Numerical Representations On The Computer: Negative And Rational Numbers

- How are negative and rational numbers represented on the computer?
- •How are subtractions performed by the computer?

James Tan

Subtraction

- In the real world
 - A B
- In the computer

A - B

• In the real world

A - B

In the computer

Not done this way!

A + (-B)

James Tan

Representing Negative Numbers

- •Real world
 - Negative numbers same as the case of positive numbers but precede the number with a negative sign "-" e.g., -123456.
- •Computer world
 - Negative numbers employ *signed representations*.

Magnitude Of Non-Computer Representations

- •All of the digits are used to represent the magnitude of the number
 - e.g., 175₁₀, 1001₂
- •An explicit minus sign is needed to distinguish positive and negative numbers
 - e.g., 124_{10} vs. -124_{10} or 100_2 vs. -100_2

Iomas Ton

Signed Binary: Magnitude

- •One bit (most significant bit/MSB or the signed bit) is used to indicate the sign of the number.
- •This bit cannot be used to represent the magnitude of the number
- •If the MSB equals 0, then the number is positive
- -e.g. 0 bbb is a positive number (bbb stands for a binary number)
- •If the MSB equals 1, then the number is negative
- -e.g. 1 bbb is a negative number (bbb stands for a binary number)
- •Types of signed representations
- -One's complement
- -Two's complement

Signed Binary: Magnitude

- •One bit (most significant bit/MSB or the signed bit) is used to indicate the sign of the number.
- •This bit cannot be used to represent the magnitude of the number

Positive Negative

- •If the MSB equals 0, then the number is positive
 - -e.g(0)bbb is a positive number (bbb stands for a binary number)
- •If the MSB equals 1, then the number is negative
 - -e.g.(1)bbb is a negative number (bbb stands for a binary number)
- •Types of signed representations
 - -One's complement
 - -Two's complement

James Tan

Binary Subtraction

- Requires the complementing of a binary number
 i.e., A B becomes A + (-B)
- The complementing can be performed by representing the negative number as a One's or Two's complement value.

Complementing Regular Binary Using The One's Complement Representation

- For positive values there is no difference (no change is needed)
 - e.g., positive seven

0111 (regular binary)

0111 (1's complement equivalent)

- For negative values complement the number by negating the binary values: reversing (flipping) the bits (i.e., a 0 becomes 1 and 1 becomes 0).
 - e.g., minus six
 - -0110 (regular binary)

1001 (1's complement equivalent)

James Tan

Complementing Regular Binary Using The Two's Complement Representation

- For positive values there is no difference (no change is needed)
 - e.g., positive seven

0111 (regular binary)

0111 (2's complement equivalent)

- For negative values complement the number by negating the number: reversing (flipping) the bits (i.e., a 0 becomes 1 and 1 becomes 0) *and adding one to the result*.
 - e.g., minus six

-0110 (regular binary)

1010 (2's complement equivalent)

Interpreting The Pattern Of Bits

Bit pattern	Regular binary	1's complement	2's complement
0000	0	0	0
0001	1	1	1
0010	2	2	2
0011	3	3	3
0100	4	4	4
0101	5	5	5
0110	6	6	6
0111	7	7	7
1000	8	-7	-8
1001	9	-6	-7
1010	10	-5	-6
1011	11	-4	-5
1100	12	-3	-4
1101	13	-2	-3
1110	14	-1	-2
1111	15	-0	-1

James Tam

Overflow: Regular Binary

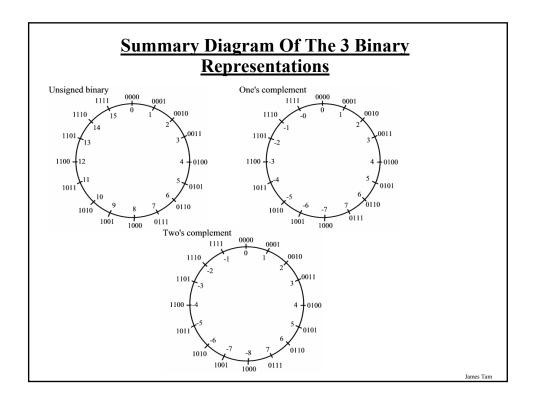
• Occurs when you don't have enough bits to represent a value (wraps –around to zero)

Value
0
1
0
:

