
James Tam

James TamAn introduction into HCI: Task-Centered System Design

An Introduction To Graphical 
User Interfaces

The event-driven model
Building a simple graphical interface in 
Java

James TamAn introduction to graphical user interfaces in Java

Traditional Software

Program control is largely determined by the program 
through a series of statements.

Start

“Closed for the

weekend”

End

.

.

.

If (day = SAT) OR (day = SUN)

else



James Tam

James TamAn introduction to graphical user interfaces in Java

Traditional Software

Program control is largely determined by the program 
through a series of statements.

Start

“Enter password”

Input

The program 
controls 
execution

James TamAn introduction to graphical user interfaces in Java

Event-Driven Software

RAM

OS

Program

Current point of execution
Current point of execution
Current point of execution

Program control can also be determined by events 



James Tam

James TamAn introduction to graphical user interfaces in Java

Event-Driven Software

RAM

OS

Program
Current point of execution

New point of execution (to handle the key press)

Program control can also be determined by events 

James TamAn introduction to graphical user interfaces in Java

Characteristics Of Event Driven Software

Program control can be determined by events as well standard 
program control statements 
The typical source of these events is the user
These events can occur at any time



James Tam

James TamAn introduction to graphical user interfaces in Java

Onscreen Objects Can Trigger Events

Graphical objects can be manipulated by the user to trigger 
events.
Each object can have 0, 1 or many events that can be triggered.

James TamAn introduction to graphical user interfaces in Java

Steps In The Event Model

1) The graphical component must register all interested 
event listeners.

2) The user triggers an event by manipulating that 
component

3) The component sends a message to all listeners of that 
event

4) The event listener provides code to handle the event



James Tam

James TamAn introduction to graphical user interfaces in Java

1. The Graphical Component Must Register All 
Interested Event Listeners.

Button (component)

Class MyListener 
extends ActionListener

{

}

…

b.addActionListener()

James TamAn introduction to graphical user interfaces in Java

2. The User Triggers An Event By Manipulating 
That Component



James Tam

James TamAn introduction to graphical user interfaces in Java

3. The Component Sends A Message To All 
Registered Listeners For That Event

class MyListener extends ActionListener

{

public void actionPerformed (ActionEvent e)

{

}

James TamAn introduction to graphical user interfaces in Java

3. The Component Sends A Message To All 
Registered Listeners For That Event

class MyListener extends ActionListener

{

public void actionPerformed (ActionEvent e)

{

button.setText(“Stop pressing me”);

}



James Tam

James TamAn introduction to graphical user interfaces in Java

4. The Event Listener Provides Code To Handle The 
Event

class MyListener extends ActionListener

{

public void actionPerformed (ActionEvent e)

{

button.setText(“Stop pressing me”);

}

James TamAn introduction to graphical user interfaces in Java

Building A Simple GUI

This example can be found in the directory: 
/home/profs/tamj/233/examples/GUIs



James Tam

James TamAn introduction to graphical user interfaces in Java

The Driver Class

import java.awt.*;
import java.awt.event.*;
public class Driver 
{

public static void main(String[] args) 
{

Frame f = new Frame ();
Panel p = new Panel ();
f.add(p);

Button makePopup = new Button ("Popup");
Button goesInvisible = new Button("Press me");
Button quitProgram = new Button ("Quit");
MyListener simpleListener = new MyListener ();

James TamAn introduction to graphical user interfaces in Java

The Driver Class (2)

// Para1 = x coordinate, Para2 = y coordinate, Para3 = width, Para4 = height
f.setBounds(100,200,300,200);
p.add(goesInvisible);
p.add(makePopup);
p.add(quitProgram);

// Register simpleListener as a listener to when the buttons get pressed
goesInvisible.addActionListener(simpleListener);
makePopup.addActionListener(simpleListener);
quitProgram.addActionListener(simpleListener);

// Make the frame visible
f.show();
}

}



James Tam

James TamAn introduction to graphical user interfaces in Java

Class MyListener

import java.awt.*;
import java.awt.event.*;

public class MyListener implements java.awt.event.ActionListener
{

public void actionPerformed(ActionEvent e) 
{

String s = e.getActionCommand();
if (s.equals("Popup"))
{

Frame f = new Frame ("Popup window");
f.setBounds(0,0,200,100);
f.show();
for (int i = 0; i < 100000000; i++);
f.setTitle("Going away soon");
for (int i = 0; i < 100000000; i++);
f.setVisible(false);

}

James TamAn introduction to graphical user interfaces in Java

Class MyListener

else if (s.equals("Press me"))
{

Button b = (Button) e.getSource();
b.setVisible(false);

}
else if (s.equals("Quit"))
{

System.exit(0);
}

}
}



James Tam

James TamAn introduction to graphical user interfaces in Java

Summary

You should now know:
•The difference between traditional and event driven software
•How event-driven software works
•A simple graphical interface example


