
Object-Oriented Design 1

James TamObject-Oriented Design

Object-Oriented Design

Approaches to object-oriented design

Some principles for good design

Benefits and Drawbacks of the Object-Oriented
Approach

James Tam

A Model For Creating Computer Software

Specify the problem
•i.e., Determine what problem do we wish to solve

Determine how to solve the problem
•Designing a system to solve the problem (plan)

Implement the solution
•Writing up a solution in the chosen application language

Maintenance of the solution
•Fixing bugs, implementing new features

Object-Oriented Design 2

James Tam

A Model For Creating Computer Software

Specify the problem
•i.e., Determine what problem do we wish to solve

Determine how to solve the problem
•Designing a system to solve the problem (plan)

Implement the solution
•Writing up a solution in the chosen application language

Maintenance of the solution
•Fixing bugs, implementing new features

James Tam

Approaches To Object-Oriented Design

Traditional techniques
• Finding the nouns
• Using CRC cards
Currently used techniques
• Apply object decomposition
• Examine similar systems

This list is by no means complete but provides a starting point for students who are new
to the Object-Oriented approach

Object-Oriented Design 3

James Tam

Finding The Nouns

Mummy

Scorpion

Dragon

Screamer

Ghost

Knight

Monsters

Weapons

Armour

Broadsword

Longbow
Rapier

Dungeon
Master

:

James Tam

Finding The Nouns:Approach

1. Obtain a description of the problem to be solved
2. Identify the nouns in the document in order to look for

candidate classes
3. Identity the verbs in the document in order look for

potential methods

Object-Oriented Design 4

James Tam

Finding Nouns: Discussion

Advantage
• Requires no training, easy to apply
Drawback
• There is not always a direct mapping between nouns and

classes

James Tam

Using CRC (Class-Responsibility-
Collaboration) Cards

Update book info.

Remove a book

Add a new book

BookDisplay collection

CollectionManager CollectionManager

List of books in the collection
Responsibilities Collaborations

Object-Oriented Design 5

James Tam

Using CRC Cards: Approach

1. Obtain a description of the system to be modeled
2. On the front of the CRC card (cardboard or sticky note)

state the name of the class and list it’s responsibilities and
collaborations

3. On the back of the card list the attributes of the class
4. Pass the completed deck of cards to experienced

developers to look for holes in the deck

James Tam

Using CRC Cards: Discussion

Advantage:
•Relatively simply to learn and apply
•Having the cards examined by experts may result in fewer
gaps than just finding the nouns

Disadvantage:
•More useful for defining rather than identifying classes
(should already have a list of classes)

Object-Oriented Design 6

James Tam

Combining Techniques

1) Use the “find the

nouns” approach

to derive a list

of candidate

classes

2) Analyze this list by

employing the CRC

technique

James Tam

Applying Object Decomposition

Dungeon

Dungeon
Master

Dungeon level

Dungeon walls

Object-Oriented Design 7

James Tam

Applying Object Decomposition: Approach

1. Obtain a description of the system to be modeled
2. Find the aggregate categories of classes
3. Decompose the categories in order to identify their

components
4. Continue the process of decomposition until you reach the

bottom level classes

James Tam

Applying Object Decomposition: Discussion

Advantages
• A natural approach for dealing with aggregates
Disadvantages
• Not all classes are components of an aggregate
• More useful for describing how classes are related rather

than indicating how to derive a list of classes

Object-Oriented Design 8

James Tam

Examining Similar Systems

James Tam

Examining Similar Systems: Approach

It can be done in a number of ways:
1. Look at how similar systems were implemented (whole

systems)
2. Examine existing code libraries for reusable code

(portions)
3. Using personal experience

Object-Oriented Design 9

James Tam

Some Principles Of Good Design

Avoid going “method mad”
Keep an eye on your parameter lists
Avoid real values when an integer will do
Minimize modifying immutable objects
Be cautious in the use of references
Consider where you declare local variables

This list was partially derived from “Effective Java” by Joshua Bloch and is by
no means complete. It is meant only as a starting point to get students
thinking more about why a practice may be regarded as “good” or “bad” style.

