
One-dimensional arrays in Pascal 1

James Tam

Arrays

In this section of notes you will be introduced to
a homogeneous composite type, one-
dimensional arrays

James Tam

Types Of Variables

Pascal
Variables

1. Simple
(atomic)

integer char boolean real Homogenous
(arrays)

Heterogeneous
(records)

2. Aggregate
(composite)

James Tam

Types Of Variables

Pascal
Variables

1. Simple
(atomic)

integer char boolean real Homogenous
(arrays)

Heterogeneous
(records)

2. Aggregate
(composite)

James Tam

Why Bother With Composite Types?
For a compilable example look in Unix under: /home/231/examples/arrays/classList1.p

const

CLASS_SIZE = 5;

begin

var stu1 : real;

var stu2 : real;

var stu3 : real;

var stu4 : real;

var stu5 : real;

var total : real;

var average : real;

write('Enter grade for student number 1: ');

readln(stu1);

James Tam

Why Bother With Composite Types? (2)
write('Enter grade for student number 2: ');

readln(stu2);

write('Enter grade for student number 3: ');

readln(stu3);

write('Enter grade for student number 4: ');

readln(stu4);

write('Enter grade for student number 5: ');

readln(stu5);

total := stu1 + stu2 + stu3 + stu4 + stu5;

average := total / CLASS_SIZE;

writeln('The average grade is ', average:6:2, '%');

James Tam

With Bother With Composite Types? (3)

(* Printing the grades for the class. *)

writeln('Student1: ', stu1:6:2);

writeln('Student2: ', stu2:6:2);

writeln('Student3: ', stu3:6:2);

writeln('Student4: ', stu4:6:2);

writeln('Student5: ', stu5:6:2);

end.

One-dimensional arrays in Pascal 2

James Tam

With Bother With Composite Types? (3)

(* Printing the grades for the class. *)

writeln('Student1: ', stu1:6:2);

writeln('Student2: ', stu2:6:2);

writeln('Student3: ', stu3:6:2);

writeln('Student4: ', stu4:6:2);

writeln('Student5: ', stu5:6:2);

end.

NO!

James Tam

What’s Needed

•A composite variable that is a collection of another type.

•The composite variable can be manipulated and passed
throughout the program as a single entity.

•At the same time each element can be accessed individually.

•What’s needed…an array!

James Tam

Declaring Arrays

Format:

name: array [low index..high index] of element type;

Example:

classGrades : array [1..CLASS_SIZE] of real;

classGrades [1]
[2]
[3]
[4]
[5]

James Tam

First you need to indicate which array is being accessed
• Done via the name of the array e.g., “classGrades”

If you are accessing a single element, you need to indicate which element that
you wish to access.
• Done via the array index e.g., “classGrades[2]”

Accessing Data In The Array

classGrades [1]

[2]

[3]
[4]
[5]

classGrades [1]

[2]

[3]
[4]
[5]

Using only the
name of the
array refers to
the whole
array

Use the array
name and the
subscript
refers to a
single
element

James Tam

Assigning Data To The Array

Format:
(Whole array) (One element)

name of array name of array [index]

Examples (assignment via the assignment operator):
(Whole array) (One element)

firstArray := secondArray; classGrades [1] := 100;

James Tam

Assigning Data To The Array (2)
Examples (assigning values via read or readln):

(Single element)

readln(classGrades[1]);

(Whole array – all elements)

for i: = 1 to CLASS_SIZE do

begin

write('Input grade for student No. ', i, ': ');

readln(classGrades[i]);

end;

One-dimensional arrays in Pascal 3

James Tam

Assigning Data To The Array (3)

(Whole array – all elements: Character arrays only)

var charArray : array [1..5] of char;

readln(charArray);

James Tam

Accessing Data In The Array
Examples (displaying information):

(Single element)

writeln(classGrades[1]);

(Whole array – all elements)

for i := 1 to CLASS_SIZE do

writeln('Grade for student No. ', i:2, ' ', classGrades[i]:6:2);

