 octal digit equals = 3 binary digits

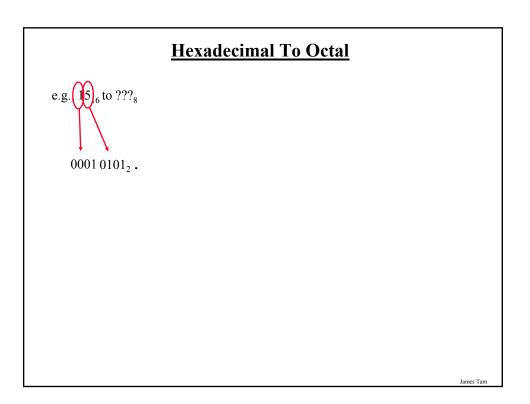
Split into groups of three starting at the decimal •For the integer portion start splitting at the decimal and go left •For the fractional portion start splitting at the decimal and go right

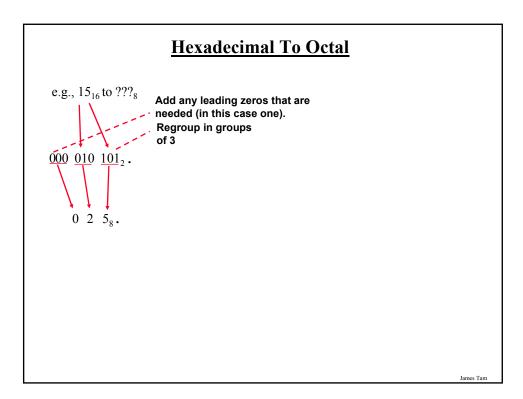
e.g. $125_{8} = ???_{2}$ 001 010 .1012

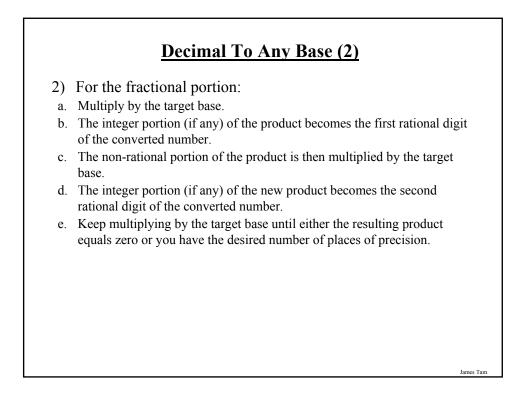

Hexadecimal To Binary

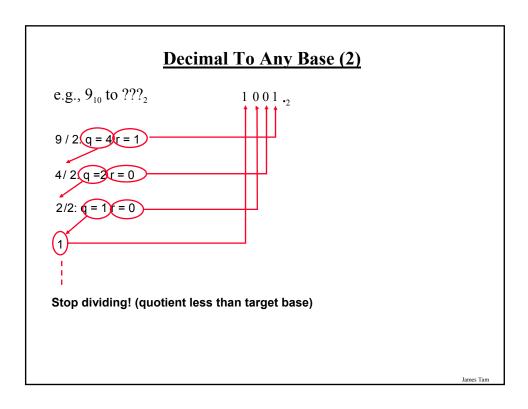
1 hex digit equals = 4 binary digits


Split into groups of four starting at the decimal

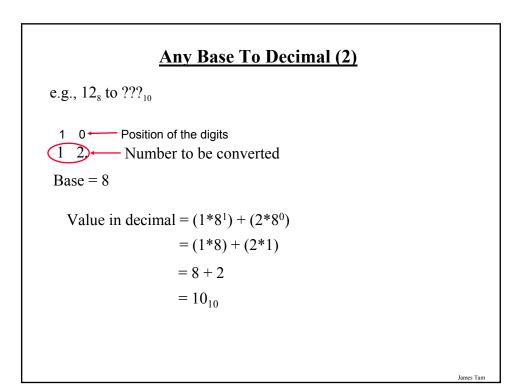

- For the integer portion start splitting at the decimal and go left
- For the fractional portion start splitting at the decimal and go right

