Linked Lists

In this section of notes you will learn
how to create and manage a dynamic
list.

Linked Lists in Pascal James Tam

Arrays

Easy to use but suffer from a number of drawbacks:
1) Fixed size

2) Adding/Deleting elements can be awkward

Linked Lists in Pascal James Tam

Arrays: Fixed Size

The size of the array cannot be dynamically changed once the
memory has been allocated

The following example won't work:

program notAllowed (input, output);
var
size : integer;
arr : array [1..size] of integer;
begin
write('Enter size of array: ");
readlIn(size);
end.

The workaround is to allocate more space than you need

Linked Lists in Pascal James Tam

Arrays: Fixed Size

The size of the array cannot be dynamically changed once the
memory has been allocated

The following example won't work:

program notAllowed (input, output); The size of the array

var must be
size : integer; predetermined!
arr : array [1. of integer;

begin

write('Enter size of array: ');
readln(size);
end.

The workaround is to allocate more space than you need

Linked Lists in Pascal James Tam

Arrays: Adding Elements In The Middle

123

125

135

155

161

166

e——165

167<

167

169

177

178

Linked Lists in Pascal

James Tam

Arrays: Deleting Elements From The Middle

123

125

135

155

161

167

167

169

177

178

Linked Lists in Pascal

James Tam

Alternative To Arrays: Linked Lists

More complex coding may be required
Some list management functions are more elegant (and faster)

Data | Ptr Data | Ptr Data | Ptr
[S — _v
Node -
Linked
List
Linked Lists in Pascal James Tam

Common List Functions

1) Declaring the list

2) Creating a new list

3) Traversing the list

4) Adding a node to the list

5) Searching the list

6) Deleting a node from the list

Note: These list functions will be illustrated by portions of an example
program. This program is the investors program from the section on
sorting but implemented as a linked list rather than as array. The complete
program can be found in Unix under:
/home/231/examples/linked_lists/investors.p

Linked Lists in Pascal James Tam

Declaring A Linked List

Format:
type
Name of the list pointer ="~ Node;
Node = record
data : Name of the list data,
nextPointer : Name of the list pointer;
end;

Linked Lists in Pascal

James Tam

Declaring A Linked List (2)

Example:
type
Client = record
firstName : array [1..NAME LENGTH] of char;
lastName : array [1..NAME LENGTH] of char;
income : real;
email :array [1.EMAIL LENGTH] of char;
end; (* Declaration of record Client *)

NodePointer =~ Node;
Node = record
data : Client;
nextPointer : NodePointer;
end; (* Declaration of record Node *)

Linked Lists in Pascal

James Tam

Declaring A Linked List (2)

Example:
type
Client = record Declaring the
firstName : array [1..NAME_LENGTH] of char; / node’s data
lastName : array [1.NAME LENGTH] of char; field

income : real;
email :array [1..EMAIL_LENGTH] of char;
end; (* Declaration of record Client *)

NodePointer = Node;

Node = record
data : Client;
nextPointer : NodePointer;

Declaring the
e type of node

end; (* Declaration of record Node *)

Linked Lists in Pascal James Tam

Creating A New List

Description:

The pointer to the beginning of the list is passed into the procedure as a variable
parameter and initialized to NIL signifying that the new list is empty.

Example:
procedure createNewList (var tamjClientList : NodePointer);
begin
tamjClientList := NIL;
end;

Linked Lists in Pascal James Tam

Reading The Client Information From A File

procedure readClientInformation (var tamjClientList : NodePointer;
var investorData : text);
var
newNode : NodePointer;
newClient : Client;
begin;
writeln;
reset(investorData, 'investorList');
writeln('Opening file "investorList" for reading');

Linked Lists in Pascal James Tam

Reading The Client Information From A File (2)

while NOT EOF (investorData) do
begin
new(newNode);
with newClient do
begin
readIn(investorData, firstName);
readln(investorData, lastName);
readln(investorData, income);
readln(investorData, email);
readIn(investorData);
end; (* End with-do: Read in information for a single client *)
newNode”.data := newClient;
addToList (tamjClientList, newNode);
end; (* End while-do: Read in all client information *)
close(investorData);
end; (* End of procedure readClientInformation *)

