
Data Structures in Java 1

James TamData structures in Java

Data Structures In Java

In this section of notes you will learn about two common
types of data structures:

Queues

Stacks

James TamObject-Oriented Principles in Java: Part II

Data Structures: Description

A composite type that has a set of basic operations that may
be performed on instances of that type:

The type may be a part of the programming language
•e.g., arrays are a basic part of the Pascal language
•Some basic operations on arrays include: adding, deleting or modifying array
elements.

The type may also be created by the programmer
•e.g. linked lists must be defined by the programmer in Pascal
•Some basic linked list operations include: creating a new list, adding,
deleting and modifying nodes on that list.

Data Structures in Java 2

James TamObject-Oriented Principles in Java: Part II

Data Structures To Be Covered

Queues
Stacks
Characteristics:
• Both are lists
• The difference is in their behaviour

James TamObject-Oriented Principles in Java: Part II

Queues

A list where additions occur only at one end of the list and
deletions occur only at the other end.

Front: Exit queue Back: Enter queue

Data Structures in Java 3

James TamObject-Oriented Principles in Java: Part II

Implementing Queues

Head

Front: Exit queue Back: Enter queue

James TamObject-Oriented Principles in Java: Part II

Stacks

A list where additions and deletions are made at only one end
of the list.

Top of stack

Data Structures in Java 4

James TamObject-Oriented Principles in Java: Part II

Common Stack Operations

Push
Pop
Peek

James TamObject-Oriented Principles in Java: Part II

Push Operation

Adding an item to the top of the stack

5

4

2

5

10 Top of stack

Data Structures in Java 5

James TamObject-Oriented Principles in Java: Part II

Push Operation

“7” has been added to the stack and this new item becomes
the top of the stack.

5

4

2

5

10 Top of stack

5

4

2

5

10
Top of stack7

Before push After push

James TamObject-Oriented Principles in Java: Part II

Pop Operation

Removing an item from the top of the stack

5

4

2

5

10 Top of stack

Data Structures in Java 6

James TamObject-Oriented Principles in Java: Part II

Pop Operation

“10” has been removed and “5” becomes the new top of the
stack.

5

4

2

5

10 Top of stack

Before pop

5

4

2

5 Top of stack

After pop

James TamObject-Oriented Principles in Java: Part II

Peek Operation

Examine the item at the top of the stack without removing it

5

4

2

5

10 Top of stack

Data Structures in Java 7

James TamObject-Oriented Principles in Java: Part II

Java Implementation Of A Stack

// It’s part of the legacy Java code but it still helps illustrate how the
// implementation works.

// Use of the Stack class requires the statement:
import java.util.*;

class Stack
{

public boolean empty ();
public Object peek ();
public Object pop ();
public Object push ();
public int search (Object o);

}

James TamObject-Oriented Principles in Java: Part II

Example Using The Java Stack

Driver IntegerWrapper

Menu

Data Structures in Java 8

James TamObject-Oriented Principles in Java: Part II

The Driver Class

import tio.*;
import java.util.*;

class Driver
{

public static void main (String [] argv)
{

int i, noElements, tempNum;
IntegerWrapper rapper;
Stack s1;
int menuSelection;
boolean quitMenu = false;
Menu m = new Menu ();

System.out.print("Enter desired number of elements: ");
noElements = Console.in.readInt();
Console.in.readChar();

James TamObject-Oriented Principles in Java: Part II

The Driver Class (2)

s1 = new Stack ();
System.out.println("Displaying elements in the order they were added...");
for (i = 0; i < noElements; i++)
{

rapper = new IntegerWrapper();
System.out.print("Value of element " + i + "..." + rapper.getNum());
if (i < (noElements-1))

System.out.println();
else

System.out.println("\t<== Top of stack");
s1.push(rapper);

Data Structures in Java 9

James TamObject-Oriented Principles in Java: Part II

The Driver Class (3)

while (quitMenu != true)
{

m.displayMenu ();
menuSelection = m.getSelection();
Console.in.readChar();

switch (menuSelection)
{

// Pop element
case 1:
if (s1.empty() == false)
{

rapper = (IntegerWrapper) s1.pop();
System.out.println();
System.out.println("Value of popped element: " + rapper.getNum());
System.out.println();

}

James TamObject-Oriented Principles in Java: Part II

The Driver Class (4)

else
{

System.out.println();
System.out.println("Stack is empty: No elements to pop!");
System.out.println();

}
break;

// Push element
case 2:
System.out.println();
System.out.print("Enter value of element to push onto stack: ");
tempNum = Console.in.readInt();
s1.push(new IntegerWrapper(tempNum));
break;

Data Structures in Java 10

James TamObject-Oriented Principles in Java: Part II

Driver Class (5)

case 3:
rapper = (IntegerWrapper) s1.peek ();
System.out.println();
System.out.println(“Element at the top of stack:" + rapper.getNum());
System.out.println();
break;

case 4:
System.out.println("Displaying elements in the order of the stack");
while (s1.empty() == false)
{

rapper = (IntegerWrapper) s1.pop();
System.out.println("\tValue of popped element: " + rapper.getNum());

}
System.out.println();
break;

James TamObject-Oriented Principles in Java: Part II

Driver Class (6)

case 5:
quitMenu = true;
break;

} // End of switch
} // End of while
System.out.println("Exiting program.");

} // End of main
} // End of class Driver

Data Structures in Java 11

James TamObject-Oriented Principles in Java: Part II

The IntegerWrapper Class

class IntegerWrapper
{

private int num;

public IntegerWrapper () {num = (int) (Math.random() * 100); }

public IntegerWrapper (int no) { num = no; }

public void setNum (int no) { num = no; }

public int getNum () { return num; }
}

James TamObject-Oriented Principles in Java: Part II

The Menu Class

class Menu
{

public void displayMenu ()
{

System.out.println("MENU OPTIONS");
System.out.println("1: Pop object off stack and display object");
System.out.println("2: Push new object onto stack");
System.out.println("3: Peek at object at the top of stack but don't remove");
System.out.println("4: Pop entire stack and view objects as they are popped");
System.out.println("5: Quit program");

}

public int getSelection ()
{

int menuSelection;
System.out.print("Enter menu selection: ");
menuSelection = Console.in.readInt();
return menuSelection;

}
}