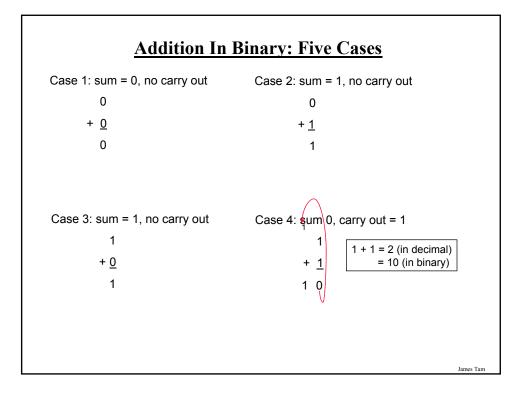

e.g.,
$$A3_6 = ???_2$$

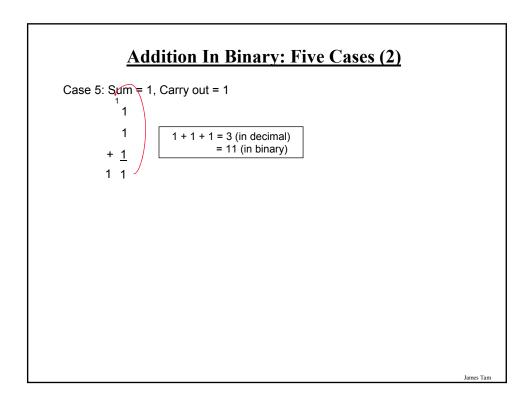

James Tan

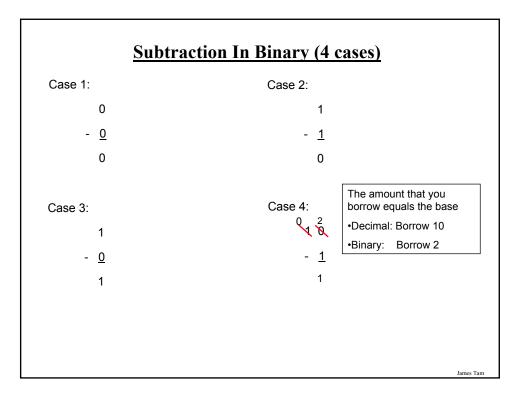


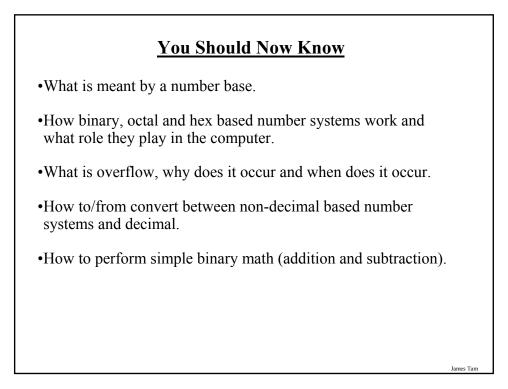
Decimal To Any Base Split up the integer and the fractional portions 1) For the integer portion: a. Divide the integer portion of the decimal number by the target base. b. The remainder becomes the first integer digit of the number in the target base. c. The quotient becomes the new integer value. d. Divide the new integer value by the target base. e. The new remainder becomes the second integer digit of the converted number. f. Continue dividing until the quotient is less than the target base and this quotient becomes the last integer digit of the converted number.






Any Base To Decimal


Multiply each digit by the base raised to some exponent₁ and sum the resulting products.


3 2 1 0 -1 -2 -3 Position of digits i.e. d7 d6 d5 d4. d3 d2 d1 Number to be converted Base = b Value in decimal = $(digit7*b^3) + (digit6*b^2) + (digit5*b^1) + (digit4*b^0) + (digit3*b^{-1}) + (digit2*b^{-2}) + (digit1*b^{-3})$

