
Object-Oriented Principles in Java: Part II 1

James TamObject-Oriented Principles in Java: Part III

Object-Oriented Principles
in Java: Part III

Inheritance

Overloading methods

Shadowing

States

A return to exceptions: creating new exceptions

Interfaces and abstract classes

Packages

James TamObject-Oriented Principles in Java: Part III

What Is Inheritance?

Creating new classes that are based on existing classes.

Existing class

Object-Oriented Principles in Java: Part II 2

James TamObject-Oriented Principles in Java: Part III

What Is Inheritance?

Creating new classes that are based on existing classes.
All non-private data and methods are available to the new
class (but the reverse is not true).
The new class is composed of information and behaviors of
the existing class (and more).

Existing class

New class

James TamObject-Oriented Principles in Java: Part III

Inheritance Terminology

Superclass

Subclass

Generalization

Specialization

Parent class

Child class

Object-Oriented Principles in Java: Part II 3

James TamObject-Oriented Principles in Java: Part III

When To Employ Inheritance

If you notice that certain behaviors or data is common among
a group of candidate classes
The commonalities may be defined by a superclass
What is unique may be defined by particular subclasses

Generic user

Engineer Management
Technical
support

James TamObject-Oriented Principles in Java: Part III

Why Employ Inheritance

To allow for code reuse
It may result in more robust code

Existing class

New class

Object-Oriented Principles in Java: Part II 4

James TamObject-Oriented Principles in Java: Part III

Inheritance: Format

Class <Name of Subclass > extends <Name of Superclass>
{

// Definition of subclass – only what is unique to subclass
}

James TamObject-Oriented Principles in Java: Part III

Inheritance: An Example

class Dragon extendsMonster
{

public void displaySpecial ()
{

System.out.println("Breath weapon: ");
}

}

Object-Oriented Principles in Java: Part II 5

James TamObject-Oriented Principles in Java: Part III

The Parent Of All Classes

Class Object is at the top of the inheritance hierarchy
(includes Class Array)
All other classes inherit it’s data and methods
For more information about this class see the url:
http://java.sun.com/j2se/1.3/docs/api/java/lang/Object.html

James TamObject-Oriented Principles in Java: Part III

Review: Relations Between Classes

Composition (“has-a”)
Association (“knows-a”)
Inheritance (“is-a”)

Object-Oriented Principles in Java: Part II 6

James TamObject-Oriented Principles in Java: Part III

Composition (“Has-a”)

A composition relation exists between two classes if one
classes’ field(s) consist of another class
e.g., A car has an (has-a) engine
Class Foo
{

private Bar b;
}

Foo Bar

-b: Bar

James TamObject-Oriented Principles in Java: Part III

Association (“Knows-a”)

A composition relation exists between two classes if within one class’
method(s), there exists as a local variable an instance of another class
e.g., A car uses (knows-a) gasoline
Class Foo
{

public void method ()
{

Bar b = new Bar ();
}

}

Foo Bar
+method ()

Object-Oriented Principles in Java: Part II 7

James TamObject-Oriented Principles in Java: Part III

Inheritance (“Is-a”)

A composition relation exists between two classes if one class
is the parent class of another class
e.g., A car is a type of (is-a) vehicle
Class Foo
{
}

Class Bar extends Bar
{

}

Foo

Bar

James TamObject-Oriented Principles in Java: Part III

Inheritance (“Is-a”)

A composition relation exists between two classes if one class
is the parent class of another class
e.g., A car is a type of (is-a) vehicle
Class Foo
{
}

Class Bar extends Bar
{

}

Foo

Bar

Instances of the
subclass can be used
in place of instances
of the super class

Object-Oriented Principles in Java: Part II 8

James TamObject-Oriented Principles in Java: Part III

Method Overloading

•Different versions of a method can be implemented by
different classes in an inheritance hierarchy.

