
Introduction to trees, binary search trees 1

James Tam

Trees

•Lists as an abstract data type (ADT)

•Different list implementations and the 
tradeoffs of each approach

James Tam

Trees Can Be Used To Represent A Hierarchy

President

VP, ResearchVP, Finance VP, Academic

Dean, Management Dean, Science…

: :

Department Head, CS

University faculty, CS



Introduction to trees, binary search trees 2

James Tam

Trees Consist Of Nodes And Arcs

Dean, Science

Department Head, CS

Node

Node

Arc

The number of arcs = The number of nodes - 1

James Tam

Note: Computer People Are Wacky!

Root

Root



Introduction to trees, binary search trees 3

James Tam

Tree Terminology

•Parent (descendent)

•Child (ancestor)

•Siblings

•Root

•Left/right sub-tree

•Leaf

•Internal node

•Path length

•The levels of a tree

•Tree height

James Tam

Tree Terminology

•Parent (ancestor): 
- Has one or more nodes below it.  All nodes but the root have one parent.

•Child (descendent): 
- Has a parent node above it.

P

C



Introduction to trees, binary search trees 4

James Tam

Tree Terminology (2)

•Siblings: 
- Nodes that have the same parent

•Root: 
- The parent of all the nodes in a tree.
- It has no parent

LS RS

R

James Tam

Tree Terminology (3)

•Left sub-tree
- For a given node, the left sub-tree will consist of the left child node and all 
the children of the child node.

•Right sub-tree
- For a given node, the right sub-tree will consist of the right child node and 
all the children of the child node.

Left 
sub-
tree

Node

Right 
sub-
tree



Introduction to trees, binary search trees 5

James Tam

Tree Terminology (4)

•Leaf
- Has no child nodes

L

L

James Tam

Tree Terminology (5)

•Internal Node
- Is a non-leaf node
- Has at least one child node

I

I



Introduction to trees, binary search trees 6

James Tam

Tree Terminology (6)

#1

#2 #3

#4 #5 #6

#7

•The root is node #1

•#2 is the parent of 4 & 5

•#4 & 5 are the children of 2

•#4 & 5 are siblings

•Leaf nodes: #5, 6, 7

•Internal nodes: #1, 2, 3, 4

James Tam

Tree Terminology (7)

•Path length
- The number of edges that must be traversed to get from one node to 
another.

- E.g., the path length from #2 to #7

#1

#2 #3

#4 #5 #6

#7



Introduction to trees, binary search trees 7

James Tam

Tree Terminology (8)

•Height of a tree:
- The number of nodes from the root to the most distant leaf node

•Levels of a tree
- The number of edges from the root to the most distant leaf node
- It’s the path length from the root the most distant node
- Equal to the height of the tree minus one.

#1

#2 #3

#4 #5 #6

#7

Height 1………………………..

Height 2…………………

Height 3……………

Height 4…….

James Tam

Tree Terminology (9)

•Height of a tree:
- The number of nodes from the root to the most distant leaf node

•Levels of a tree
- The number of edges from the root to the most distant leaf node
- It’s the path length from the root the most distant node
- Equal to the height of the tree minus one.

#1

#2 #3

#4 #5 #6

#7

Level 1 ……………………….

Level 2 ..…….…………

Level 3 …............

Level 0 …………………………….



Introduction to trees, binary search trees 8

James Tam

Trees Are Recursively Defined

#1

#2 #3

#5 #6 #7

#8 #9

#4

#10 #11 #12 #13 #14 #15

James Tam

Trees Are Recursively Defined

•The root of the tree consists of the root’s left and right sub-trees

#1

#2 #3

#5 #6 #7

#8 #9

#4

#10 #11 #12 #13 #14 #15



Introduction to trees, binary search trees 9

James Tam

Trees Are Recursively Defined

•Each sub-tree has a top-level node that is composed of it’s own 
left and right sub-trees.

#2

#5

#8 #9

#4

#10 #11

James Tam

Binary Tree

•A tree with nodes that can have 0, 1 or 2 children.

Root Root Root



Introduction to trees, binary search trees 10

James Tam

Height 2

The Max Nodes Per Line

#1

#2 #3

#5 #6

Height 1

Height 3

Height 4

#7

Max nodes for 
a tree with a 
given height

2 (height-1)=

#8 #9

#4

#10 #11 #12 #13 #14 #15

James Tam

Height 2

The Max Nodes For A Tree

#1

#2 #3

#5 #6

Height 1

Height 3

Height 4

#7

#8 #9

#4

#10 #11 #12 #13 #14 #15

Max nodes for 
a tree with a 
given height

2 height - 1=



Introduction to trees, binary search trees 11

James Tam

Binary Search Trees

•A binary tree with the property such that all the nodes of the left 
sub-tree of a particular node will have values less than the value 
of the parent node.  All the nodes of the right sub-tree will have 
values greater than the value of the parent node.