Linked Lists in Pascal James Tam

Traversing The List

Description:

Steps (traversing the list to display the data of each node onscreen)
1. Start by initializing a pointer to point to the beginning of the list.
2. If the pointer is NIL then display a message onscreen indicating

that there are no nodes to display and stop.
3. Process the node (display the data onscreen)

4. Move on to the next node by following the node's nextPointer (set

the pointer to point to the next node).
5. Check if the pointer is NIL.
a) If the pointer is NIL then stop
b) If the pointer is not NIL then go to step #3.

Linked Lists in Pascal

James Tam

Traversing The List (2)

Example:
procedure displayList (tamjClientList : NodePointer);
var
currentNode : NodePointer;
begin
currentNode := tamjClientList;
writeln('CLIENT LIST':20);

if (currentNode = NIL) then

begin
writeln;
writeln('List is empty, no clients to display');
writeln;

end;

Linked Lists in Pascal

James Tam

Traversing The List (3)

while (currentNode <> NIL) do

begin
writeln('First name: ":20, currentNode”.data.firstName);
writeln('Last Name: ":20, currentNode”.data.lastName);
writeln('Income $':20, currentNode”.data.income:0:2);
writeln('Email: ":20, currentNode”.data.email);
writeln;
currentNode := currentNode”.nextPointer;

end; (* End while-do: traversing the list *)

end; (* Procedure displayList *)

Linked Lists in Pascal James Tam

Traversing The List (4)

tamjClientList (!; —

Linked Lists in Pascal James Tam

Traversing The List (5)

St e fem Bedd Jamig

Bruge Hawce Smith Fax Biright

100000 G 100000 (3H—s{ 1000 0000 G. L] 75000 G._
scon hrocoischus. com rues bt b wom nenithjiiwodgundy com snxadns com brightithighwond ea

tamjClientList

Linked Lists in Pascal James Tam

Adding A Node To The End Of The List

Description:
Variables
1. There are two pointers to the list:
a) Current pointer — traverses the list from beginning to end
b) Previous to first pointer — points to the node that
occurs just prior to the first successful match.

Linked Lists in Pascal James Tam

Adding A Node To The End Of The List (2)

Steps:

1. Assign a pointer to the front of the list.

2. If the pointer is NIL then the list is empty and add the node to the
front of the list and stop.

3. Otherwise traverse the list with two pointers, one pointer (current
pointer) goes past the end of the list (to the NIL value), the other

stays one node behind it (previous pointer).

4. Attach the new node to the last node in the list (the one reached by
the previous pointer).

5. The next pointer of the new node becomes NIL (indicating that this
is the end of the list).

Linked Lists in Pascal James Tam

Adding A Node To The List (3)

Example:
procedure addToList (var tamjClientList : NodePointer;
newNode : NodePointer);
var
currentNode : NodePointer;
previousNode : NodePointer;
begin
if (tamjClientList = NIL) then
begin
tamjClientList := newNode;
newNode”.nextPointer := NIL;
end

Linked Lists in Pascal James Tam

Adding A Node To The List (4)

else
begin
currentNode := tamjClientList;
while (currentNode <> NIL) do
begin
previousNode := currentNode;
currentNode := currentNode”.nextPointer;
end; (* End while-do: searched whole list *)
previousNode”.nextPointer := newNode;
newNode”.nextPointer := NIL;
end; (* End else: case where list is not empty *)
end; (* End of procedure addToList *)

Linked Lists in Pascal James Tam
Adding A Node To The List (5)
taijlien:Lisn(l; — itam com O
Linked Lists in Pascal James Tam

Adding A Node To The List (6)

Scutl Tiruce tan Hadd Lamin
Hruco Hiruee Smith Fox B

right
100000 C MM G,_..lcumu G 4 G.__ 000 G
scon brucojitelus com v bwcogtehacom et wcdguinty o s com brighigihighwood.ca

||||—I

tamjClieniList .
= .. [0
Linked Lists in Pascal James Tam
Searching The List
Description:

The procedure is run in order to find a node or nodes that has a field
which matches some desired value. Either the node or nodes will be
found in the list or else the procedure will have searched every node in the
list and have found no matches. A flag will be set to true or false
indicating whether the search was successful or a failure.

