
1

James Tam

Records

You will learn in this section of notes
how to create a new, composite type,
that can be composed of different
types of elements.

James Tam

Types Of Variables: What You Know

Pascal
Variables

Simple
(atomic)

Aggregate
(composite)

integer char boolean real Homogenous
(arrays)

2

James Tam

Types Of Variables: What You Will Learn About

Pascal
Variables

Simple
(atomic)

Aggregate
(composite)

integer char boolean real Homogenous
(arrays)

Heterogeneous
(records)

James Tam

What Is A Record?

Record
Field

Field

Field

Student Record
Student I.D.

First Name

Last Tam

Address, line 1

Address, line 2

Phone number

: :

3

James Tam

Declaring Records

Format:
Name of record = record

name of field (1) : type of field (1);
name of field (2) : type of field (2);
name of field (3) : type of field (3);

: : : : : :
name of field (n) : type of field (n);

end; (* Record declaration *)

James Tam

Declaring Records (2)

Example:
StudentRecord = record

studentIdentification : integer;
firstName : array [1..20] of char;
lastName : array [1..20] of char;
phoneNumber : integer;

end;

4

James Tam

Declaring Variables That Are Records

Format:
name of variable : name of record;

Example:
var jamesTam : StudentRecord;
var bartSimpson : StudentRecord;

James Tam

Declaring Variables That Are Records

Format:
name of variable : name of declared record;

Example:
var jamesTam : StudentRecord;
var bartSimpson : StudentRecord;

jamesTam

bartSimpson

5

James Tam

Declaring Arrays Of Records

Method:
1) Declare the record
2) Declare a type for the array of records
3) Declare the array of records

As with arrays of simple types, the second step is essential in
Pascal for passing the array as a parameter into functions
and procedures!

James Tam

Declaring Arrays Of Records

type
StudentRecord = record

studentIdentification : integer;
firstName : array [1..20] of char;
lastName : array [1..20] of char;
phoneNumber : integer;

end;

StudentRecordList = array [1..30000] of StudentRecord;

: : :
var universityOfCalgaryStudentRecords : StudentRecordList;

6

James Tam

Declaring Arrays Of Records

type
StudentRecord = record

studentIdentification : integer;
firstName : array [1..20] of char;
lastName : array [1..20] of char;
phoneNumber : integer;

end;

StudentRecordList = array [1..30000] of StudentRecord;

: : :
var universityOfCalgaryStudentRecords : StudentRecordList;

1. Declaring a
new Record

2. Declaring a type
for the array of
records

3. Declaring a new
instance of type
"StudentRecordList"

James Tam

Passing Records And Arrays Of Records
As Parameters

Looks the same as passing in other types of variables
Can be passed in as value or variable parameters

Examples (function or procedure call):
displayStudent (jamesTam);
initializeStudentRecords (universityOfCalgaryStudentRecords);

Examples (function or procedure definition)
procedure displayStudent (jamesTam : StudentRecord);
begin
end; (* Procedure displayStudent *)

procedure initializeStudentRecords (var
universityOfCalgaryStudentRecords : StudentRecordList);

begin
end; (* Procedure initializeStudentRecords *)

7

James Tam

Returning Composite Types From Functions

• You cannot return composite types of variables (arrays and
records) from functions.

• To have changes to these types of variables be retained after
the function or procedure has ended they must be passed as
variable parameters (example shown on previous slide)

James Tam

Using Record Variables

Example: Declaring the record and instances of the record

type
Person = Record

name : array [1..8] of char;
age : integer
height : real;
weight : real;

end; (* Declaration of Person *)

begin
jack, jo : Person;

8

James Tam

Using Record Variables (2)

Assignment (field-by-field basis):
e.g.,

jo.name := 'joanne';
jo.age := 20;
jo.height := 68.5;
jo.weight := 110;
jack.age = jo.age;

Assignment (entire record – if the records are of the same
type)
e.g.,

jack := jo;

James Tam

Using Record Variables (3)

Input and output via read/readln and write/writeln
Must be done on a field by field basis
e.g.,

write('Enter age for Jack : ');
readln(jack.age);

writeln('Jack is ', jack.age, ' years old);