•Left children < Parent < Right children

•For some trees no duplicates are allowed: adding a duplicate 
node results in an error condition.

Left 
sub-

tree < n

N

Right 
sub-

tree > n 

James Tam

Example Of A Binary Search Tree

17

205

12

15

2

1 3



Introduction to trees, binary search trees 12

James Tam

Non-Ordered Binary Trees

•In this case order doesn’t matter so the following trees are 
identical (not binary search trees)

17

11 67

67

17 11

James Tam

Binary Tree Implementations

1. Array implementation

2. Linked implementation



Introduction to trees, binary search trees 13

James Tam

Array Implementations

•Because each node can have at most 2 children, the max nodes 
for a given level will be double the number of nodes for the 
previous level.

#1

#2 #3

#5 #6 #7

#8 #9

#4

#10 #11 #12 #13 #14 #15

Max 1

Max 2

Max 4

Max 8

James Tam

Array Implementation (2)

•For a given node at index “I”, the left child of that node will be 
at index = (I * 2) and the right child will be at index = (I * 2) + 
1

•Example1:

531724

4

2 7

1 3 5

From http://pages.cpsc.ucalgary.ca/~marina/331/

[1]    [2]    [3]   [4]   [5]    [6]



Introduction to trees, binary search trees 14

James Tam

Linked Implementation

•A tree is composed of nodes and links between the nodes:

Data attributes

Left Right

Data attributes

Left Right

null

James Tam

Additional Definitions For Binary Trees

•Full tree

•Degenerate tree

•Balanced tree



Introduction to trees, binary search trees 15

James Tam

Full Binary Tree

•A tree with height “h” such that all leaves exist only at height 
“h”, all nodes above this level each have two children

OKOK

James Tam

Full Binary Tree (2)

•A tree with height “h” such that all leaves exist only at height 
“h”, all nodes above this level each have two children

Not OK Not OK



Introduction to trees, binary search trees 16

James Tam

Degenerate Binary Tree

•Looks like a linked list

null

null

null

null    null

James Tam

Balanced Binary Tree

•The height difference of the sub-trees of all nodes is either zero 
or one.

OK OK



Introduction to trees, binary search trees 17

James Tam

Balanced Binary Tree (2)

•The height difference of the sub-trees of all nodes is either zero 
or one.

Not OK Not OK

James Tam

Operations On Binary Trees

•Insertions

•Search

•Traversal
- Depth-first (in order, preorder, post order)
- Breadth first

•Deletions



Introduction to trees, binary search trees 18

James Tam

Example Of A Binary Tree

•The full example can be found in the directory: 
/home/331/tamj/examples/trees

Driver

BinaryTree

-root: BinaryNode

+isEmpty()

+insertNode()

+preOrderTraversal()

-preOrderHelper()

+inOrderTraversal()

-inOrderHelper()

+postOrderTraversal()

-postOrderHelper()

+breadthFirstTraversal()

+search()

-searchHelper()

+delete()

BinaryNode

-data: int

-left : BinaryNode

-right: BinaryNode

+insert()

MyQueue

-queueList:  

List

+enqueue()

+dequeue()

+isEmpty()

List

:         :          

James Tam

The Driver Class

class Driver
{

public static void main (String [] args)
{

BinaryTree myTree = new BinaryTree ();
myTree.insertNode(39);
myTree.insertNode(69);
myTree.insertNode(94);
myTree.insertNode(47);
myTree.insertNode(50);
myTree.insertNode(72);
myTree.insertNode(55);
myTree.insertNode(41);
myTree.insertNode(97);
myTree.insertNode(73);



Introduction to trees, binary search trees 19

James Tam

The Driver Class (2)

myTree.preOrderTraversal();
myTree.inOrderTraversal();
myTree.post orderTraversal();
myTree.breadthFirstTraversal();
System.out.println("Searching tree");
myTree.search(47);
myTree.search(888);
int num;
System.out.println("Deleting from tree");
System.out.print("Data of node to delete: ");
num = Console.in.readInt();
Console.in.readLine();
System.out.println("Deleting " + num);
myTree.delete(num);
myTree.breadthFirstTraversal();