Main variables:
1. There are two pointers to the list:
a. Current pointer — traverses the list from beginning to end.

b. Previous to first pointer — points to the node that occurs just prior
to the first successful match.

Note: The second pointer is not used when the user only wants to

search the list. It is needed when the person wishes to erase a node

from the list. Since the erase procedure calls the search procedure, it

needs a pointer to the node prior to the one to be deleted.

2. A Boolean that indicates the status of the search.

Linked Lists in Pascal James Tam

Searching The List (2)

Steps:

1.

2.

Current pointer starts at the beginning of the list. Since the search has
not yet begin, previous is set to NIL and the flag is set to false.

A check is performed to determine if the node is a match. If this is
the case and the flag is still false (indicating that we haven't found a
previous node that was a successful match) set the flag to true (since a
match was just found). Since the search function requires a list of all
matches (and not just the first instance) don't stop searching the list.

The previous pointer to will be set to point to the current node if the
flag was false prior to the match (i.e., this is the first instance found).
The previous pointer will not change if the flag was already set to true
(the previous pointer will still track the node just prior to the node
which first meets the search criteria).

Move on to the next node (by setting the current pointer to the current
node's next pointer).

Continue step 2 — 4 until the end of the list is reached (current node is
NIL).

Linked Lists in Pascal James Tam

Searching The List (3)

Example:

procedure search (tamjClientList : NodePointer;
desiredName : NameArray;
var isFound : boolean;
var previousFirst : NodePointer);
var
currentNode : NodePointer;
begin
currentNode := tamjClientList;
previousFirst := NIL;
isFound := False;

Linked Lists in Pascal James Tam

Searching The List (4)

while (currentNode <> NIL) do
begin
if (desiredName = currentNode”.data.lastName) then
begin
writeln('Found contact':20);
writeln('First name :":20, currentNode”.data.firstName);
writeln('Last name :':20, currentNode”.data.lastName);
writeln('Income $":20, currentNode”.data.income:0:2);
writeln('Email :":20, currentNode”.data.email);
writeln;
if (isFound = False) then
isFound := True;
end; (* End if-then: checking for match *)

Linked Lists in Pascal James Tam

Searching The List (5)

if (isFound = False) then
previousFirst := currentNode;
currentNode := currentNode”.nextPointer;
end; (* End while: Traversed the whole list *)
if (isFound = False) then
writeln('Contact not found in list');
end; (* End of procedure search *)

Linked Lists in Pascal James Tam

Searching The List (6)

scott brucedinclus.com

Scott Binuce
Aruce fauce
UM G— 100000

bruce. bruceditolus. com

Jon
Smith
A

stmithwoodgundy com

Hudd
Fus

] 50000

fomiimae com

Jarmie
Eright

tam|ClisntList

desiredName: Fox

Linked Lists in Pascal

James Tam

TS0
brightidhighwood ca G |

Searching The List (7)

Seon
Ersce

100000 G._.

st brucediclus. com

Bruce

Hruce

1OHH0

brace hrucedinelus eom

Jon
Kmith

sithjiwiadgundy com

Huadd
Fo

G

Faxifon com

O

Jamie
Bright

of

brightimhighwossl.ca

tamjClientList

desiredName: Tam

Linked Lists in Pascal

James Tam

||||—I

Searching The List (8)

Scon Bruce Joo Hudd Jarme

Bruce Beuce Smith Fon Bright

THRHHNY G L] 100000 A000 G._y 0000 TS0 e.
scottbeucediiclus.con bruce bruceitolus com stmithjiwiodgundy. com i com beighagihighwood ca

||||—|

tam|ClisntList

desiredName: Bruce

Linked Lists in Pascal James Tam

Deleting A Node From The List

Description:

Main variables:

1. A flag that indicates the status of the search. If the search was
successful then it was true that the item was found (flag will be set to
true). If the search was a failure then it was false that item was found
(flag will be set to false).

