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An Introduction To Graphical 
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Building a simple graphical interface in 
Java
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Traditional Software

Program control is largely determined by the program 
through a series of statements.

Start

“Closed for the

weekend”

End

.

.

.

If (day = SAT) OR (day = SUN)

else
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Traditional Software

Program control is largely determined by the program 
through a series of statements.

Start

“Enter password”

Input

The program 
controls 
execution
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Event-Driven Software

RAM

OS

Program

Current point of execution
Current point of execution
Current point of execution

Program control can also be determined by events 
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Event-Driven Software

RAM

OS

Program
Current point of execution

New point of execution (to handle the key press)

Program control can also be determined by events 
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Characteristics Of Event Driven Software

Program control can be determined by events as well standard 
program control statements 
The typical source of these events is the user
These events can occur at any time
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Onscreen Objects Can Trigger Events

Graphical objects can be manipulated by the user to trigger 
events.
Each object can have 0, 1 or many events that can be triggered.
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Steps In The Event Model

1) The graphical component must register all interested 
event listeners.

2) The user triggers an event by manipulating that 
component

3) The component sends a message to all listeners of that 
event

4) The event listener provides code to handle the event
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1. The Graphical Component Must Register All 
Interested Event Listeners.

Button (component)

Class MyListener 
extends ActionListener

{

}

…

b.addActionListener()
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2. The User Triggers An Event By Manipulating 
That Component
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3. The Component Sends A Message To All 
Registered Listeners For That Event

class MyListener extends ActionListener

{

public void actionPerformed (ActionEvent e)

{

}
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3. The Component Sends A Message To All 
Registered Listeners For That Event

class MyListener extends ActionListener

{

public void actionPerformed (ActionEvent e)

{

button.setText(“Stop pressing me”);

}
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4. The Event Listener Provides Code To Handle The 
Event

class MyListener extends ActionListener

{

public void actionPerformed (ActionEvent e)

{

button.setText(“Stop pressing me”);

}
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Building A Simple GUI

This example can be found in the directory: 
/home/profs/tamj/233/examples/GUIs
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The Driver Class

import java.awt.*;
import java.awt.event.*;
public class Driver 
{

public static void main(String[] args) 
{

Frame f = new Frame ();
Panel p = new Panel ();
f.add(p);

Button makePopup = new Button ("Popup");
Button goesInvisible = new Button("Press me");
Button quitProgram = new Button ("Quit");
MyListener simpleListener = new MyListener ();
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The Driver Class (2)

// Para1 = x coordinate, Para2 = y coordinate, Para3 = width, Para4 = height
f.setBounds(100,200,300,200);
p.add(goesInvisible);
p.add(makePopup);
p.add(quitProgram);

// Register simpleListener as a listener to when the buttons get pressed
goesInvisible.addActionListener(simpleListener);
makePopup.addActionListener(simpleListener);
quitProgram.addActionListener(simpleListener);

// Make the frame visible
f.show();
}

}
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Class MyListener

import java.awt.*;
import java.awt.event.*;

public class MyListener implements java.awt.event.ActionListener
{

public void actionPerformed(ActionEvent e) 
{

String s = e.getActionCommand();
if (s.equals("Popup"))
{

Frame f = new Frame ("Popup window");
f.setBounds(0,0,200,100);
f.show();
for (int i = 0; i < 100000000; i++);
f.setTitle("Going away soon");
for (int i = 0; i < 100000000; i++);
f.setVisible(false);

}
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Class MyListener

else if (s.equals("Press me"))
{

Button b = (Button) e.getSource();
b.setVisible(false);

}
else if (s.equals("Quit"))
{

System.exit(0);
}

}
}
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Summary

You should now know:
•The difference between traditional and event driven software
•How event-driven software works
•A simple graphical interface example