•Methods have the same name and parameter list (signature)
•i.e., <method name> (<parameter list>)

James TamObject-Oriented Principles in Java: Part III

Method Overloading Vs. Method Overriding

Method Overloading
• Multiple method implementations for the same class
• Each method has the same name but different parameters (type, number or order)
• The method that is actually called is determined at compile time.
• i.e., <reference name>.<method name> (parameter list);

Example:
Class Foo
{

display ();
display (int i);
display (char ch);
:

}

Foo f = new Foo ();
f.display();
f.display(10);
f.display(‘c’);

Object-Oriented Principles in Java: Part II 9

James TamObject-Oriented Principles in Java: Part III

Method Overloading Vs. Method Overriding

Method Overloading
• Multiple method implementations for the same class
• Each method has the same name but different parameters (type, number or order)
• The method that is actually called is determined at compile time.
• i.e., <reference name>.<method name> (parameter list);

Example:
Class Foo
{

display ();
display (int i);
display (char ch);
:

}

Foo f = new Foo ();
f.display();
f.display(10);
f.display(‘c’);

Distinguishes
overloaded methods

James TamObject-Oriented Principles in Java: Part III

Method Overloading Vs. Method Overriding

Method Overriding
•Multiple method implementations between the parent and child classes
•Each method has the same return value, name and parameters (type,
number or order)

•The method that is actually called is determined at run time
(Polymorphism)

•i.e., <reference name>.<method name> (parameter list);

Object-Oriented Principles in Java: Part II 10

James TamObject-Oriented Principles in Java: Part III

Method Overloading Vs. Method Overriding

Method Overriding
•Multiple method implementations between the parent and child classes
•Each method has the same return value, name and parameters (type,
number or order)

•The method that is actually called is determined at run time
(Polymorphism)

•i.e., <reference name>.<method name> (parameter list);

Type of reference
distinguishes
overridden methods

James TamObject-Oriented Principles in Java: Part III

Method Overloading Vs. Method Overriding (2)

Example:
Class Foo
{

display ();
:

}
Class FooChild
{

display ();
}

Foo f = new Foo ();
f.display();

FooChild fc = new FooChild ();
fc.display ();

Object-Oriented Principles in Java: Part II 11

James TamObject-Oriented Principles in Java: Part III

A Blast From The Past

Mummy

Scorpion

Dragon

Screamer

Ghost

Knight

Monsters

Weapons

Armour

Broadsword

Longbow
Rapier

Dungeon
Master

:

James TamObject-Oriented Principles in Java: Part III

The Inheritance Hierarchy For The Monsters
Monster

Undead

StoneBased

Robber Dragon

Object-Oriented Principles in Java: Part II 12

James TamObject-Oriented Principles in Java: Part III

The Inheritance Hierarchy For The Monsters
Monster

Undead StoneBased Giggler Dragon

James TamObject-Oriented Principles in Java: Part III

The Dragon Sub-Hierarchy

Dragon

Red Dragon Blue Dragon Halitosis Dragon

Object-Oriented Principles in Java: Part II 13

James TamObject-Oriented Principles in Java: Part III

The Dragon Sub-Hierarchy

Dragon

Red Dragon Blue Dragon Halitosis Dragon

James TamObject-Oriented Principles in Java: Part III

Class Monster

The complete program can be found in the directory:

class Monster
{

protected int protection;
protected int damageReceivable;
protected int damageInflictable;
protected int speed;
protected String name;

Object-Oriented Principles in Java: Part II 14

James TamObject-Oriented Principles in Java: Part III

Class Monster (2)

public String toString ()
{

String s = new String ();
s = s + "Protection: " + protection + "\n";
s = s + "Damage receivable: " + damageReceivable + "\n";
s = s + "Damage inflictable: " + damageInflictable + "\n";
s = s + "Speed: " + speed + "\n";
s = s + "Name: " + name + "\n";
return s;

}

public void displaySpecialAbility ()
{

System.out.println("No special ability");
}

James TamObject-Oriented Principles in Java: Part III

Class Dragon

class Dragon extends Monster
{

public void displaySpecial ()
{

System.out.print("Breath weapon: ");
}

}

Object-Oriented Principles in Java: Part II 15

James TamObject-Oriented Principles in Java: Part III

Class BlueDragon

class BlueDragon extends Dragon
{

public void displaySpecial ()
{

super.displaySpecial ();
System.out.println("Lightening");

