
The parsing assignment 1

James TamThe parsing assignment

Theoretical Concepts For
The Parsing Assignment

A return to the compilation process

Parsing and Formal grammars

Divide and conquer through recursion

James TamParsing Assignment

Compilation

anything.p

Computer
program

Compiler

input a.out

Machine
language
program

output

The parsing assignment 2

James TamParsing Assignment

Parts Of The Compiler

Front end Back end

Lexical analyzer

Syntax analyzer

Semantic analyzer

Translates to

target language

James TamParsing Assignment

The Lexical Analyzer

Groups symbols together into entities

w h i l e

while

The parsing assignment 3

James TamParsing Assignment

Syntax Analyzer (Parser)

Analyzes the structure of the program in order to group
together related symbols

while (i < 5)

{

statement;

statement;

:

}

while (i < 5)

statement;

James TamParsing Assignment

Semantic analyzer

Determines the meaning
int num;
double db;

The parsing assignment 4

James TamParsing Assignment

Assignment 4

With a given English phrase your program must perform:
A lexical analysis
A syntactical analysis (parse the phrase)
• Needs a formal grammar

James TamParsing Assignment

A Perspective Into Assignment 4

ThisPerform a lexical analysis stupid horse smokes .

Perform a syntactical
analysis

.This

article

stupid

adjective

horse

noun

smokes

verb

This stupid horse smokes.User types in a sentence
1

1 The use of nicotine products by animals is not endorsed by this instructor or the University of Calgary

Is this sentence grammatically correct
according to the rules of our syntax?

The parsing assignment 5

James TamParsing Assignment

A Perspective Into Assignment 4 (2)

Conjunctions must be handled recursively

Jack and Jill or Bob and Bill went up the hill.

or

Jack and Jill Bob and Bill went up the hill.

and and

Jack Jill Bob Bill went up the hill.

James TamParsing Assignment

Backus-Naur Form (BNF)

An example of a formal grammar
Can be used in the fourth assignment to specify the syntax of
the language (grammatically correct)
Introduced by Jim Backus and developed by Pete Naur to
specify the syntax rules for Algol 60

“As defined as” – a way of specifying a
definition

::=

“OR” – to specify alternative options|

To group related categories of information<>

Meaning or usageSymbol

The parsing assignment 6

James TamParsing Assignment

BNF: General Examples

Example one:
<A> ::= <B1> <B2> <B3>…<Bn>

Example two (alternatives):
<A> ::= <B1> <B2> <B3> | <B2> <B4> <B1>

Example three (program specification):
x = x + 1
<Assignment statement> ::= <variable> < = > <expression>

James TamParsing Assignment

BNF: Assignment 4

(The following specifications come from the main 233
course web page: www.cpsc.ucalgary.ca/~becker/233)

<STATEMENT> ::= <Sentence> <PUNCT>

<Sentence> ::= <NounPhrase> <VerbPhrase> |
<NounPhrase> <VerbPhrase> <Conjunction> <Sentence>

<NounPhrase> ::= <ProNoun> | <ProperNoun> | <Article>
<AdjectiveList> <Noun> | <Article> <Noun> | <Noun>

The parsing assignment 7

James TamParsing Assignment

BNF: Assignment 4

<VerbPhrase> ::= <AdverbList> <Verb> | <Verb> <AdverbList> |
<Verb> <NounPhrase> <AdverbList> |
<AdverbList> <Verb> <NounPhrase> |
<Verb>

<AdjectiveList> ::= <AdjectiveList> <Adjective> | <nothing>

<AdverbList> ::= <AdverbList> <Conjunction> <Adverb> | <Adverb>

James TamParsing Assignment

Syntax Diagrams

An alternative method for representing a formal language

Indicates direction to read the flow of the diagram

A category of information that cannot be
decomposed into constituent subcategories

A category of information that can be
decomposed into it’s constituent subcategories

“As defined as” – a way of specifying a definition::=
Meaning or usageSymbol

<>

<>

The parsing assignment 8

James TamParsing Assignment

Syntax Diagrams: General Examples

Example one:

Example two:

<A> ::= Bi

i = 1, 2, 3…n

<A> ::= B1 B2 B3

B2 B4 B1

James TamParsing Assignment

Syntax Diagrams: General Examples (2)

Example three (program specification)
x = x + 1

<Assignment

statement>
expression=variable::=

The parsing assignment 9

James TamParsing Assignment

Syntax Diagrams: Assignment 4

James TamParsing Assignment

Syntax Diagrams: Assignment 4 (2)

The parsing assignment 10

James TamParsing Assignment

Syntax Diagrams: Assignment 4 (3)

James TamParsing Assignment

Syntax Diagrams: Assignment 4 (4)

The parsing assignment 11

James TamParsing Assignment

Divide And Conquer

•Split the problem into sub-problems (through recursive calls)
•Continue splitting each of the sub-problems into smaller
parts until you cannot split the problem up any further

