Stacks and Queues

*In this section of notes you will learn
about two additional data structures as
well as the consequences of different
implementations

Stacks

*A list where additions and deletions are made at only one end
of the list.

*The last element to be added is the first element to be
removed (LIFO).

Top of stack

e
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Common Stack Operations

*Push

*Pop

*Peek

*Check if empty
*Clear
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Push Operation

*Adding an item to the top of the stack

10 < Top of stack
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Push Operation

*“7 has been added to the stack and this new item becomes the
top of the stack.

Before push

After push
7 [« Top of stack
10 [« Topof stack 10
5 5
2 2
4 4
5 5
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Pop Operation

*Removing an item from the top of the stack

10 < Top of stack
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Pop Operation

*“10” has been removed and “5” becomes the new top of the
stack.

Before pop After pop

10 +— Top of stack

5 5 +— Top of stack

2 2

4 4

° 5
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Peek Operation

*Examine the item at the top of the stack without removing it

10 «—— Top of stack

Stacks and queues James Tam




Implementing A Stack As An Array: Class Driver

The full example can be found in the directory:
/home/33 1/tamj/examples/stacksQueues/arrayStack

class Driver
{
public static void main (String [] args)
{
MyStack tamjStack = new MyStack (4);
System.out.println(ms.peek());
tamjStack.push(4);
tamjStack.push(3);
tamjStack.push(2);
tamjStack.push(1);
tamjStack.push(0);
while (tamjStack.isEmpty() == false)
System.out.println(tamjStack.pop());
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Implementing A Stack As An Array: Class MyStack

public class MyStack
{
private int [] stack;
private int topOfStack;
private static final int DEFAULT MAX_SIZE = 100;
public MyStack ()
{
stack = new intf DEFAULT MAX SIZE];
topOfStack = -1;
}
public MyStack (int maxSize)
{
stack = new int[maxSize];
topOfStack = -1;
}

Stacks and queues James Tam




Implementing A Stack As An Array:

Class MyStack (2)

public boolean isFull ()
{
if (topOfStack >= (stack.length-1))
return true;
else

return false;

public boolean isEmpty ()
{
if (topOfStack < 0)
return true;
else

return false;

}
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Implementing A Stack As An Array:
Class MyStack (3)

public void push (int newValue)
{

if (isFull() == true)

{

System.out.println("Stack is full, unable to add element");

return;

}
topOfStack++;

stack[topOfStack] = newValue;
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Implementing A Stack As An Array:
Class MyStack (4)

public int peek ()
{
if (isEmpty() == false)
return stack[topOfStack];
else

return -1;
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Implementing A Stack As An Array:
Class MyStack (5)

public int pop ()
{
int top;
if (isEmpty() == false)
{
top = stack[topOfStack];
stack[topOfStack] = -1;
topOfStack--;
5
else
{
top =-1;
}

return top;

}

Stacks and queues James Tam




Implementing A Stack As An Array:

Class MyStack (6)
public void clear ()
{
while (topOfStack >= 0)
{

stack[topOfStack] = -1;
topOfStack--;
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Implementing A Stack As A Linked List:
Class Driver

The full example can be found in the directory:
/home/33 1/tamj/examples/stacksQueues/linkedStack

class Driver

{

public static void main (String [] args)

{
int temp;
MyStack tamjStack = new MyStack ();
System.out.println(tamjStack.peek());
tamjStack.push();
tamjStack.push();
while (tamjStack.isEmpty() == false)

System.out.println(tamjStack.pop());

}
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Implementing A Stack As A Linked List:

Class MyStack

public class MyStack

f
1

private Node topNode;
private int currentDataValue = 10;
public MyStack ()
{

topNode = null;
¥
public boolean isEmpty ()
{

if (topNode == null)

return true;
else

return false;

}
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Implementing A Stack As A Linked List:
Class MyStack (2)

public void push ()
{
Node temp = new Node (currentDataValue, topNode);
currentDataValue += 10;
topNode = temp;
¥
public int peek ()
{
Node top;
if (isEmpty() == false)
{
top = topNode;
return top.data;

}

return -1;
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Implementing A Stack As A Linked List:

Class MyStack (3)

public int pop ()
{
Node top;
if (isEmpty() == false)
{
top = topNode;
topNode = topNode.next;
return top.data;
}

return -1;
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Implementing A Stack As A Linked List:

Class MyStack (4)

public void clear ()

{
while (topNode != null)
topNode = topNode.next;
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Implementing A Stack As A Linked List:

(Inner) Class Node

private class Node
{
private int data;
private Node next;
private Node ()
{
data = 0;
next = null;
}
private Node (int startingData)
{
data = startingData;
next = null;

}
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Implementing A Stack As A Linked List:
(Inner) Class Node (2)

private Node (Node startingNext)
{

data = 0;

next = startingNext;
}

private Node (int startingData, Node nextNode)

{

data = startingData;

next = nextNode;

}
public String toString ()

{
String s = new String ();
s = s + data;

return s;
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A Real Life Application Of Stacks

*Web navigation using the “back” button.