}
}

James TamObject-Oriented Principles in Java: Part III

Class HalitosisDragon

class HalitosisDragon extends Dragon
{

public void displaySpecial ()
{

super.displaySpecial();
System.out.println("Stinky");

}
}

Object-Oriented Principles in Java: Part II 16

James TamObject-Oriented Principles in Java: Part III

Class RedDragon

class RedDragon extends Dragon
{

public void displaySpecial ()
{

super.displaySpecial();
System.out.println("Fire");

}
}

James TamObject-Oriented Principles in Java: Part III

Class DungeonMaster

class DungeonMaster
{

public static void main (String [] argv)
{

BlueDragon electro = new BlueDragon ();
RedDragon pinky = new RedDragon ();
HalitosisDragon stinky = new HalitosisDragon () ;

electro.displaySpecial ();
pinky.displaySpecial ();
stinky.displaySpecial ();

}
}

Object-Oriented Principles in Java: Part II 17

James TamObject-Oriented Principles in Java: Part III

Inheritance: A Second Example

The source code for this example can be found in the directory:
/home/profs/tamj/233/examples/inheritence/secondExample

FirstFoo

SecondFoo Driver

-fieldOne: int

// Accessors, constructors

-fieldTwo: int

// Accessors, constructors

James TamObject-Oriented Principles in Java: Part III

The Driver Class

class Driver
{

public static void main (String [] argv)
{

SecondFoo sf1 = new SecondFoo ();
System.out.println();

SecondFoo sf2 = new SecondFoo (20);
System.out.println();

SecondFoo sf3 = new SecondFoo (100,200);
System.out.println();

}
}

Object-Oriented Principles in Java: Part II 18

James TamObject-Oriented Principles in Java: Part III

Class SecondFoo

class SecondFoo extends FirstFoo
{

private int fieldTwo;

public SecondFoo ()
{

super();
System.out.println("Calling default constructor for class SecondFoo");
fieldTwo = 1;

}

public SecondFoo (int f2)
{

super();
System.out.println("Calling one-argument constructor for class SecondFoo");
fieldTwo = f2;

}

James TamObject-Oriented Principles in Java: Part III

Class SecondFoo (2)

public SecondFoo (int f1, int f2)
{

super(f1);
System.out.println("Calling two-argument constructor for class SecondFoo");
fieldTwo = f2;

}

public int getFieldTwo () {return fieldTwo;}
public void setFieldTwo (int i) {fieldTwo = i;}

}

Object-Oriented Principles in Java: Part II 19

James TamObject-Oriented Principles in Java: Part III

Class FirstFoo

class FirstFoo
{

private int fieldOne;

public FirstFoo ()
{

System.out.println("Calling default constructor for class FirstFoo");
fieldOne = 0;

}

public FirstFoo (int f1)
{

System.out.println("Calling one-argument constructor for class FirstFoo");
fieldOne = 0;

}
public int getFieldOne () {return fieldOne;}
public void setFieldOne (int i) {fieldOne = i;}

}

James TamObject-Oriented Principles in Java: Part III

Levels Of Access Permissions

Private “-”
•Can only access field in the methods of the class where the field is
originally listed.

Protected “#”
•Can access field in the methods of the class where the field is
originally listed or the subclasses of that class

Public “+”
•Can access field anywhere in the program

Object-Oriented Principles in Java: Part II 20

James TamObject-Oriented Principles in Java: Part III

Levels Of Access Permissions (Tabular Form)

NoYesYesProtected

NoNoYes
Private

YesYesYesPublic

Not a subclassSubclass Same class

Access
level

Accessible to

James TamObject-Oriented Principles in Java: Part III

Levels Of Access Permissions (Graphical
Representation)

Foo

-private int num1;

#protected int num2;

+public int num3;

FooChild

Can directly access num2

Can directly access num3

Must use methods of Foo to
access/modify num1

Rest of the program
: :

Can directly access num3

Must use methods of Foo
to access/modify num1
and methods of FooChild
to access/modify num2

Object-Oriented Principles in Java: Part II 21

James TamObject-Oriented Principles in Java: Part III

Inheritance: A Third Example

The source code for this example can be found in the directory:
/home/profs/tamj/233/examples/inheritence/thirdExample