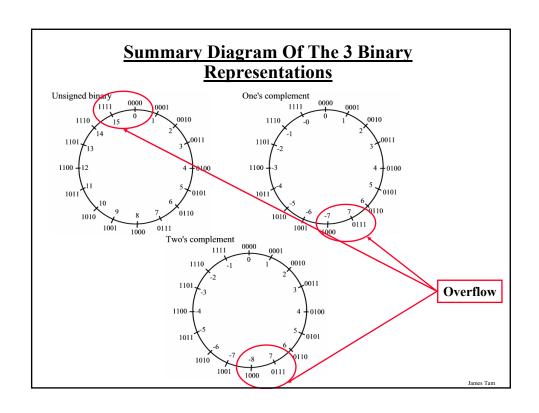
Binary (2 bits)	Value
00	0
01	1
10	2
11	3
00	0

Binary (3 bits)	Value
000	0
001	1
010	2
011	3
100	4
101	5
110	6
111	7
000	0

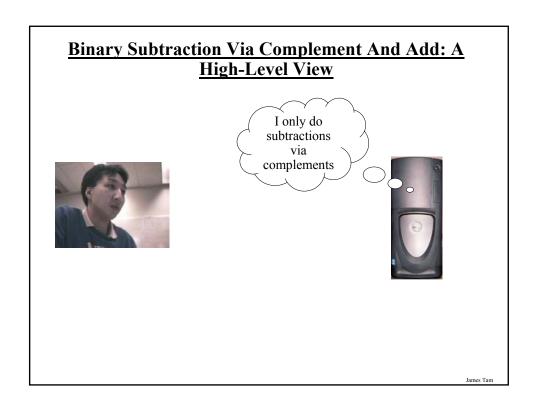
000 0

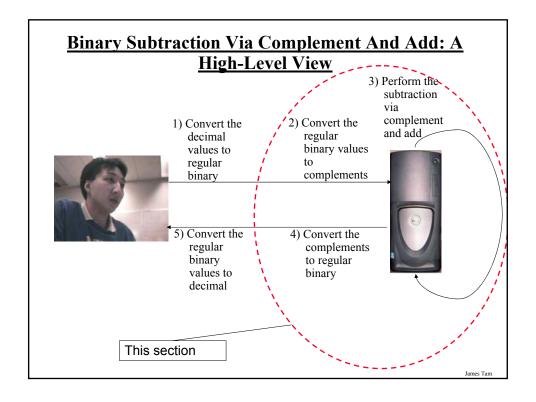

Overflow: Signed

- In all cases it occurs do to a "shortage of bits"
- Subtraction subtracting two negative numbers results in a positive number.

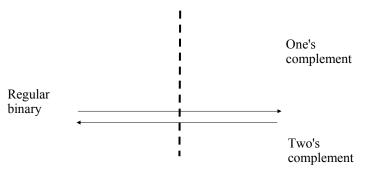

e.g. - 7
$$+ \frac{1}{7}$$


• Addition – adding two positive numbers results in a negative number.

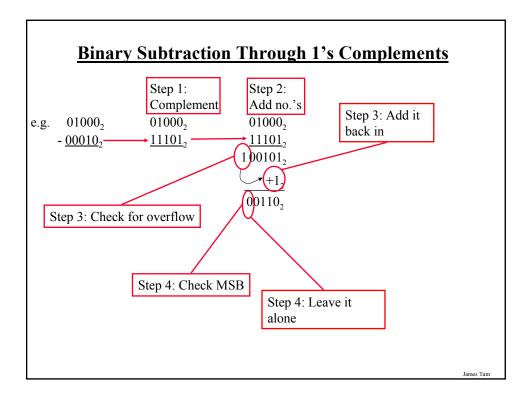

Iomos Ton



proporting poactive and real numbers on the



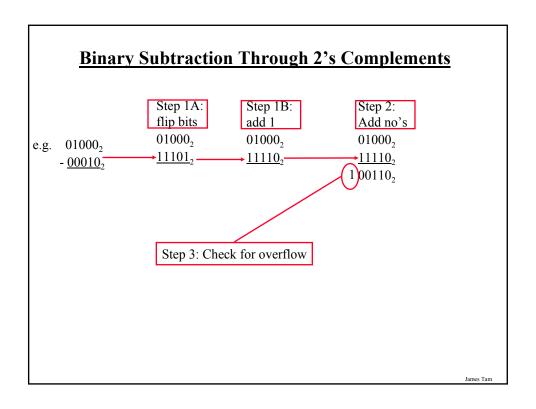
Crossing The Boundary Between Regular And Signed Binary