•Solve each of the sub-problems and combine the solutions
yielding the solution to the original problem

James TamParsing Assignment

Divide And Conquer: An Example

1+1+1+1+1
[0] [1] [2] [3] [4] [5] [6] [7] [8]

The parsing assignment 12

James TamParsing Assignment

Divide And Conquer: An Example

1+1+1+1+1
[0] [1] [2] [3] [4] [5] [6] [7] [8]

1

James TamParsing Assignment

Divide And Conquer: An Example

1+1+1+1+1

+1+1

[0] [1] [2] [3] [4] [5] [6] [7] [8]

1

[0] [1] [2] [3]

The parsing assignment 13

James TamParsing Assignment

Divide And Conquer: An Example

1+1+1+1+1

+1+1

[0] [1] [2] [3] [4] [5] [6] [7] [8]

1

[0] [1] [2] [3]

+

James TamParsing Assignment

Divide And Conquer: An Example

1+1+1+1+1

+1+1

[0] [1] [2] [3] [4] [5] [6] [7] [8]

1

[0] [1] [2] [3]

+

1
[0]

The parsing assignment 14

James TamParsing Assignment

Divide And Conquer: An Example

1+1+1+1+1

+1+1

[0] [1] [2] [3] [4] [5] [6] [7] [8]

1

[0] [1] [2] [3]

+

1

James TamParsing Assignment

Divide And Conquer: An Example

1+1+1+1+1

+1+1

[0] [1] [2] [3] [4] [5] [6] [7] [8]

1

[0] [1] [2] [3]

+1

The parsing assignment 15

James TamParsing Assignment

Divide And Conquer: An Example

1+1+1+1+1

+1+1

[0] [1] [2] [3] [4] [5] [6] [7] [8]

1

[0] [1] [2] [3]

+1

+1

[2] [3]

James TamParsing Assignment

Divide And Conquer: An Example

1+1+1+1+1

+1+1

[0] [1] [2] [3] [4] [5] [6] [7] [8]

1

[0] [1] [2] [3]

+1

1

The parsing assignment 16

James TamParsing Assignment

Divide And Conquer: An Example

1+1+1+1+1

+1+1

[0] [1] [2] [3] [4] [5] [6] [7] [8]

1

[0] [1] [2] [3]

+1 1

James TamParsing Assignment

Divide And Conquer: An Example

1+1+1+1+1
[0] [1] [2] [3] [4] [5] [6] [7] [8]

1

2

The parsing assignment 17

James TamParsing Assignment

Divide And Conquer: An Example

1+1+1+1+1
[0] [1] [2] [3] [4] [5] [6] [7] [8]

12 +

James TamParsing Assignment

Divide And Conquer: An Example

1+1+1+1+1
[0] [1] [2] [3] [4] [5] [6] [7] [8]

12 +

1+1+

[5] [6] [7] [8]

The parsing assignment 18

James TamParsing Assignment

Divide And Conquer: An Example

1+1+1+1+1
[0] [1] [2] [3] [4] [5] [6] [7] [8]

12 +

1+1+

[5] [6] [7] [8]

1

James TamParsing Assignment

Divide And Conquer: An Example

1+1+1+1+1
[0] [1] [2] [3] [4] [5] [6] [7] [8]

12 +

1+1+

[5] [6] [7] [8]

1

+
[5]

The parsing assignment 19

James TamParsing Assignment

Divide And Conquer: An Example

1+1+1+1+1
[0] [1] [2] [3] [4] [5] [6] [7] [8]

12 +

1+1+

[5] [6] [7] [8]

1

0

James TamParsing Assignment

Divide And Conquer: An Example

1+1+1+1+1
[0] [1] [2] [3] [4] [5] [6] [7] [8]

12 +

1+1+

[5] [6] [7] [8]

1

1+
[7] [8]

The parsing assignment 20

James TamParsing Assignment

Divide And Conquer: An Example

1+1+1+1+1
[0] [1] [2] [3] [4] [5] [6] [7] [8]

12 +

1+1+

[5] [6] [7] [8]

1

1

James TamParsing Assignment

Divide And Conquer: An Example

1+1+1+1+1
[0] [1] [2] [3] [4] [5] [6] [7] [8]

12 +

1+1+

[5] [6] [7] [8]

1 + 1

The parsing assignment 21

James TamParsing Assignment

Divide And Conquer: An Example

1+1+1+1+1
[0] [1] [2] [3] [4] [5] [6] [7] [8]

12 +

2

James TamParsing Assignment

Divide And Conquer: An Example

1+1+1+1+1
[0] [1] [2] [3] [4] [5] [6] [7] [8]