James Tam

The BinaryTree Class

public class BinaryTree
{

private BinaryNode root;

public BinaryTree ()
{

root = null;
}
public boolean isEmpty ()
{

if (root == null)
return true;

else
return false;

}



Introduction to trees, binary search trees 20

James Tam

Inserting A Node

• Recall (Binary Search Trees): 
- Left children < Parent < Right children

• Nodes must be inserted into their proper (in order) place as they are added

(Class Driver)
myTree.insertNode(39);
myTree.insertNode(69);
myTree.insertNode(94);
myTree.insertNode(47);
myTree.insertNode(50);
myTree.insertNode(72);
myTree.insertNode(55);
myTree.insertNode(41);
myTree.insertNode(97);
myTree.insertNode(73);

James Tam

Inserting A Node (2)

(Class BinaryTree)

public void insertNode (int newValue)

{

if (isEmpty() == true)

root = new BinaryNode (newValue);

else

// Call the insert method of the Binary Node class.

root.insert(newValue);

}



Introduction to trees, binary search trees 21

James Tam

Inserting A Node (3)

(Class Binary Node)
void insert (int newValue)
{

if (newValue < data)
{

if (left == null)
left = new BinaryNode (newValue);

else
left.insert(newValue);

}
else if (newValue > data)
{

if (right == null)
right = new BinaryNode (newValue);

else
right.insert(newValue);

James Tam

Inserting A Node (4)

else

{

System.out.println("Error: duplicate values for nodes are not " +

"allowed.");

System.out.println("There is already a node with a value of " +

newValue);

}

}



Introduction to trees, binary search trees 22

James Tam

Efficiency Of Insertions: Depends Upon The Height

•Best case (full tree) : O (log2n) = height of the tree

•Worse case (degenerate tree) : O (n) = height of the tree

James Tam

The Search Time Depends Upon Height 

•Maximum height (Degenerate tree) = n

•E.g., n = 5 = height



Introduction to trees, binary search trees 23

James Tam

The Search Time Depends Upon Height 

•Minimum height1 =   log2(n+1) 

1 This can be proven inductively but this will be left for subsequent courses

e.g., n = 1, min = ceiling  (log2(1+1))

= ceiling (1)

= 1

e.g., n = 2, min = ceiling  (log2(2+1))

= ceiling (1.X)

= 2

James Tam

The Search Time Depends Upon Height 

•Minimum height1 =   log2(n+1) 

1 This can be proven inductively but this will be left for sub-sesequent courses

e.g., n = 3, min = ceiling  (log2(3+1))

= ceiling (2)

= 2

e.g., n = 4, min = ceiling  (log2(4+1))

= ceiling (2.X)

= 3



Introduction to trees, binary search trees 24

James Tam

Tree Traversals

•Depth first: inorder, preorder, post order

•Breadth first

James Tam

Depth-First Traversals

1. Inorder traversal

2. Preorder traversal

2

4

6

1 3 5 7

2

1

5

3 4 6 7



Introduction to trees, binary search trees 25

James Tam

Depth-First Traversals (2)

3. Post order traversal

3

7

6

1 2 4 5

James Tam

Inorder Traversals

(Class Driver)

myTree.inOrderTraversal();

(Class BinaryTree)

public void inOrderTraversal ()

{

inOrderHelper(root);

System.out.println();

}



Introduction to trees, binary search trees 26

James Tam

Inorder Traversals (2)

(Class BinaryTree)

private void inOrderHelper (BinaryNode node)

{

if (node == null)

return;

inOrderHelper(node.getLeft());

System.out.print(node + " ");

inOrderHelper(node.getRight());

}

James Tam

Preorder Traversals

(Class Driver)
myTree.preOrderTraversal();

(Class BinaryTree)
public void preOrderTraversal ()
{

preOrderHelper(root);
}



Introduction to trees, binary search trees 27

James Tam

Preorder Traversals (2)

(Class BinaryTree)

private void preOrderHelper (BinaryNode node)

{

if (node == null)

return;

System.out.print(node + " ");

preOrderHelper(node.getLeft());

preOrderHelper(node.getRight());

}

James Tam

Post order Traversals

(Class Driver) 

myTree.post orderTraversal();

(Class BinaryTree)

public void post orderTraversal ()

{

postorderHelper(root);

}



Introduction to trees, binary search trees 28

James Tam

Post order Traversals (2)

(Class BinaryTree)
private void postOrderHelper (BinaryNode node)
{

if (node == null)
return;

postOrderHelper(node.getLeft());
postOrderHelper(node.getRight());

System.out.print(node + " ");
}

James Tam

Why Bother With Depth-First Traversals?

