
Getting Started With Pascal Programming 1

James Tam

Getting Started With Pascal
Programming

How are computer programs created

What is the basic structure of a Pascal Program

Variables and constants

Input and output

Common programming errors

James Tam

Computer Programs

1) A programmer
writes a computer
program 2) The compiler

translates the
program into a
form that the
computer can
understand

3) An
executable
program is
created

Anybody who has this
executable installed
on their computer
can then run (use) it.

Binary is the language of the computer

Getting Started With Pascal Programming 2

James Tam

Translators

Convert computer programs to machine language

Types
1) Interpreters

• Translate the program as it's executed (a part at a time).
2) Compilers

• Translate the program before it's executed (all at once).

James Tam

Compiling Programs: Basic View

anything.p

Pascal
program

gpc

Pascal
compiler

input a.out

Machine
language
program

output

Getting Started With Pascal Programming 3

James Tam

Compiling Programs On Different Operating
Systems

Pascal
program

Solaris
compiler

a.out (Solaris)

AmigaDOS
compiler

a.out (AmigaDOS)

Windows
compiler

a.out (Windows)

James Tam

Basic Structure Of Pascal Programs

Program documentation

Program name (input, output);

Header

const

:

Declarations

begin

:

end.

Statements

Getting Started With Pascal Programming 4

James Tam

Details Of The Parts Of A Pascal Program

Headers
• Parts:

1) Program documentation
- What does the program do, author(s), version number, date of last
modification etc.
- Comments for the reader of the program (and not the computer)
(* Marks the beginning of the documentation
*) Marks the end of the documentation

2) Program heading
- Name of program, if input and/or output operations performed by the program

• Example
(*
* Tax-It v1.0: This program will electronically calculate your tax return.

*)
program taxIt (input, output);

James Tam

Details Of The Parts Of A Pascal Program (2)

Declarations
• List of constants
• More to come later during this term

Statements
• The instructions in the program that actually gets stuff done
• They tell the computer what to do as the program is running
• Each statement is separated by a semicolon ";"
• Much more to come later in the course

Getting Started With Pascal Programming 5

James Tam

The Smallest Pascal Program

program smallest;

begin

end.

Note: The name "smallest" should match the filename "smallest.p". You can find an
online version of this program in the Unix file system under
/home/231/examples/intro/smallest.p (the compiled version is called "smallest").

James Tam

Creating And Compiling Programs: On The
Computer Science Network

anything.p
(Unix file)

Pascal
program

XEmacs

Text editor

gpc

Pascal
compiler

Machine language
program

a.out (Unix
file)

To begin creating the Pascal program, in
Unix type "XEmacs filename.p"

To compile the program, in Unix
type "gpc filename.p"

To run the program, in Unix
type "./a.out"

Getting Started With Pascal Programming 6

James Tam

Variables

Set aside a location in memory

Used to store information (temporary)

Types:
• integer – whole numbers
• real – whole numbers and fractions

- Can't start or end with a decimal
• char – alphabetic, numeric and miscellaneous symbols
• boolean – true or false values

Usage:
• Declaration
• Accessing or assigning values to the variables

James Tam

Declaring Variables

Sets aside memory

Memory locations addressed through the name

RAM

Name of
variable RESERVED

Getting Started With Pascal Programming 7

James Tam

Declaring Variables (2)

The declaration occurs between the begin and the end statements.

Program documentation

Program name (input and output operations);

Header

const

:

Declarations

begin

end.

Statements

Declare variables here

James Tam

Declaring Variables (3)

Syntax:

var name of first variable : type of first variable;

var name of second variable: type of second variable;

Examples:

var height: real;

var weight: real;

var age: integer;

Getting Started With Pascal Programming 8

James Tam

Variable Naming Conventions

• Should be meaningful
• Any combination of letters, numbers or underscore (can't begin

with a number and shouldn't begin with an underscore)
• Can't be a reserved word (see the “Reserved Words” slide)
• Avoid using predefined identifiers (see the “Standard

Identifiers” slides)
• Avoid distinguishing variable names only by case
• For variable names composed of multiple words separate each

word by capitalizing the first letter of each word (save for the
first word) or by using an underscore.

James Tam

Variable Naming Conventions (2)

• Okay:
- tax_rate
- firstName

• Not Okay (violate Pascal syntax)
- 1abc
- test.msg
- good-day
- program

• Not okay (bad style)
- x
- println

Getting Started With Pascal Programming 9

James Tam

Reserved Words

Have a predefined meaning in Pascal that cannot be changed

whilewhilevaruntiltypetothensetrepeat

recordprogramprocedurepackedorofnotnilmod

labelinifgotofunctionforwardforfileend

elsedowntododivconstcasebeginarrayand

For more information on reserved words go to the url: http://www.gnu-pascal.de/gpc/index.html

James Tam

Standard Identifiers

Have a predefined meaning in Pascal that SHOULD NOT be changed

Predefined constants
• false
• true
• maxint

Predefined types
• boolean
• char
• integer
• real
• text

Predefined files
• input
• output

For more information on standard identifier go to the url: http://www.gnu-pascal.de/gpc/index.html

