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James Tam

Stacks and Queues

•In this section of notes you will learn 
about two additional data structures as 
well as the consequences of different 
implementations

James TamStacks and queues

Stacks

•A list where additions and deletions are made at only one end 
of the list.

•The last element to be added is the first element to be 
removed (LIFO).

Top of stack
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Common Stack Operations

•Push

•Pop

•Peek

•Check if empty

•Clear
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Push Operation

•Adding an item to the top of the stack
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Push Operation

•“7” has been added to the stack and this new item becomes the 
top of the stack.
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Pop Operation

•Removing an item from the top of the stack
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Pop Operation

•“10” has been removed and “5” becomes the new top of the 
stack.
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Peek Operation

•Examine the item at the top of the stack without removing it
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Implementing A Stack As An Array: Class Driver

The full example can be found in the directory: 
/home/331/tamj/examples/stacksQueues/arrayStack

class Driver
{

public static void main (String [] args)
{

MyStack tamjStack = new MyStack (4);
System.out.println(ms.peek());
tamjStack.push(4);
tamjStack.push(3);
tamjStack.push(2);
tamjStack.push(1);
tamjStack.push(0);
while (tamjStack.isEmpty() == false)

System.out.println(tamjStack.pop());
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Implementing A Stack As An Array: Class MyStack

public class MyStack
{

private int [] stack;
private int topOfStack;
private static final int DEFAULT_MAX_SIZE = 100;
public MyStack ()
{

stack = new int[DEFAULT_MAX_SIZE];
topOfStack = -1;

}
public MyStack (int maxSize)
{

stack = new int[maxSize];
topOfStack = -1;

}
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Implementing A Stack As An Array: 
Class MyStack (2)

public boolean isFull ()
{

if (topOfStack >= (stack.length-1))
return true;

else
return false;

}

public boolean isEmpty ()
{

if (topOfStack < 0)
return true;

else
return false;

}
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Implementing A Stack As An Array: 
Class MyStack (3)

public void push (int newValue)

{

if (isFull() == true)

{

System.out.println("Stack is full, unable to add element");

return;

}

topOfStack++;

stack[topOfStack] = newValue;

}
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Implementing A Stack As An Array: 
Class MyStack (4)

public int peek ()
{

if (isEmpty() == false)
return stack[topOfStack];

else
return -1;

}
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Implementing A Stack As An Array: 
Class MyStack (5)

public int pop ()
{

int top;
if (isEmpty() == false)
{

top = stack[topOfStack];
stack[topOfStack] = -1;
topOfStack--;

}
else
{

top = -1;
}
return top;

}
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Implementing A Stack As An Array: 
Class MyStack (6)

public void clear ()

{

while (topOfStack >= 0)

{

stack[topOfStack] = -1;

topOfStack--;

}

}

}
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Implementing A Stack As A Linked List: 
Class Driver

The full example can be found in the directory: 
/home/331/tamj/examples/stacksQueues/linkedStack

class Driver
{

public static void main (String [] args)
{

int temp;
MyStack tamjStack = new MyStack ();
System.out.println(tamjStack.peek());
tamjStack.push();
tamjStack.push();
while (tamjStack.isEmpty() == false)

System.out.println(tamjStack.pop());
}

}



Stacks and queues 9

James TamStacks and queues

Implementing A Stack As A Linked List: 
Class MyStack

public class MyStack
{

private Node topNode;
private int currentDataValue = 10;
public MyStack ()
{

topNode = null;
}
public boolean isEmpty ()
{

if (topNode == null)
return true;

else
return false;

}
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Implementing A Stack As A Linked List: 
Class MyStack (2)

public void push ()
{

Node temp = new Node (currentDataValue, topNode);
currentDataValue += 10;
topNode = temp;

}
public int peek ()
{

Node top;
if (isEmpty() == false)
{

top = topNode;
return top.data;

}
return -1;

}
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Implementing A Stack As A Linked List: 
Class MyStack (3)

public int pop ()

{

Node top;

if (isEmpty() == false)

{

top = topNode;

topNode = topNode.next;

return top.data;

}

return -1;