FirstFoo

SecondFoo Driver

+ CONSTFIELD: int

fieldOne: int

- fieldTwo: int

fieldThree

- fieldFour

James TamObject-Oriented Principles in Java: Part III

The Driver Class

class Driver
{

public static void main (String [] argv)
{

SecondFoo f1 = new SecondFoo ();
System.out.println();
SecondFoo f2 = new SecondFoo (10,20,30,40);
System.out.println();

FirstFoo f3 = (FirstFoo) new SecondFoo ();
System.out.println(f3.getFieldTwo ());

//System.out.println(f3.getFieldThree ());

// SecondFoo f4 = (SecondFoo) new FirstFoo ();

}
}

Object-Oriented Principles in Java: Part II 22

James TamObject-Oriented Principles in Java: Part III

Class SecondFoo

class SecondFoo extends FirstFoo
{

protected int fieldThree;
private int fieldFour;
public SecondFoo ()
{

super();
System.out.println("Calling default constructor for class SecondFoo");
fieldThree = 3;
fieldFour = 4;

}
public SecondFoo (int f1, int f2, int f3, int f4)
{

super (f2);
System.out.println("Calling four-argument constructor for class SecondFoo");
fieldOne = f1;
fieldThree = f3;

fieldFour = f4;
}
:

James TamObject-Oriented Principles in Java: Part III

Class FirstFoo

class FirstFoo
{

public static final int CONSTFIELD = 1;
protected int fieldOne;
private int fieldTwo;

Object-Oriented Principles in Java: Part II 23

James TamObject-Oriented Principles in Java: Part III

Class FirstFoo (2)

public FirstFoo ()
{

System.out.println("Calling default constructor for class FirstFoo");
fieldOne = 0;
fieldTwo = 0;

}

public FirstFoo (int f2)
{

System.out.println("Calling one-argument constructor for class FirstFoo");
fieldOne = 0;
fieldTwo = f2;

}

public FirstFoo (int f1, int f2)
{

System.out.println("Calling two-argument constructor for class FirstFoo");
fieldOne = f1;
fieldTwo = f2;

}

James TamObject-Oriented Principles in Java: Part III

Shadowing

Local variables in a method or parameters to a method have
the same name as instance fields
Fields of the subclass have the same name as fields of the
superclass

Object-Oriented Principles in Java: Part II 24

James TamObject-Oriented Principles in Java: Part III

Local Variables Shadowing Instance Fields

class IntegerWrapper
{

private int num;

public IntegerWrapper ()
{

num = (int) (Math.random() * 100);
}

public IntegerWrapper (int no)
{

int num = no;
}
:

}

James TamObject-Oriented Principles in Java: Part III

Fields Of The Subclass Have The Same Names As
The SuperClasses’ Fields

class Foo
{

private int num;
public Foo () { num = 1; }
public int getNum () { return num; }
public void setNum (int no) {num = no; }

}

class Bar extends Foo
{

public Bar ()
{

num = 10;
}

}

Object-Oriented Principles in Java: Part II 25

James TamObject-Oriented Principles in Java: Part III

Fields Of The Subclass Have The Same Names As
The SuperClasses’ Fields

class Foo
{

private int num;
public Foo () { num = 1; }
public int getNum () { return num; }
public void setNum (int no) {num = no; }

}

class Bar extends Foo
{

public Bar ()
{

num = 10;
}

}

Insufficient access
permissions: Won’t

compile

James TamObject-Oriented Principles in Java: Part III

Fields Of The Subclass Have The Same Names As
The SuperClasses’ Fields (2)

class Foo
{

private int num;
public Foo () { num = 1; }
public int getNum () { return num; }
public void setNum (int no) {num = no; }

}

class Bar extends Foo
{

private int num;
public Bar ()
{

num = 1;
}

}

Object-Oriented Principles in Java: Part II 26

James TamObject-Oriented Principles in Java: Part III

Fields Of The Subclass Have The Same Names As
The SuperClasses’ Fields (2)

class Foo
{

private int num;
public Foo () { num = 1; }
public int getNum () { return num; }
public void setNum (int no) {num = no; }

}

class Bar extends Foo
{

private int num;
public Bar ()
{

num = 1;
}

}

NO!