2. A pointer that points to the node just prior to the one to be deleted. If
the flag was set to true then the pointer contains the address of the
previous node. If the pointer is NIL then the node to be deleted is the
first node (nothing is previous to this node so there is no address). If
the the pointer is not NIL then it contains the address of the node to
be deleted.

3. A temporary pointer that points to the node to be deleted. It is needed
so that the program can retain a reference to this node and free up the
memory allocated for it.

Linked Lists in Pascal James Tam

Deleting A Node From The List (2)

Steps

1. Search the list (by calling the search procedure) to determine if there
exists a node that matches the necessary criteria for deletion.

2. Check the flag to determine if the search was successful or not. If the
flag is false then there is no matching node in the list. End procedure:
There is no matching node to delete.

3. Check to see if the node to be deleted is the first node in the list or not
by checking if the previous pointer is NIL.

4. If the node to be deleted is the first node then have a temporary
pointer point to the first element and make the front of the list the
second element.

5. If the node to be deleted is not the first node then have a temporary
pointer point to the node to be deleted. Set the next pointer (of the
node previous to the one to be deleted) point to the node after the
node to be deleted (bypassing this node)

6. Forsteps 4 & 5 free up the memory allocated by the node to be
deleted by deferencing the temporary pointer.

Linked Lists in Pascal James Tam

Deleting A Node From The List (3)

Example:
procedure erase (var tamjClientList : NodePointer);
var
desiredName : NameArray;
previousFirst : NodePointer;

temp : NodePointer;
isFound : boolean;
begin

write('Enter last name of client to delete: ');
readln(desiredName);
search (tamjClientList, desiredName, isFound, previousFirst);

Linked Lists in Pascal James Tam

Deleting A Node From The List (4)

if (isFound = True) then
begin
writeln('Deleting first instance of ', desiredName);
if (previousFirst = NIL) then
begin
temp := tamjClientList;
tamjClientList := tamjClientList".nextPointer;
end (* End if-then: deleting first node in list *)
else
begin
temp := previousFirst".nextPointer;
previousFirst™.nextPointer := temp”.nextPointer;
end; (* End else: deleting a node other than the first node in the list *)
dispose(temp);
end; (* End if-then: finished deleting node from list *)
end; (* End of procedure erase *)

Linked Lists in Pascal James Tam

Deleting A Node From The List (5)

Scon Bruce Joo Hudd Jarme

Bruce Beuce Smith Fon Erght

THRHHNY G L] 100000 A000 G._y 0000 TS0 e.
scottbeucediiclus.con bruce bruceitolus com stmithjiwiodgundy. com i com beighagihighwood ca

previousFirst (! ; —

desiredName: Tam
isFound: False

||||—|

tam|ClisntList

Linked Lists in Pascal James Tam

Deleting A Node From The List (6)

i
T

1 = [t =
—_— e s G'—'m“,.“..m e O e G—-Nﬂﬁ(.;h-v\lu G"—l
lamicuenu.sl(L

T
iE

previousFirst
desiredName: Bruce
isFound: True

Linked Lists in Pascal James Tam

Deleting A Node From The List (7)

Scot Bruce Jon Hadd
Hruce Kmith Fo

Dright
100000 G.—. wee] 40000 C 0000 G. L 7000 G
swutt brucegiiclus.com brocs bruccrelus.com snsithigwnadgundy com

- 4

Bt fox com brghbihighwosl.ca
previousFirst /

desiredName: Bright
isFound: True

| Jamie

tamjClientList

Linked Lists in Pascal James Tam

You Should Now Know

What is a linked list

What are the advantages of using a linked list over using an
array

What is the disadvantage of using a linked list over using an
array

Common list operations
*Declaring a list
*Creating a new list and initializing the list with data
*Traversing the list (e.g., to display the contents of the nodes)
*Adding new nodes to the list
*Searching the list
*Deleting an existing node from the list

Linked Lists in Pascal James Tam