12 + 2+

The parsing assignment 22

James TamParsing Assignment

Divide And Conquer: An Example

1+1+1+1+1
[0] [1] [2] [3] [4] [5] [6] [7] [8]

12 + 2+

James TamParsing Assignment

Divide And Conquer: An Example

Final result after recursive calls = 5

The parsing assignment 23

James TamParsing Assignment

Divide And Conquer Example

Driver

NumberList

-list: char []

-low: int

-high: int

+ NumberList ()

+ displayList ()

+defaultInitialization ()

Adder

-asciiToInteger ()

-divideAndAdd ()

James TamParsing Assignment

The complete source and executable files can be found in
Unix under the directory:
/home/profs/tamj/233/examples/recursion

Divide And Conquer Example

The parsing assignment 24

James TamParsing Assignment

The Driver Class

class Driver
{

public static void main (String [] argv)
{

NumberList list = new NumberList ();
Adder listAdder = new Adder();
int total = listAdder.divideAndAdd(list.getList(),

list.getLow(),
list.getHigh());

System.out.println();
System.out.println("SUM OF LIST..." + total);
System.out.println();

}
}

James TamParsing Assignment

The NumberList Class

class NumberList
{

private char [] list;
private int low;
private int high;

public NumberList ()
{

int i, noElements;
System.out.print("Enter number of array elements: ");
high = Console.in.readInt();
Console.in.readChar();
high = high - 1;
low = 0;
list = new char [high+1];
defaultInitialization();
displayList();

}

The parsing assignment 25

James TamParsing Assignment

The NumberList Class (2)

public void defaultInitialization ()
{

int i;
for (i = low; i <= high; i++)
{

if (i % 2 == 0)
list[i] = '1';

else
list[i] = '+';

}
}

James TamParsing Assignment

The NumberList Class (3)

public void displayList ()
{

int i;
System.out.println();
System.out.print("Displaying the number list: ");
System.out.println (list);
System.out.println();

}

The parsing assignment 26

James TamParsing Assignment

Class Adder: AsciiToInteger

class Adder
{

private int asciiToInteger (char ch)
{

int temp;
// Recall that the ascii value for the character '0' is 48.
temp = (int) (ch - 48);
return temp;

}

James TamParsing Assignment

Class Adder: DivideAndAdd

class Adder
{

public int divideAndAdd (char [] array, int low, int high)
{

System.out.println("SUBDIVIDED ARRAY: " +"low=" + low + " " +
"high=" + high);

The parsing assignment 27

James TamParsing Assignment

Class Adder: DivideAndAdd (2)

// THREE BASE CASES:
// One element in sublist: convert from char to int and return if it's a number.
if (low == high)
{

if (array[low] != '+')
{

int temp = asciiToInteger(array[low]);
return temp;

}
else
{

// It's a plus sign don't sum the ascii value.
return(0);

}
}

James TamParsing Assignment

Class Adder: DivideAndAdd (3)

// Two elements in sublist
if ((low+1)==high)
{

// Order of elements: operation, operand
if (array[low] == '+')
{

int temp = asciiToInteger (array[high]);
return temp;

}
// Order of elements: operand, operation
else if (array[high] == '+')
{

int temp = asciiToInteger (array[low]);
return temp;

}
}

The parsing assignment 28

James TamParsing Assignment

Class Adder: DivideAndAdd (4)

// Three elements in sublist
if ((low+2) == high)
{

// Order of elements: <operand> <operation> <operand>
if (array[low] != '+')
{

int operand1 = asciiToInteger(array[low]);
int operand2 = asciiToInteger(array[high]);
return (operand1+operand2);

}
// Order of elements: <operation> <operand> <operation>
else
{

int temp = asciiToInteger(array[low+1]);
return temp;

}
}

James TamParsing Assignment

Class Adder: DivideAndAdd (5)

// RECURSIVE CASES:

// More than four elements in the list.
int middle, leftTotal, rightTotal, total;
int leftLow, leftHigh, rightLow, rightHigh;
middle = (int) ((low+high)/2);

// Set low and high bound for the left sublist.
leftLow = low;
leftHigh = middle - 1;

// Set low and high bound for the right sublist.
rightLow = middle + 1;
rightHigh = high;

leftTotal = divideAndAdd(array, leftLow, leftHigh);
rightTotal = divideAndAdd(array, rightLow, rightHigh);

The parsing assignment 29

James TamParsing Assignment

Class Adder: DivideAndAdd (7)

total = leftTotal + rightTotal;

if (array[middle] != '+')
total = total + asciiToInteger(array[middle]);

// Recursive calls finished.
return total;

}
}

James TamParsing Assignment

Summary

You should now know:
• Compilation: What are the major parts of a compiler
• How formal grammars can be used to specify the syntax of a

language
• Two examples of specifying syntax rules

•Backus-Naur form (BNF)
•Syntax diagrams

• Divide and Conquer through recursion