James TamObject-Oriented Principles in Java: Part III

The Result Of Attribute Shadowing

class Bar extends Foo
{

private int num;
public Bar ()
{

num = 10;
}
public int getSecondNum () { return num; }

}
class Driver
{

public static void main (String [] arv)
{

Bar b = new Bar ();
System.out.println(b.getNum());
System.out.println(b.getSecondNum());

}
}

Object-Oriented Principles in Java: Part II 27

James TamObject-Oriented Principles in Java: Part III

Changing Permissions Of Overridden Methods

The overridden method must have equal or stronger (less restrictive)
access permissions in the child class.

Parent
#method()

Parent
+method()

Parent
#method()

Parent
-method()

James TamObject-Oriented Principles in Java: Part III

The Final Modifier (Inheritance)

Methods preceded by the final modifier cannot be overridden
e.g., public final void displayTwo ()

Classes preceded by the final modifier cannot be extended
•e.g., final class ParentFoo

Object-Oriented Principles in Java: Part II 28

James TamObject-Oriented Principles in Java: Part III

Classes And State

The state of an object is determined by the values of it’s
attributes.
The states of objects can be modeled by State diagrams
Not all attributes are modeled

•The attribute can only take on a limited range of values
•The attribute has restrictions that determine which values that it may
take on.

James TamObject-Oriented Principles in Java: Part III

Example Class: Adventurer

Class Adventurer
{

private boolean okay;
private boolean poisoned;
private boolean confused;
private boolean dead;

:
}

Object-Oriented Principles in Java: Part II 29

James TamObject-Oriented Principles in Java: Part III

Class Adventurer: The Set Of States

Poisoned

Dead

Okay

Injected with poison

After (10 minutes)

Hit by confusion
spellReceive

cure

Resurrected

Receive antidote

Confused

James TamObject-Oriented Principles in Java: Part III

Class Adventurer: State Diagram

Okay

Poisoned

Confused
Dead

Injected with
poison

After (10 minutes)

Receive cure

Receive
antidote

Hit by
confusion spell

Resurrected

Object-Oriented Principles in Java: Part II 30

James TamObject-Oriented Principles in Java: Part III

Creating Your Own Exceptions
Throwable

Error

VirtualMachineError

OutOfMemoryError

Exception

… IOException RunTime

Exception
…

???

James TamObject-Oriented Principles in Java: Part III

Class Exception: Local Inheritance Hierarchy

Exception

IOExceptionClassNotFound

Exception

CloneNotFound

Exception

EOFException FileNotFound

Exception

MalformedURL

Exception

UnknownHost

Exception

Object-Oriented Principles in Java: Part II 31

James TamObject-Oriented Principles in Java: Part III

Creating New Exceptions: An Example

The full example can be found in the directory:
/home/profs/tamj/233/examples/exceptions/writingExceptions

James TamObject-Oriented Principles in Java: Part III

The Driver Class

import tio.*;

class Driver
{

public static void main (String [] argv)
{

int newAge;
Person jim = new Person ();
System.out.print("Enter age: ");
newAge = Console.in.readInt();

Object-Oriented Principles in Java: Part II 32

James TamObject-Oriented Principles in Java: Part III

The Driver Class (2)

try
{

jim.setAge(newAge);
}
catch (Exception e)
{

System.out.println(e.getMessage());
}

}
}

James TamObject-Oriented Principles in Java: Part III

Class Person

class Person
{

private int age;
public static int MINAGE = 0;
public static int MAXAGE = 120;

public Person ()
{

age = 0;
}

Object-Oriented Principles in Java: Part II 33

James TamObject-Oriented Principles in Java: Part III

Class Person (2)

public Person (int a) throws InvalidAgeException
{

if ((a < MINAGE) || (a > MAXAGE))
throw new InvalidAgeException("Invalid Age Exception: Age must be

between “ + MINAGE + " & " + MAXAGE);
else

age = a;
}

James TamObject-Oriented Principles in Java: Part III

Class Person (3)

public void setAge (int a) throws InvalidAgeException
{

if ((a < MINAGE) || (a > MAXAGE))
throw new InvalidAgeException("Invalid Age Exception: Age must be

between “ + MINAGE + " & " + MAXAGE);
else

age = a;
}

public int getAge ()
{

return age;
}

}

Object-Oriented Principles in Java: Part II 34

James TamObject-Oriented Principles in Java: Part III

Class InvalidAgeException

class InvalidAgeException extends Exception
{

InvalidAgeException ()
{
}
InvalidAgeException (String s)
{

super(s);
}

}

James TamObject-Oriented Principles in Java: Part III

Java Interfaces

Similar to a class
Provides a design guide rather than implementation details
Specifies what methods should be implemented but not how