James Tam

Accessing Data In The Array (2)

(Whole array – all elements: Character arrays only)

var charArray : array [1..5] of char;

write(charArray);

James Tam

Revised Version Using An Array

For a compilable example look in Unix under:
/home/231/examples/arrays/classList2.p

const

CLASS_SIZE = 5;

begin

var classGrades : array [1..CLASS_SIZE] of real;

var i : integer;

var total : real;

var average : real;

total := 0;

James Tam

Class Example Using An Array (2)
for i := 1 to CLASS_SIZE do

begin

write('Enter grade for student no. ', i, ': ');

readln (classGrades[i]);

total := total + classGrades[i];

end;

average := total / CLASS_SIZE;

writeln;

writeln('The average grade is ', average:6:2, '%');

for i := 1 to CLASS_SIZE do

writeln('Grade for student no. ', i, ' is ', classGrades[i]:6:2, '%');

James Tam

Passing Arrays As Parameters

1. Declare a type for the array.
e.g.
type

Grades = array [1..CLASS_SIZE] of real;

• Declaring A type does not create an instance
- A type only describes the attributes of a new kind of variable that can be

created and used.
- No memory is allocated.

One-dimensional arrays in Pascal 4

James Tam

Passing Arrays As Parameters (2)

2. Declare an instance of this type.
e.g., var lecture01 : Grades;
•Memory is allocated!

3. Pass the instance to functions/procedures as you would any
other parameter.

(Function/procedure call)
displayGrades (L01, average);

(Function/procedure definition)
procedure displayGrades (L01 : Grades;

average : real);

James Tam

Passing Arrays As Parameters: An Example

The full example can be found in Unix under
/home/231/examples/classList3.p)

program classList (input, output);

const

CLASS_SIZE = 5;

type

Grades = array [1..CLASS_SIZE] of real;

procedure tabulateGrades (var lecture01 : Grades;
var average : real);

var
i : integer;
total : real;

James Tam

Passing Arrays As Parameters: An Example (2)
begin (* tabulateGrades *)

total := 0;

for i := 1 to CLASS_SIZE do

begin

write('Enter grade for student no. ', i, ': ');

readln(lecture01[i]);

total := total + lecture01[i];

end;

average := total / CLASS_SIZE;

writeln;

end; (* tabulateGrades *)

James Tam

Passing Arrays As Parameters: An Example (3)
procedure displayGrades (lecture01 : Grades;

average : real);

var

i : integer;

begin

writeln('Grades for the class...');

for i := 1 to CLASS_SIZE do

writeln('Grade for student no. ', i, ' is ', lecture01[i]:6:2, '%');

writeln('The average grade is ', average:6:2, '%');

writeln;

end;

James Tam

Passing Arrays As Parameters: An Example (4)

begin

var lecture01 : Grades;

var average : real;

tabulateGrades (lecture01, average);

displayGrades (lecture01, average);

end.

James Tam

Returning Arrays From Functions

1. Declare a type for the array.
e.g.
type

Grades = array [1..CLASS_SIZE] of real;

2. Declare an instance of this type.
e.g.,
var lecture01 : Grades;

3. Return the instance of the array as you would any other return value.

(Function/procedure call)
lecture01 := fun (L01);

(Function/procedure definition)
function fun (lecture01 : Grades): Grades;

One-dimensional arrays in Pascal 5

James Tam

Segmentation Faults And Arrays

RAM

a.out

[1]
[2]
[3]
[4]

list OK
OK
OK
OK

???

James Tam

Segmentation Faults And Arrays

RAM

a.out

[1]
[2]
[3]
[4]

list OK
OK
OK
OK

???

CORE
(Big)

Wav file from “The SImpsons”

James Tam

You Should Now Know

•What is the difference between simple types (atomic) and
composite types (aggregate)

•What is the benefit of using homogeneous composite types
(arrays)

•How to declare arrays

•How to access or assign values to array elements

•How to work with an entire array

•How to pass instances of arrays into methods and how to return
an array from a function.

•What is a segmentation fault and core dump file.