Getting Started With Pascal Programming 10

James Tam

Standard Identifiers (2)

Predefined functions

truncsuccsqrtsqrsin

roundpredordoddlnexp

eolneofcoschrarctanabs

For more information on standard identifier go to the url: http://www.gnu-pascal.de/gpc/index.html

James Tam

Standard Identiers (3)

writelnwriteunpack

rewriteresetreadlnreadput

pagepacknewgetdispose

Predefined procedures

For more information on standard identifier go to the url: http://www.gnu-pascal.de/gpc/index.html

Getting Started With Pascal Programming 11

James Tam

Accessing Variables

Can be done by referring to the name of the variable

Syntax:
name of variable

Example:
num

James Tam

Assigning Values To Variables

Syntax:
Destination := Source; 1

Example:
grade := 100;
age := median;
interest := principle * rate;
initial = ‘j’;

1 The source can be any expression (constant, variable or mathematical formula)

Getting Started With Pascal Programming 12

James Tam

Assigning Values To Variables (2)

Avoid assigning mixed types:

program variableExample;
begin

var num1 : integer;
var num2: real;

num1 := 12;
num2 := 12.5;
num2 := num1;

end.

num1 := num2;

Not allowed!

James Tam

Named Constants

A memory location that is assigned a value that cannot be changed

Declared in the constant declaration ("const") section

The naming conventions for choosing variable names also applies to constants
but the name of constants should be all UPPER CASE. (You can separate
multiple words with an underscore).

Syntax:

const

NAME OF FIRST CONSTANT = value of first constant;

NAME OF SECOND CONSTANT = value of second constant;

etc.

Getting Started With Pascal Programming 13

James Tam

Named Constants (2)

Examples:

const

TAX_RATE = 0.25;

SAMPLE_SIZE = 1000;

YES = True;

NO = False;

James Tam

Purpose Of Named Constants

1) Makes the program easier to understand

populationChange := (0.1758 – 0.1257) * currentPopulation;

Vs.

const

BIRTH_RATE = 0.1758;

DEATH_RATE = 0.1257;

begin

populationChange := (BIRTH_RATE – DEATH_RATE) * currentPopulation;

Magic Numbers
(avoid!)

Getting Started With Pascal Programming 14

James Tam

Purpose Of Named Constants (2)

2) Makes the program easier to maintain
• If the constant is referred to several times throughout the program changing

the value of the constant once will change it throughout the program.

James Tam

Purpose Of Named Constants (3)

program population (output);

const

BIRTH_RATE = 0.1758;

DEATH_RATE = 0.1257;

begin

var populationChange : real;

var currentPopulation : real;

populationChange := (BIRTH_RATE - DEATH_RATE) * currentPopulation;

if (BIRTH_RATE > DEATH_RATE) then

writeln('Growing population')

else if (BIRTH_RATE < DEATH_RATE) then

writeln('Shrinking population')

end.

Getting Started With Pascal Programming 15

James Tam

Purpose Of Named Constants (3)

program population (output);

const

BIRTH_RATE = 0.5;

DEATH_RATE = 0.1257;

begin

var populationChange : real;

var currentPopulation : real;

populationChange := (BIRTH_RATE - DEATH_RATE) * currentPopulation;

if (BIRTH_RATE > DEATH_RATE) then

writeln('Growing population')

else if (BIRTH_RATE < DEATH_RATE) then

writeln('Shrinking population')

end.

James Tam

Purpose Of Named Constants (3)

program population (output);

const

BIRTH_RATE = 0.5;

DEATH_RATE = 0.01;

begin

var populationChange : real;

var currentPopulation : real;

populationChange := (BIRTH_RATE - DEATH_RATE) * currentPopulation;

if (BIRTH_RATE > DEATH_RATE) then

writeln('Growing population')

else if (BIRTH_RATE < DEATH_RATE) then

writeln('Shrinking population')

end.

Getting Started With Pascal Programming 16

James Tam

Output

Displaying information onscreen

Done via the write and writeln statements

Syntax:

write ('text message');
or

writeln('text message');

write(name of variable or constant);
or

writeln (name of variable or constant);

write('message', name of variable, 'message'…);
or

writeln('message', name of variable, 'message'…);

James Tam

Output (2)

Example:
program simple (output);
begin

writeln(‘The beginning and the end.’);
end.

Getting Started With Pascal Programming 17

James Tam

Output (3)

Examples:

Begin

var num : integer;

num := 10;

writeln('line1');

write('line2A');

writeln('line2B');

writeln(num);

writeln('num=', num);

James Tam

Formatting Output

Automatic formatting of output
• Field width: The computer will insert enough spaces to ensure that the

information can be displayed.
• Decimal places: For real numbers the data will be displayed in

exponential form.