<< interface >>

Interface
method specification

Class
method implementation

Realization / Implement

Object-Oriented Principles in Java: Part II 35

James TamObject-Oriented Principles in Java: Part III

Java Interfaces: Lollipop Notation

Similar to a class
Provides a design guide rather than implementation details
Specifies what methods should be implemented but not how

Class
method implementation

Interface

James TamObject-Oriented Principles in Java: Part III

Interfaces: Format

Format for specifying the interface
Interface <name of interface>
{

constants
methods to be implemented

}

Format for realizing / implementing the interface
class <name of class> implements <name of interface>
{

data fields
methods actually implemented

}

Object-Oriented Principles in Java: Part II 36

James TamObject-Oriented Principles in Java: Part III

Interfaces: A Checkers Example

Basic board

Regular rules

Variant rules

James TamObject-Oriented Principles in Java: Part III

Interface Board

interface Board
{

public static final int SIZE = 8;
public void displayBoard ();
public void initializeBoard ();
public void movePiece ();
boolean moveValid (int xSource, int ySource, int xDestination,

int yDestination);
: :

}

Object-Oriented Principles in Java: Part II 37

James TamObject-Oriented Principles in Java: Part III

Class RegularBoard

class RegularBoard implements Board
{

public void displayBoard ()
{

:
}

public void initializeBoard ()
{

:
}

James TamObject-Oriented Principles in Java: Part III

Class RegularBoard (2)

public void movePiece ()
{

// Get (x, y) coordinates for the source and destination
if (moveValid == true)

// Actually move the piece
else

// Don’t move piece and display error message
}

public boolean moveValid (int xSource, int ySource, int xDestination,
int yDestination)

{
if (moving diagonally forward)

return true;
else

return false;
}

}

Object-Oriented Principles in Java: Part II 38

James TamObject-Oriented Principles in Java: Part III

Class VariantBoard

class VariantBoard implements Board
{

public void displayBoard ()
{

:
}

public void initializeBoard ()
{

:
}

James TamObject-Oriented Principles in Java: Part III

Class VariantBoard (2)

public void movePiece ()
{

// Get (x, y) coordinates for the source and destination
if (moveValid == true)

// Actually move the piece
else

// Don’t move piece and display error message
}

public boolean moveValid (int xSource, int ySource, int xDestination,
int yDestination)

{
if (moving straight-forward or straight side-ways)

return true;
else

return false;
}

}

Object-Oriented Principles in Java: Part II 39

James TamObject-Oriented Principles in Java: Part III

Interfaces: Recapping The Example

Interface Board
•No state (data) or behavior (method bodies) listed
•Specifies the behaviors that a board should exhibit
•This is done by listing the methods that must be implemented by
classes that implement the interface.

Class RegularBoard and VariantBoard
•Can have state and methods
•They must implement all the methods specified by interface Board
(can also implement other methods too)

James TamObject-Oriented Principles in Java: Part III

Implementing Multiple Interfaces

Class

Interface1 Interface2 Interface3

Object-Oriented Principles in Java: Part II 40

James TamObject-Oriented Principles in Java: Part III

Implementing Multiple Interfaces

Format:
Class <class name> implements <interface name 1>, <interface name
2>, <interface name 3>
{

}

James TamObject-Oriented Principles in Java: Part III

Multiple Implementations Vs. Multiple Inheritance

A class can implement all the methods multiple interfaces
Classes in Java cannot extend more than one class
This is not possible in Java (but is possible in some other
languages such as C++):

Class <class name 1> extends <class
name 2>, <class name 3>…

{

}

Object-Oriented Principles in Java: Part II 41

James TamObject-Oriented Principles in Java: Part III

Multiple Implementations Vs. Multiple Inheritance
(2)