•Inorder traversal is analogous to infix  notation
- E.g., a + b

•Preorder traversal is analogous to prefix notation
- E.g., + *  a b c (prefix) equivalent to  a * b + c (infix)

a b

+

a b

* c

+



Introduction to trees, binary search trees 29

James Tam

Why Bother With Depth-First Traversals (2)?

•Post order traversal is analogous to postfix notation
- E.g., a b * c + (postfix) equivalent to  a * b + c (infix)

a b

* c

+

James Tam

Breadth-First Traversal

•Traverse the tree one level at a time.

•Hint: Since displaying the tree this way corresponds to how it is 
physically organized, it makes a very good debugging/tracing 
tool

2

1

3

4 5 6 7



Introduction to trees, binary search trees 30

James Tam

Breadth-First Traversal (2)

public void breadthFirstTraversal ()
{

BinaryNode tempNode = root;
MyQueue tempQueue;
System.out.println("Breadth first traversal");
if (tempNode != null)
{

tempQueue = new MyQueue ();
tempQueue.enqueue(tempNode);

James Tam

Breadth-First Traversal (3)

while (tempQueue.isEmpty() == false)
{

tempNode = (BinaryNode) tempQueue.dequeue();
System.out.print(tempNode + " ");
if (tempNode.getLeft() != null)

tempQueue.enqueue(tempNode.getLeft());
if (tempNode.getRight() != null)

tempQueue.enqueue(tempNode.getRight());
}

}
System.out.println();

}



Introduction to trees, binary search trees 31

James Tam

Class MyQueue

import java.util.LinkedList;
public class MyQueue
{

private LinkedList queueList;

public MyQueue ()
{

queueList = new LinkedList ();
}

public void enqueue (Object newNode)
{

queueList.addLast(newNode);
}

James Tam

Class MyQueue (2)

public Object dequeue ()
{

return queueList.removeFirst();
}

public boolean isEmpty ()
{

if (queueList.size() == 0)
return true;

else
return false;

}
}



Introduction to trees, binary search trees 32

James Tam

Efficiency Of Tree Traversals

•Since each node must be visited in order to traverse the tree the 
time taken is O (n)

James Tam

Tree Traversals And Stacks

•Tree traversals must require the use of a stack:
- Recursively traversing a tree employs the system stack (parameter passing 
into the recursive methods).

- Iteratively traversing a tree requires that the programmer create his or her 
own stack.



Introduction to trees, binary search trees 33

James Tam

Tree Traversals And The System Stack

•Example: An inorder traversal of the following tree.

Images from “Data Abstraction and Problem Solving with Java: Walls and Mirrors” by 
Frank M. Carrano and Janet J. Prichard

James Tam

Searching A Tree

39

69

47 94

Key = 47

Key > 39 (Go right)

Key < 69 (Go left)

Key =47 (Stop)

Return 
address of 
Node



Introduction to trees, binary search trees 34

James Tam

Searching A Tree (2)

(Class Driver)

myTree.search(47);

myTree.search(888);

(Class BinaryTree)

public void search (int key)

{

if (searchHelper(root,key) != null)

System.out.println("Search for node with data value of " + key + " successful");

else

System.out.println("Node with data value of " + key + " not found”

+ " in tree.");

}

James Tam

Searching A Tree (3)

(Class BinaryTree)

private BinaryNode searchHelper (BinaryNode node, int key)

{

while (node != null)

{

if (key == node.getData())

return node;

else if (key < node.getData())

node = node.getLeft();

else

node = node.getRight();

}

return null;

}



Introduction to trees, binary search trees 35

James Tam

Efficiency Of Searches

•Time in all cases: Equal to the height of the tree

39

69

47 94

Key > 39 (Go right)

Key < 69 (Go left)

Key =47 (Stop)

James Tam

Cases For Deleting Nodes

1. Node is a leaf

2. Node has one child

3. Node has two children



Introduction to trees, binary search trees 36

James Tam

Node To Be Deleted Is A Leaf

•Easiest case e.g., delete 22

15

12 20

10 14 2216

James Tam

Node To Be Deleted Is A Leaf (2)

•Easiest case e.g., delete 22

15

12 20

10 14 2216

Parent

Node to 
delete



Introduction to trees, binary search trees 37

James Tam

Node To Be Deleted Is A Leaf (3)

•Easiest case e.g., delete 22

15

12 20

10 14 2216

Parent

Node to 
delete

James Tam

Node To Be Deleted Has One Child

•The node to be deleted either has a left child or a right child (but 
not both).