9

James Tam

A Shortcut For Referencing All The Fields Of A
Record: With-do

Allows you to refer to the fields of a record without having to
constantly refer to the name of the record variable.
Format:

with name of record variable do
body

Example:
with jack do
begin

writeln(‘Stats for ‘, name);
writeln('Age: ', age);
writeln('Height :', height);
writeln('Weight :', weight);

end; (* With do for jack *)

James Tam

Putting This All Together

You can find a full version of this program in Unix under:
/home/231/examples/records/person.p

program person (input, output);

const
NAMELENGTH = 16;
NOPEOPLE = 4;

type
Person = Record

name : array [1..NAMELENGTH] of char;
age : integer;
height : real;
weight : real;

end; (* Declaration of Person *)

10

James Tam

Putting This All Together (2)

People = array [1..NOPEOPLE] of Person;

procedure manuallyInitializeCalgaryPeople (var calgaryPeople : People);
var

i : integer;

James Tam

Putting This All Together (3)

begin (* Start of manuallyInitializeCalgaryPeople *)
for i := 1 to NOPEOPLE do
begin

with calgaryPeople[i] do
begin

write('Enter name of person: ');
readln(name);
write('Enter age of person in whole years: ');
readln(age);
write('Enter the height of the person in inches: ');
readln(height);
write('Enter the weight of the person in pounds: ');
readln(weight);
writeln;

end; (* With-do *)
end; (* Initialization for-loop *)

end; (* End of manuallyInitializeCalgaryPeople *)

11

James Tam

Putting It All Together (4)

procedure defaultInitializeCalgaryPeople (var peopleValues : text;
var calgaryPeople : People);

var
i : integer;

James Tam

Putting It All Together (5)

begin (* Start of defaultInitializeCalgaryPeople *)
assign(peopleValues, 'peopleValues');
reset(peopleValues);
writeln('Reading initial values from file "peopleValues"');
for i := 1 to NOPEOPLE do
begin

with calgaryPeople[i] do
begin

readln(peopleValues, name);
readln(peopleValues, age);
readln(peopleValues, height);
readln(peopleValues, weight);
readln(peopleValues);

end; (* With-do *)
end; (* Initialization for-loop *)
close(peopleValues);

end; (* End of defaultInitializeCalgaryPeople *)

12

James Tam

Putting It All Together (6)

procedure displayCalgaryPeople (calgaryPeople : People);
var

i : integer;
begin (* Start of displayCalgaryPeople *)

writeln;
for i := 1 to NOPEOPLE do
begin

with calgaryPeople[i] do
begin

writeln;
writeln('Name: ', name);
writeln('Age: ', age);
writeln('Height: ', height:0:2);
writeln('Weight: ', weight:0:2);

end; (* With-do *)
end; (* Display for-loop *)
writeln;

end; (* End of displayCalgaryPeople *)

James Tam

Putting It All Together (7)

begin (* Main program *)
var peopleValues : text;
var calgaryPeople : People;
var initializationMethod : integer;

writeln;
writeln('Select method to set starting values for the people');
writeln('Enter "1" to read the values in from a file');
writeln('Enter "2" to manually enter in the values yourself');
write('Enter your choice: ');
readln(initializationMethod);
writeln;

13

James Tam

Putting It All Together (8)

case (initializationMethod) of
1 :
begin

defaultInitializeCalgaryPeople(peopleValues, calgaryPeople);
displayCalgaryPeople(calgaryPeople);

end;

2 :
begin

manuallyInitializeCalgaryPeople(calgaryPeople);
displayCalgaryPeople(calgaryPeople);

end;

else
begin

writeln('Your choice was not one of the available options.');
writeln('Restart program and select again.');

end; (* otherwise *)

James Tam

Putting It All Together (9)

end; (* case *)
end. (* program *)

14

James Tam

You Should Now Know

How to declare a record
How to declare instances of records
The difference between accessing an entire record and
individual fields of a record and how each one is done in
Pascal
How to work with arrays of records

•How to declare an array of records
•How to access individual array elements
•Passing arrays of records as parameters

How to use the with-do construct