Question: You start out at my CPSC home page
and then you go to my 233 course page. Next you
press back to go to my home page and then follow
the link to my 331 course page. How many clicks
of the back button are needed to get back to my
233 course page?
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Start At My CPSC Home Page

£
Contact Information

« Office number: ICT 707
» Office phone: (403) 210-
9455

» Email:
tamj@ cpac.ucalgary.ca

Current teaching (Fall 2004 - Spring 2005)
wan null
null
null
null

Stacks and queues

+==T0OS

James Tam




Click On The Link To My 233 Course Page

) Back

..('/ * -JB3 r
CPSC 233: Fall 2004
Lecture Information
Lecture 01
DayTime  MWF 10:00.
10:50
Locarion 5T133
null
Tutorial (formerly referred to as labs) Information
null
LA IO% Dy Time  Location Lab instructor Labwebpage  Emsil
ol :‘:ts" 0 ng20%  AQ DUONG aduongBepss ucalgary.ca null
Toz T;\_\m:""""' ENA2I3 AQDUONG adusng@epsc uealoary ca Home | TOS
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Click “Back”: Return To My Home Pages

- *  * oa
Contact Information
« Office number: ICT 707

» Office phone: (403) 210-
9455

+ Email:
tamj@ cpac.ucalgary.ca

Current teaching (Fall 2004 - Spring 2005)
wan null
null
null
null

+==T0OS
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Click On The Link To My 331 Course Page

/ QBadc

R

& 2 H-URS ar

EPSC 331: Fall 2004

Lecture Information

Lecture 01 Lecture 02 Lecture 03
null
Instructor Gavrilova Tam Manzara
Dray TR:9.30- MWE: @00 - TR: 11:00-
Time  10:45 9:50 12:15 null
Location 55109 ES443 ICTII4
null
Tutorial (formerly called labs) Information Home }je===TQOS
Tutoriak
2:,__ Day/Time Location E ,, gl Tutarial web page Email
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Queues

*A list where additions occur only at one end of the list
and deletions occur only at the other end.

*The first element that was added to the queue is the
first element to be removed (FIFO).

Front: Exit queue Back: Enter queue
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Common Operations On Queues

*Enqueue (add)

*Dequeue (remove)

*Peek

*Check if empty

*Clear
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Array Implementation Of A Queue
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The Array Implementation Is “Circular”

[0] (1 [2] [3] [4] [5] (6] [7]
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Array Implementation Of A Queue

*The challenges:

- Detecting when the queue is empty.
- Detecting when the queue is full.
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First Approach: Queue Is When “Back” Refers To

The Last Element
*Queue full when back = last element
(length - 1)
L8 [s [3 o1 [7 ]2 1]
f b
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Problem With The First Approach

*Queue is full?
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Second Approach: Employ A Counter

*Enqueue operation: increment the counter
*Dequeue operation: decrement the counter
*When the counter equals the zero the queue is empty

*When the counter equals the length of the list the queue is full
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Second Approach: Employ A Counter

L [ [ [ [ [ | coumters=o

[ ]
fob
| 1 | | | | | | | | Counter =1
[
f b
| " | 17 | | | | | | | Counter = 2
[
f b
| | 17 | | | | | | | Counter = 1
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General Problem With Circular Queues

*Confusing the “queue empty” and “queue full” conditions.

L[ [ [100] 67 |
]

L[ [ [ [er]
N

Ahal When “f’ is just ahead of
“b” then the queue is empty.
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General Problem With Circular Queues

*Confusing the “queue empty” and “queue full” conditions.

[ 67 | 17 | | 99 | 85 |

b f

[ 67 | 17 | 11 | 99 | 85 |

b f

Is the queue empty or full???
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Third Approach: Reserve An Array Element

*The index of the unused element lies between the front and the
back indices (one greater than the back index and one less than
the front index).

*The full condition occurs when all elements but one are
occupied or when:

- The front index is two elements ahead of the back index or

| 67 | 17 | | 99 | 85 |
b f
- The back index is two ahead of the front index (front is two behind the
back)
67 | 17 | 1 | | 85 |

L

f
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Third Approach: Reserve An Array Element

*General formula to detect when the queue is full:

Front index = (back index + 2) % queue.length
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Third Approach: Reserve An Array Element

*The empty condition occurs when all array elements are
unoccupied or when:

- The front index is one element “ahead” of the back index.