Manually formatting of output:

Syntax:
write or writeln (data: Field width for data: Number decimal places for data);

Examples

num := 12.34;

writeln(num);

writeln(num:5:2);

Getting Started With Pascal Programming 18

James Tam

Formatting Output (2)

If the field width doesn’t match the actual size of the field
• Field width too small – extra spaces will be added for numerical variables

but not for other types of data.
• Examples:

num := 123456;
writeln(num:3);
writeln('123456':3);

• Field width too large – the data will be right justified (extra spaces will be
put in front of the data).

• Examples:
num := 123;
writeln(num:6);
writeln('123':6);

James Tam

Formatting Output (3)

If the number of decimal places doesn’t match the actual number
of decimal places.
• Set number of decimal places less than the actual number of decimal places

– number will be rounded up.
• Example:

num1 := 123.4567
writeln (num1:6:2);

• Set number of decimal places greater than the actual number of decimal
places – number will be padded with zeros.

• Example:
num1 := 123.4567;
writeln(num1:6:6);

Getting Started With Pascal Programming 19

James Tam

Formatting Output: A Larger Example

For the complete program and executable look under
/home/231/examples/intro/out1.p (out1 for the compiled version)

program out1 (output);

begin

var num1 : integer;

var num2 : real;

num1 := 123;

num2 := 123.456;

writeln('Auto formatted by Pascal', num1, num2);

writeln('Manual format':13, num1:3, num2:7:3);

writeln('Manual not enough':13, num1:2, num2:6:3);

writeln('Manual too much':16, num1:4, num2:8:4);

end.

James Tam

Input

The computer program getting information from the user

Done via the read and readln statements

Syntax:
read (name of variable);

or
readln (name of variable);

Getting Started With Pascal Programming 20

James Tam

Input (2)

Examples:

begin

var num1 : integer;

var num2 : integer;

read (num1);

read (num2);

James Tam

Input: Read Vs. Readln

Both:
• Reads each value inputted and matches it to the corresponding variable.

Read
• If the user inputs additional values before hitting return they will remain

Readln
• Any additional values inputted before the return will be discarded

Getting Started With Pascal Programming 21

James Tam

Input: Read Vs. Readln (An Example)

For the complete version of this program look in Unix under:
/home/231/examples/intro/read1.p (or read1 for the compiled version):

var num1 : integer;

var num2 : integer;

write('Type in an integer: ');

read(num1);

write('Type in an integer: ');

read(num2);

writeln('You typed in the following numbers:');

writeln('First: ', num1, ' Second: ', num2);

James Tam

Input: Read Vs. Readln (An example (2))

For the complete version of this program look in Unix under:
/home/231/examples/intro/read2.p (or read2 for the compiled version)

var num1 : integer;

var num2 : integer;

write('Type in an integer: ');

readln(num1);

write('Type in an integer: ');

readln(num2);

writeln('You typed in the following numbers:');

writeln('First: ', num1, ' Second: ', num2);

Getting Started With Pascal Programming 22

James Tam

Another Use For Readln

As an input prompt

e.g.,

writeln('To continue press return');

readln;

James Tam

Another Input Example

For the complete version of this program look in Unix under:
/home/231/examples/intro/read3.p (or read3 for the compiled version)

var ch1 : char;

var in1 : integer;

var re1 : real;

write('Enter an integer, a character and a real number on one line (no spaces): ');

read(in1);

write(in1, '-');

read(ch1);

write(ch1, '-');

read(re1);

writeln(re1);

Getting Started With Pascal Programming 23

James Tam

Common Programming Errors

Syntax/compile errors

Runtime errors

Logic errors

James Tam

Syntax/Compile Errors

anything.p
(Unix file)

Pascal
program

XEmacs

Text editor

gpc

Pascal
compiler

Syntax error:

No executable

(a.out) produced.

Getting Started With Pascal Programming 24

James Tam

Runtime Errors

anything.p
(Unix file)

Pascal
program

XEmacs

Text editor

gpc

Pascal
compiler

Machine language
program

a.out (Unix
file)

Executing a.out

Runtime error

(execution stops)

James Tam

Logic Errors

anything.p
(Unix file)

Pascal
program

XEmacs

Text editor

gpc

Pascal
compiler

Machine language
program

a.out (Unix
file)

Executing a.out

Program
finishes
executing but
may produce an
incorrect result

Getting Started With Pascal Programming 25

James Tam

You Should Now Know

What are different the types of translators and the differences
between them

What is the basic structure of a Pascal program

How to create, compile and run Pascal programs on the
Computer Science network

Variables:
• What are they and what are they used for
• How to set aside memory for one through a declaration
• How to access and change their values
• Conventions for naming variables

James Tam

You Should Now Know (2)

Constants:
• What are named constants and how do they differ from variables
• How to declare a constant
• What are the benefits of using constants

Output:
• How to display text messages or the value of variables onscreen with write

and writeln
• How to format the output of a program

Input:
• How to get a program to acquire and store information from the user of the

program
• What is the difference between read and readln
• How does the reading of multiple inputs to a computer work

Getting Started With Pascal Programming 26

James Tam

You Should Now Know (3)

What are the three common programming errors, when do they
occur and what is the difference between each one.