}
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Implementing A Stack As A Linked List: 
Class MyStack (4)

public void clear ()

{

while (topNode != null)

topNode = topNode.next;

}
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Implementing A Stack As A Linked List: 
(Inner) Class Node

private class Node

{

private int data;

private Node next;

private Node ()

{

data = 0;

next = null;

}

private Node (int startingData)

{

data = startingData;

next = null;

}
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Implementing A Stack As A Linked List: 
(Inner) Class Node (2)

private Node (Node startingNext)
{

data = 0;
next = startingNext;

}
private Node (int startingData, Node nextNode)
{

data = startingData;
next = nextNode;

}
public String toString ()
{

String s = new String ();
s = s + data;
return s;

}
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A Real Life Application Of Stacks

•Web navigation using the “back” button.

Question: You start out at my CPSC home page 
and then you go to my 233 course page.  Next you 
press back to go to my home page and then follow 
the link to my 331 course page.  How many clicks 
of the back button are needed to get back to my 
233 course page?
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Start At My CPSC Home Page

null

null

null

null

TOS
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Click On The Link To My 233 Course Page

Home

null

null

null

TOS
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Click “Back”: Return To My Home Pages

null

null

null

null

TOS
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Click On The Link To My 331 Course Page

Home

null

null

null

TOS
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Queues

•A list where additions occur only at one end of the list 
and deletions occur only at the other end.

•The first element that was added to the queue is the 
first element to be removed (FIFO).

Front: Exit queue Back: Enter queue
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Common Operations On Queues

•Enqueue (add)

•Dequeue (remove)

•Peek

•Check if empty

•Clear
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Array Implementation Of  A Queue
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The Array Implementation Is “Circular”

4321

f b

43215

fb

[0]          [1]           [2]           [3]          [4]       [5]           [6]           [7]

[0]          [1]           [2]           [3]          [4]       [5]           [6]           [7]

0

1

2

34

5

6

7

1
2
3

4

f

b

b

0

1

2

34

5

6

7

1
2
3

4

f

5

James TamStacks and queues

Array Implementation Of A Queue

•The challenges:
- Detecting when the queue is empty.
- Detecting when the queue is full.
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First Approach: Queue Is When “Back” Refers To 
The Last Element

•Queue full when back = last element 
(length - 1)
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Problem With The First Approach
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•Queue is full?
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Second Approach: Employ A Counter

•Enqueue operation: increment the counter

•Dequeue operation: decrement the counter

•When the counter equals the zero the queue is empty

•When the counter equals the length of the list the queue is full

James TamStacks and queues

Second Approach: Employ A Counter
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General Problem With Circular Queues

•Confusing the “queue empty” and “queue full” conditions.
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Aha! When “f” is just ahead of 
“b” then the queue is empty.
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General Problem With Circular Queues

•Confusing the “queue empty” and “queue full” conditions.
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Third Approach: Reserve An Array Element

•The index of the unused element lies between the front and the 
back indices (one greater than the back index and one less than 
the front index).

•The full condition occurs when all elements but one are 
occupied or when:
- The front index is two elements ahead of the back index or

- The back index is two ahead of the front index (front is two behind the 
back)
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Third Approach: Reserve An Array Element

•General formula to detect when the queue is full:

Front index = (back index + 2) % queue.length
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Third Approach: Reserve An Array Element

•The empty condition occurs when all array elements are 
unoccupied or when:
- The front index is one element “ahead” of the back index.
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Third Approach: Reserve An Array Element

•General formula to detect when the queue is empty:

Front index = (back index + 1) % queue.length
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Implementing A Stack As An Array: Class Driver

The full example can be found in the directory: 
/home/331/tamj/examples/stacksQueues/arrayQueue

class Driver

{

public static void main (String [] args)

{

MyQueue tamjQueue = new MyQueue (4);

System.out.println(tamjQueue.peek());

tamjQueue.enqueue(4);

tamjQueue.enqueue(3);

tamjQueue.enqueue(2);

tamjQueue.dequeue();

tamjQueue.enqueue(4);
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Implementing A Stack As An Array: 
Class Driver (2)

tamjQueue.enqueue(4);

while (tamjQueue.isEmpty() == false)

