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Data Structures In Java

In this section of notes you will learn about two common 
types of data structures:

Queues

Stacks
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Data Structures: Description

A composite type that has a set of basic operations that may 
be performed on instances of that type:

The type may be a part of the programming language
•e.g., arrays are a basic part of the Pascal language
•Some basic operations on arrays include: adding, deleting or modifying array 
elements.

The type may also be created by the programmer
•e.g. linked lists must be defined by the programmer in Pascal
•Some basic linked list operations include: creating a new list, adding, 
deleting and modifying nodes on that list.
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Data Structures To Be Covered

Queues
Stacks
Characteristics:
• Both are lists 
• The difference is in their behaviour
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Queues

A list where additions occur only at one end of the list and 
deletions occur only at the other end.

Front: Exit queue Back: Enter queue
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Implementing Queues

Head

Front: Exit queue Back: Enter queue

James TamObject-Oriented Principles in Java: Part II

Stacks

A list where additions and deletions are made at only one end 
of the list.

Top of stack
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Common Stack Operations

Push
Pop
Peek
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Push Operation

Adding an item to the top of the stack
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Push Operation

“7” has been added to the stack and this new item becomes 
the top of the stack.
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Pop Operation

Removing an item from the top of the stack
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Pop Operation

“10” has been removed and “5” becomes the new top of the 
stack.
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Peek Operation

Examine the item at the top of the stack without removing it
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Java Implementation Of A Stack

// It’s part of the legacy Java code but it still helps illustrate how the
// implementation works.

// Use of the Stack class requires the statement:
import java.util.*;

class Stack
{

public boolean empty ();
public Object peek ();
public Object pop ();
public Object push ();
public int search (Object o);

}
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Example Using The Java Stack

Driver IntegerWrapper

Menu
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The Driver Class

import tio.*;
import java.util.*;

class Driver
{

public static void main (String [] argv)
{

int i, noElements, tempNum;
IntegerWrapper rapper;
Stack s1;
int menuSelection;
boolean quitMenu = false;
Menu m = new Menu ();

System.out.print("Enter desired number of elements: ");
noElements = Console.in.readInt();
Console.in.readChar();
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The Driver Class (2)

s1 = new Stack ();
System.out.println("Displaying elements in the order they were added...");
for (i = 0; i < noElements; i++)
{

rapper = new IntegerWrapper();
System.out.print("Value of element " + i + "..." + rapper.getNum());
if (i < (noElements-1))

System.out.println();
else

System.out.println("\t<== Top of stack");
s1.push(rapper);



Data Structures in Java 9

James TamObject-Oriented Principles in Java: Part II

The Driver Class (3)

while (quitMenu != true)
{

m.displayMenu ();
menuSelection = m.getSelection();
Console.in.readChar();

switch (menuSelection)
{

// Pop element
case 1:
if (s1.empty() == false)
{

rapper = (IntegerWrapper) s1.pop();
System.out.println();
System.out.println("Value of popped element: " + rapper.getNum());
System.out.println();

}
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The Driver Class (4)

else
{

System.out.println();
System.out.println("Stack is empty: No elements to pop!");
System.out.println();

}
break;

// Push element
case 2:
System.out.println();
System.out.print("Enter value of element to push onto stack: ");
tempNum = Console.in.readInt();
s1.push(new IntegerWrapper(tempNum));
break;
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Driver Class (5)

case 3:
rapper = (IntegerWrapper) s1.peek ();
System.out.println();
System.out.println(“Element at the top of stack:" + rapper.getNum());
System.out.println();
break;

case 4:
System.out.println("Displaying elements in the order of the stack");
while (s1.empty() == false)
{

rapper = (IntegerWrapper) s1.pop();
System.out.println("\tValue of popped element: " + rapper.getNum());

}
System.out.println();
break;
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Driver Class (6)

case 5:
quitMenu = true;
break;

} // End of switch
} // End of while
System.out.println("Exiting program.");

}  // End of main
}  // End of class Driver
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The IntegerWrapper Class

class IntegerWrapper
{

private int num;

public IntegerWrapper () {num = (int) (Math.random() * 100); }

public IntegerWrapper (int no) { num = no; }

public void setNum (int no) { num = no; }

public int getNum () { return num; }
}
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The Menu Class

class Menu
{

public void displayMenu ()
{

System.out.println("MENU OPTIONS");
System.out.println("1: Pop object off stack and display object");
System.out.println("2: Push new object onto stack");
System.out.println("3: Peek at object at the top of stack but don't remove");
System.out.println("4: Pop entire stack and view objects as they are popped");
System.out.println("5: Quit program");

}

public int getSelection ()
{

int menuSelection;
System.out.print("Enter menu selection: ");
menuSelection = Console.in.readInt();
return menuSelection;

}
}