[ N N e A A N

OR
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Third Approach: Reserve An Array Element

*General formula to detect when the queue is empty:

Front index = (back index + 1) % queue.length
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Implementing A Stack As An Array: Class Driver

The full example can be found in the directory:
/home/33 1/tamj/examples/stacksQueues/arrayQueue

class Driver

{

public static void main (String [] args)

{
MyQueue tamjQueue = new MyQueue (4);
System.out.println(tamjQueue.peek());
tamjQueue.enqueue(4);
tamjQueue.enqueue(3);
tamjQueue.enqueue(2);
tamjQueue.dequeue();

tamjQueue.enqueue(4);
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Implementing A Stack As An Array:
Class Driver (2)

tamjQueue.enqueue(4);
while (tamjQueue.isEmpty() == false)
{

System.out.println(tamjQueue.dequeue());
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Implementing A Stack As An Array:
Class MyQueue

public class MyQueue

f
1

private int [] queue;

private int front;

private int back;

private static final int DEFAULT MAX_SIZE = 100;

public MyQueue ()

{
queue = new int [DEFAULT MAX SIZE];
front = 0;
back = queue.length - 1;
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Implementing A Stack As An Array:
Class MyQueue (2)

public MyQueue (int maxSize)
{

queue = new int[maxSize];

front = 0;

back = queue.length - 1;

public boolean isFull ()
{
if (front == (back+2) % queue.length)
return true;
else

return false;
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Implementing A Stack As An Array:
Class MyQueue (3)

public boolean isEmpty ()

{
if (front == ((back + 1) % queue.length))

return true;

else

return false;
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Implementing A Stack As An Array:
Class MyQueue (4)

public void enqueue (int newValue)

{
if (isFull() == true)

{

System.out.println("Queue is full, unable to add element");

return;

}
back = (back + 1) % queue.length;

queue[back] = newValue;
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Implementing A Stack As An Array:
Class MyQueue (5)

public int dequeue ()
{
int first;
if (isEmpty() == false)
{
first = queue[front];
queue|[front] = -1;
front = (front + 1) % queue.length;
}
else
{
first =-1;
}

return first;

}
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Implementing A Stack As An Array:
Class MyQueue (6)

public int peek ()
{
if (isEmpty() == false)
return queue[front];
else

return -1;

public void clear ()
{
while (isEmpty() == false)
{
queue|front] = -1;
front = (front + 1) % queue.length;

}
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Implementing A Stack As An Array:
Class MyQueue (7)

front = 0;

back = queue.length;
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Implementing A Queue As A Linked List:
Class Driver

The full example can be found in the directory:
/home/331/tamj/examples/stacksQueues/linkedQueue

class Driver
{
public static void main (String [] args)
{
int temp;
MyQueue tamjQueue = new MyQueue ();
System.out.println(tamjQueue.peek());
tamjQueue.enqueue();

tamjQueue.enqueue();
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Implementing A Queue As A Linked List:
Class Driver (2)

tamjQueue.enqueue();
tamjQueue.dequeue();
System.out.println(tamjQueue.peek());
tamjQueue.dequeue();
System.out.println(tamjQueue.peek());
tamjQueue.clear();

System.out.println(tamjQueue.peek());
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Implementing A Queue As A Linked List:
Class MyQueue

public class MyQueue
{

private Node front;
private Node back;

private int currentDataValue = 10;

public MyQueue ()
{

front = null;
back = null;
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Implementing A Queue As A Linked List:
Class MyQueue (2)

public boolean isEmpty ()

{
if (front == null)

return true;
else

return false;
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Implementing A Queue As A Linked List:
Class MyQueue (3)

public void enqueue ()

{

Node temp = new Node (currentDataValue);
if (isEmpty() == false)

back.next = temp;

else
front = temp;
back = temp;

currentDataValue += 10;
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Implementing A Queue As A Linked List:
Class MyQueue (5)

public int peek ()
{
Node temp;
if (isEmpty() == false)
{
temp = front;
return temp.data;

}

return -1;
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Implementing A Queue As A Linked List:
Class MyQueue (6)

public int dequeue ()
{
Node temp;
if (isEmpty() == false)
{
temp = front;
front = front.next;
return temp.data;

}

return -1;
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Implementing A Queue As A Linked List:
Class MyQueue (7)

public void clear ()
{
front = null;
back = null;
}

// Plus class Node must also be defined as an inner class of class MyQueue.
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A Real Life Application Of Queues

*Printing on a printer

v v =
& xrx2 in main office

Printer Document View Help

Document Name Status Cwner Pages Size Submitted
EMiu'osof't PowerPoint - search_sor. .. Paused tamj 116 5.20 MB 5:02:17PM 10/5/2004
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You Should Now Know

*What is a stack?
*What is a queue?

*What are the implications of array vs. a linked list
implementations?
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Sources Of Lecture Material

*Data Structures and Abstractions with Java by Frank M.
Carrano and Walter Savitch

*Data Abstraction and Problem Solving with Java by Frank M.

Carrano and Janet J. Prichard

*CPSC 331 course notes by Marina L. Gavrilova
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