A class can implement all the methods multiple interfaces
Classes in Java cannot extend more than one class
This is not possible in Java:

Parent class 1 Parent class 2 Parent class 3

Child class

James TamObject-Oriented Principles in Java: Part III

Abstract Classes

Classes that cannot be instantiated
A hybrid between regular classes and interfaces
Some methods may be implemented while others are only
specified
Used when the parent class cannot define a default
implementation (must be specified by the child class).
Format:

abstract class <class name>
{

<public/private/protected> abstract method ();
}

Object-Oriented Principles in Java: Part II 42

James TamObject-Oriented Principles in Java: Part III

Abstract Classes (2)

Example:
abstract class BankAccount
{

private float balance;
public void displayBalance ()
{

System.out.println("Balance $" + balance);
}
public abstract void deductFees () ;

}

James TamObject-Oriented Principles in Java: Part III

Packages

A collection of related classes that are bundled together
To allow for some implementation details to be exposed only
to other classes in the package
Used to avoid naming conflicts for classes

java.lang

Object

String System

Error
Exception

StringBuffer

Object

org.omg.CORBA

Object-Oriented Principles in Java: Part II 43

James TamObject-Oriented Principles in Java: Part III

Fully Qualified Names: Matches Directory Structure

packageExample.pack1.OpenFoo.toString()

package name class name method name

James TamObject-Oriented Principles in Java: Part III

Fully Qualified Names: Matches Directory Structure

pack3.OpenFoo.toString()

package name

class name

method name

:

tamj

233

examples

packageExample

pack3

OpenFoo.java ClosedFoo.java

Object-Oriented Principles in Java: Part II 44

James TamObject-Oriented Principles in Java: Part III

Matching Classes To Packages

1. The classes that belong to a package must reside in the
directory with the same name as the package (previous
slide).

2. The definition of the class must indicate the package that
the class belongs to.

Format:
package <package name>;
<visibility – public or package> class <class name>
{

}

James TamObject-Oriented Principles in Java: Part III

Matching Classes To Packages (2)

Example
public class OpenFoo
{

:
}

class ClosedFoo
{

:
}

Object-Oriented Principles in Java: Part II 45

James TamObject-Oriented Principles in Java: Part III

Matching Classes To Packages (2)

Example
package pack3;
public class OpenFoo
{

:
}

package pack3;
class ClosedFoo

{
:

}

Public: Class can be instantiated by
classes that aren’t a part of package
pack3

Package (default): Class can only be
instantiated by classes that are
members of package pack3

James TamObject-Oriented Principles in Java: Part III

Sun’s Naming Conventions For Packages

Based on Internet domains (registered web addresses)
e.g., www.tamj.com

com.tamj .games

.productivity

Object-Oriented Principles in Java: Part II 46

James TamObject-Oriented Principles in Java: Part III

Sun’s Naming Conventions For Packages

Alternatively it could be based on your email address
e.g., tamj@cpsc.ucalgary.ca

ca.ucalgary.cpsc.tamj

James TamObject-Oriented Principles in Java: Part III

Graphically Representing Packages In UML

Package name Package name

+Classes visible outside the package

-Classes not visible outside the package
(protected class)

Object-Oriented Principles in Java: Part II 47

James TamObject-Oriented Principles in Java: Part III

Packages An Example

The complete example can be found in the directory:
/home/profs/tamj/examples/packageExample

(But you should have guessed that from the previous slides)

packageExample

pack1 pack2 pack3 Driver

IntegerWrapper IntegerWrapper ClosedFoo OpenFoo

James TamObject-Oriented Principles in Java: Part III

Graphical Representation Of The Example

(Unnamed)

-Driver

pack1

+IntegerWrapper

pack2

+IntegerWrapper

pack3

+OpenFoo

-ClosedFoo

Object-Oriented Principles in Java: Part II 48

James TamObject-Oriented Principles in Java: Part III

The Driver Class

import packageExample.pack3.*;

class Driver
{

public static void main (String [] argv)
{

pack1.IntegerWrapper iw1 = new pack1.IntegerWrapper ();
pack2.IntegerWrapper iw2 = new pack2.IntegerWrapper ();
System.out.println(iw1);
System.out.println(iw2);