James Tam

Avoid Going Method Mad

There should be a reason for each method
Creating too many methods makes a class difficult to
understand, use and maintain
A good approach is to check for redundancies

Object-Oriented Design 10

James Tam

Keep An Eye On Your Parameter Lists

Avoid long parameter lists
•Rule of thumb: Three is the maximum
Avoid distinguishing overloaded methods solely by the order
of the parameters

James Tam

Avoid Real Values When An Integer Will Do

double db = 1.03 - 0.42;
if (db == 0.61)

System.out.println("Sixty one cents");
System.out.println(db);

Object-Oriented Design 11

James Tam

Minimize Modifying Immutable Objects

Immutable objects
Once instantiated they cannot change
e.g., String s = "hello";

s = s + " there";

James Tam

Minimize Modifying Immutable Objects (2)

Substitute Immutable objects with mutable ones
e.g.,
Class StringBuffer
{

public StringBuffer (String str);
public StringBuffer append (String str);

: : : :

}

For more information about this class
http://java.sun.com/j2se/1.4/docs/api/java/lang/StringBuffer.html

Object-Oriented Design 12

James Tam

Minimize Modifying Immutable Objects (3)

class StringExample
{

public static void main (String [] argv)
{

String s = "0";
for (int i = 1; i < 10000; i++)

s = s + i;
}

}

class StringBufferExample
{

public static void main (String [] argv)
{

StringBuffer s = new StringBuffer("0");
for (int i = 1; i < 10000 i++)

s = s.append(i);;
}

}

James Tam

Be Cautious In The Use Of References

Similar to global variables:
program globalExample (output);
var

i : integer;

procedure proc;
begin

for i:= 1 to 100 do;
end;

begin
i := 10;
proc;

end.

Object-Oriented Design 13

James Tam

Be Cautious In The Use Of References (2)

class Foo
{

private int num;
public int getNum () {return num;}
public void setNum (int no) {num = no;}

}

James Tam

Be Cautious In The Use Of References (3)

class Driver
{

public static void main (String [] argv)
{

Foo f1, f2;
f1 = new Foo ();
f1.setNum(1);

f2 = f1;
f2.setNum(2);

System.out.println(f1.getNum());
System.out.println(f2.getNum());

}
}

Object-Oriented Design 14

James Tam

Consider Where You Declare Local Variables

First Approach: Declare all local variables at the beginning of
a method:
void methodName (..)
{

int num;
char ch;

:

}

Advantage:
•Putting all variable declarations in one place makes them

easy to find

James Tam

Consider Where You Declare Local Variables (2)

Second Approach: declare local variables only as they are
needed
void methodName (..)
{

int num;
num = 10;

:
char ch;
ch = ‘a’;

}

Advantage:
•For long methods it can be hard to remember the declaration if all
variables are declared at the beginning

•Reducing the scope of a variable may reduce logic errors

Object-Oriented Design 15

James Tam

Common Reasons Given For Adopting The Object-
Oriented Approach

It's the latest thing, isn't it?
I read about it in Business Week
My boss's boss read about it in Business Week
I think our competitors are using it
Three of us went to a talk by Bertrand Meyer and we're really
enthused

Structured techniques don't work

Extracted from: http://www.elj.com/elj/v1/n2/mpj/

James Tam

Benefits Of Object-Orientation

May be more intuitive for some types of applications
Provides mechanisms for more robust programs
•Fewer bugs
•Allow for more code reuse
Easier to maintain and modify programs

Object-Oriented Design 16

James Tam

Drawbacks Of Object-Orientation

Programs tend to be larger
Typically a steeper learning curve than with procedural
languages

James Tam

Summary

What are some traditional and modern approaches to Object-Oriented
design

•Finding the nouns
•Using CRC cards
•Applying object decomposition
•Examining similar systems

A sample list of good design principles in Java
•Avoid going “method mad”
•Keep an eye on your parameter lists
•Avoid real values when an integer will do
•Minimize modifying immutable objects
•Be cautious in the use of references
•Consider where you declare local variables

What are some of the benefits and drawbacks of the Object-Oriented
approach