{

System.out.println(tamjQueue.dequeue());

}

}

}
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Implementing A Stack As An Array: 
Class MyQueue

public class MyQueue
{

private int [] queue;
private int front;
private int back;
private static final int DEFAULT_MAX_SIZE = 100;

public MyQueue ()
{

queue = new int [DEFAULT_MAX_SIZE];
front = 0;
back = queue.length - 1;

}
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Implementing A Stack As An Array: 
Class MyQueue (2)

public MyQueue (int maxSize)
{

queue = new int[maxSize];
front = 0;
back = queue.length - 1;

}

public boolean isFull ()
{

if (front == (back+2) % queue.length)
return true;

else
return false;

}
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Implementing A Stack As An Array: 
Class MyQueue (3)

public boolean isEmpty ()
{

if (front == ((back + 1) % queue.length))
return true;

else
return false;

}
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Implementing A Stack As An Array: 
Class MyQueue (4)

public void enqueue (int newValue)

{

if (isFull() == true)

{

System.out.println("Queue is full, unable to add element");

return;

}

back = (back + 1) % queue.length;

queue[back] = newValue;

}
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Implementing A Stack As An Array: 
Class MyQueue (5)

public int dequeue ()
{

int first;
if (isEmpty() == false)
{

first = queue[front];
queue[front] = -1;
front = (front + 1) % queue.length;

}
else
{

first = -1;
}
return first;

}
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Implementing A Stack As An Array: 
Class MyQueue (6)

public int peek ()
{

if (isEmpty() == false)
return queue[front];

else
return -1;

}

public void clear ()
{

while (isEmpty() == false)
{

queue[front] = -1;
front = (front + 1) % queue.length;

}
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Implementing A Stack As An Array: 
Class MyQueue (7)

front = 0;  

back = queue.length;

}

}
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Implementing A Queue As A Linked List: 
Class Driver

The full example can be found in the directory: 
/home/331/tamj/examples/stacksQueues/linkedQueue

class Driver

{

public static void main (String [] args)

{

int temp;

MyQueue tamjQueue = new MyQueue ();

System.out.println(tamjQueue.peek());

tamjQueue.enqueue();

tamjQueue.enqueue();
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Implementing A Queue As A Linked List: 
Class Driver (2)

tamjQueue.enqueue();

tamjQueue.dequeue();

System.out.println(tamjQueue.peek());

tamjQueue.dequeue();

System.out.println(tamjQueue.peek());

tamjQueue.clear();

System.out.println(tamjQueue.peek());

}

}
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Implementing A Queue As A Linked List: 
Class MyQueue

public class MyQueue
{

private Node front;
private Node back;
private int currentDataValue = 10;

public MyQueue ()
{

front = null;
back = null;

}
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Implementing A Queue As A Linked List: 
Class MyQueue (2)

public boolean isEmpty ()
{

if (front == null)
return true;

else
return false;

}
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Implementing A Queue As A Linked List: 
Class MyQueue (3)

public void enqueue ()
{

Node temp = new Node (currentDataValue);
if (isEmpty() == false)

back.next = temp;
else

front = temp;
back = temp;
currentDataValue += 10;

}
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Implementing A Queue As A Linked List: 
Class MyQueue (5)

public int peek ()
{

Node temp;
if (isEmpty() == false)
{

temp = front;
return temp.data;

}
return -1;

}
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Implementing A Queue As A Linked List: 
Class MyQueue (6)

public int dequeue ()

{

Node temp;

if (isEmpty() == false)

{

temp = front;

front = front.next;

return temp.data;

}

return -1;

}
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Implementing A Queue As A Linked List: 
Class MyQueue (7)

public void clear ()

{

front = null;

back = null;

}

// Plus class Node must also be defined as an inner class of class MyQueue.
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A Real Life Application Of Queues

•Printing on a printer
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You Should Now Know

•What is a stack?

•What is a queue?

•What are the implications of array vs. a linked list 
implementations?

James TamStacks and queues

Sources Of Lecture Material
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•CPSC 331 course notes by Marina L. Gavrilova 
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