•The solution is symmetrical: what applies for the left child also 
applies for the right and vice versa.

20

12 25

14 23

13 16 22 24



Introduction to trees, binary search trees 38

James Tam

Node To Be Deleted Has One Child (2)

•The node to be deleted either has a left child or a right child (but 
not both).

•The solution is symmetrical: what applies for the left child also 
applies for the right and vice versa.

20

12 25

14 23

13 16 22 24

James Tam

Node To Be Deleted Has Two Children

• More complex: both child nodes cannot be promoted in place 
of the node to be deleted.

• Instead of deleting the node:
1. Find another node “A” that is easier to delete than the node to be 

deleted “D”.
2. Copy the data from “A” to “D”
3. Remove node “A” from the tree (setting it’s parent reference to null in 

Java and by manually de-allocating the memory with languages that 
don’t have automatic garbage collection). 



Introduction to trees, binary search trees 39

James Tam

Not Just Any Node Will Do!

20

12 25

14 23

13 16 22 24

James Tam

Not Just Any Node Will Do!

20

12 25

14 23

13 16 22 24

13



Introduction to trees, binary search trees 40

James Tam

Not Just Any Node Will Do!

13

12 25

14 23

16 22 24

James Tam

Promote The Next Largest Node

•Example: deleting 69

39

69

47

41 50

55

94

72 97

73



Introduction to trees, binary search trees 41

James Tam

Promote The Next Largest Node

•Example: deleting 69, copy 55

39

69

47

41 50

55

94

72 97

73

55

James Tam

Promote The Next Largest Node

•Example: unlink 55

39

55

47

41 50

55

94

72 97

73



Introduction to trees, binary search trees 42

James Tam

Deleting A Node

(Class Driver)
num = Console.in.readInt();
myTree.delete(num);

(Class BinaryTree)
public void delete (int key)

{
BinaryNode node = null;
BinaryNode previous = null;
BinaryNode current = root;

James Tam

Deleting A Node (3)

while ((current != null) && (current.getData() != key))

{

previous = current;

if (current.getData() < key)

current = current.getRight();

else

current = current.getLeft();

}

node = current;



Introduction to trees, binary search trees 43

James Tam

Deleting A Node (4)

if ((current != null) && (current.getData() == key))
{

if (node.getRight() == null)
node = node.getLeft();

else if (node.getLeft() == null)
node = node.getRight();

else
{

BinaryNode temp = node.getLeft();
BinaryNode prev = node;
while (temp.getRight() != null)
{

prev = temp;
temp = temp.getRight();

}

James Tam

Deleting A Node (5)

node.setData(temp.getData());
if (prev == node)

prev.setLeft(temp.getLeft());
else

prev.setRight(temp.getLeft());
}
if (current == root)

root = node;
else if (previous.getLeft() == current)

previous.setLeft(node);
else

previous.setRight(node);
}



Introduction to trees, binary search trees 44

James Tam

Deleting A Node (6)

else if (root != null)

System.out.println("Node with data of " + key + " not found.");

else

System.out.println("Tree is empty, nothing to delete.");

}

James Tam

Efficiency Of Deletions

•When the node to be deleted is a leaf: O (1)

•When the node to be deleted has one child: O (1)

•When the node to be deleted has two children: O (log2n)



Introduction to trees, binary search trees 45

James Tam

Summary Of Efficiency Of Tree Operations

O (n)O (n)Traversal

O (n)O (log2n)Deletion

O (n)O (log2n)Insertion

O (n)O (log2n)Search

Worse caseAverage  caseOperation

James Tam

You Should Now Know

•What is a tree?

•What are different types of trees?

•Common tree terminology.

•How common operations are implemented on a Binary Search 
Tree.



Introduction to trees, binary search trees 46

James Tam

Sources Of Lecture Material

•“Data Structures and Abstractions with Java” by Frank M. 
Carrano and Walter Savitch

•“Data Abstraction and Problem Solving with Java: Walls and 
Mirrors” by Frank M. Carrano and Janet J. Prichard

•“Data Structures and Algorithms in Java” by Adam Drozdek

•“Java: How to Program (5th Edition)” by Harvey and Paul Deitel

•CPSC 331 course notes by Marina L. Gavrilova 
http://pages.cpsc.ucalgary.ca/~marina/331/