OpenFoo of = new OpenFoo ();
System.out.println(of);
of.manipulateFoo();

}

}

James TamObject-Oriented Principles in Java: Part III

Package Pack1: IntegerWrapper

package pack1;

public class IntegerWrapper
{

private int num;
public IntegerWrapper ()
{

num = (int) (Math.random() * 10);
}

// Also includes one argument constructor, accessor and mutator methods
public String toString ()
{

String s = new String ();
s = s + num;
return s;

}
}

Object-Oriented Principles in Java: Part II 49

James TamObject-Oriented Principles in Java: Part III

Package Pack2: IntegerWrapper

package pack2;

public class IntegerWrapper
{

private int num;
public IntegerWrapper ()
{

num = (int) (Math.random() * 100);
}

// Also includes one argument constructor, accessor and mutator methods
public String toString ()
{

String s = new String ();
s = s + num;
return s;

}
}

James TamObject-Oriented Principles in Java: Part III

Package Pack3: Class OpenFoo

package pack3;

public class OpenFoo
{

private boolean bool;

public OpenFoo () { bool = true; }

public void manipulateFoo ()
{

ClosedFoo cf = new ClosedFoo ();
System.out.println(cf);

}
// Also includes accessor and mutator methods along with a toString () method.

}

Object-Oriented Principles in Java: Part II 50

James TamObject-Oriented Principles in Java: Part III

Package Pack3: Class ClosedFoo

package pack3;

class ClosedFoo
{

private boolean bool;

public ClosedFoo ()
{

bool = false;
}

// Also includes accessor and mutator methods along with a toString () method.

}

James TamObject-Oriented Principles in Java: Part III

Classes That Aren’t Declared As Part Of A Package

Classes that aren’t explicitly associated with a particular
package are implicitly part of the same package as the other
classes that reside in the same directory as that class.

:

tamj

233

examples

fileIO

SimpleIOIntegerWrapper

Object-Oriented Principles in Java: Part II 51

James TamObject-Oriented Principles in Java: Part III

Classes That Aren’t Declared As Part Of A Package

Classes that aren’t explicitly associated with a particular
package are implicitly part of the same package as the other
classes that reside in the same directory as that class.

:

tamj

233

examples

fileIO

SimpleIOIntegerWrapper

James TamObject-Oriented Principles in Java: Part III

Updated Levels Of Access Permissions

Private “-”
•Can only access field in the methods of the class where the field is
originally listed.

Protected “#”
•Can access field in the methods of the class where the field is
originally listed or the subclasses of that class

Package - no UML symbol for this permission level
•Can access the field or method from classes within the same package
•If the level of access is unspecified this is the default level of access

Public “+”
•Can access field anywhere in the program

Object-Oriented Principles in Java: Part II 52

James TamObject-Oriented Principles in Java: Part III

Updated Levels Of Access Permissions (Tabular
Form)

NoNoYesYesPackage

NoYesYesYesProtected

NoNoNoYesPrivate

YesYesYesYesPublic

Not a
subclass,
different
package

Subclass in a
different
package

Class in
same
package

Same class

Access level

Accessible to

James TamObject-Oriented Principles in Java: Part III

Summary

You should now know:
• Inheritance

•Why use inheritance? When to use inheritance?
•How does inheritance work in Java?
•What other types of relations (besides inheritance) can exist between
classes?

•Method overloading vs. method overriding
•Protected levels of access permissions
•Shadowing data fields
•Casting classes
•Calling methods of the parent class vs. calling methods of the child
•The effect of the final modifier in terms of inheritance

Object-Oriented Principles in Java: Part II 53

James TamObject-Oriented Principles in Java: Part III

Summary (2)

• State
•What determines the state of a class?
•How are states represented with State diagram?

• Creating new exceptions by inheriting existing exception
classes

• Interfaces
•Interfaces vs. Classes
•How Interfaces are used in the design process?
•Similarities and differences between abstract classes and interfaces

• Packages
•What is the purpose of using packages?
•How are classes associated with particular packages?
•Updated levels of access permissions (4 levels).