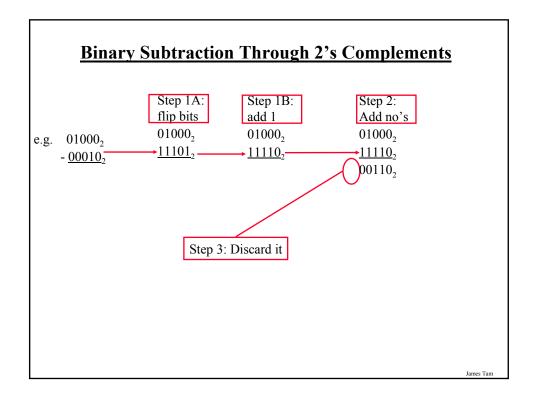

Each time that this boundary is crossed (steps 2 & 4 from the previous slide) apply the rule:

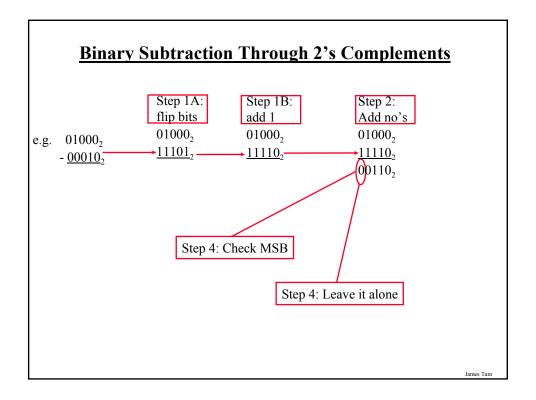
- 1) Positive numbers pass unchanged
- 2) Negative numbers must be converted (complemented)
 - a. One's complement: negate the negative number
 - b. Two's complement: negate and add one to the result

James Tan

Binary Subtraction Through One's Complements

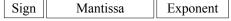

- 1) Convert from regular binary to a 1's complement representation (check if it is preceded by a minus sign).
 - a. If the number is not preceded by a minus sign, it's positive (leave it alone).
 - b. If the number is preceded by a minus sign, the number is negative (complement it by flipping the bits) and remove the minus sign.
- 2) Add the two binary numbers.
- 3) Check if there is overflow (a bit is carried out) and if so add it back.
- 4) Convert the 1's complement value back to regular binary (check the value of the MSB).
 - a. If the MSB = 0, the number is positive (leave it alone)
 - b. If the MSB = 1, the number is negative (complement it by flipping the bits) and precede the number with a minus sign




Binary Subtraction Through Two's Complements

- 1) Convert from regular binary to a 2's complement representation (check if it's preceded by a minus sign).
 - a. If the number is not preceded by a minus sign, it's positive (leave it alone).
 - If the number is preceded by a minus sign, the number is negative (complement it and discard the minus sign).
 - i. Flip the bits.
 - ii. Add one to the result.
- 2) Add the two binary numbers.
- 3) Check if there is overflow (a bit is carried out) and if so discard it.
- 4) Convert the 2's complement value back to regular binary (check the value of the MSB).
 - a. If the MSB = 0, the number is positive (leave it alone).
 - b. If the MSB = 1, the number is negative (complement it and precede the number with a negative sign).
 - i. Flip the bits.
 - ii. Add one to the result.

James Tar



Representing Real Numbers Via Floating Point

• Numbers are represented through a sign bit, a mantissa and an exponent

Examples with 5 digits used to represent the mantissa:

- e.g. One: 123.45 is represented as 12345 * 10-2
- e.g. Two: 0.12 is represented as 12000 * 10⁻⁵
- e.g. Three: 123456 is represented as 12345 * 101

Floating point numbers may result in a loss of accuracy!

You Should Now Know

- •How negative numbers are represented using 1's and 2's complement representations.
- •How to convert regular binary to values into their 1's or 2's complement equivalent.
- •What is signed overflow and why does it occur.
- •How to perform binary subtractions via the negate and add technique.
- •How are real numbers represented through floating point representations