
Stacks and queues 1

James Tam

Stacks and Queues

•In this section of notes you will learn
about two additional data structures as
well as the consequences of different
implementations

James TamStacks and queues

Stacks

•A list where additions and deletions are made at only one end
of the list.

•The last element to be added is the first element to be
removed (LIFO).

Top of stack

Stacks and queues 2

James TamStacks and queues

Common Stack Operations

•Push

•Pop

•Peek

•Check if empty

•Clear

James TamStacks and queues

Push Operation

•Adding an item to the top of the stack

5

4

2

5

10 Top of stack

Stacks and queues 3

James TamStacks and queues

Push Operation

•“7” has been added to the stack and this new item becomes the
top of the stack.

5

4

2

5

10 Top of stack

5

4

2

5

10
Top of stack7

Before push After push

James TamStacks and queues

Pop Operation

•Removing an item from the top of the stack

5

4

2

5

10 Top of stack

Stacks and queues 4

James TamStacks and queues

Pop Operation

•“10” has been removed and “5” becomes the new top of the
stack.

5

4

2

5

10 Top of stack

Before pop

5

4

2

5 Top of stack

After pop

James TamStacks and queues

Peek Operation

•Examine the item at the top of the stack without removing it

5

4

2

5

10 Top of stack

Stacks and queues 5

James TamStacks and queues

Implementing A Stack As An Array: Class Driver

The full example can be found in the directory:
/home/331/tamj/examples/stacksQueues/arrayStack

class Driver
{

public static void main (String [] args)
{

MyStack tamjStack = new MyStack (4);
System.out.println(ms.peek());
tamjStack.push(4);
tamjStack.push(3);
tamjStack.push(2);
tamjStack.push(1);
tamjStack.push(0);
while (tamjStack.isEmpty() == false)

System.out.println(tamjStack.pop());

James TamStacks and queues

Implementing A Stack As An Array: Class MyStack

public class MyStack
{

private int [] stack;
private int topOfStack;
private static final int DEFAULT_MAX_SIZE = 100;
public MyStack ()
{

stack = new int[DEFAULT_MAX_SIZE];
topOfStack = -1;

}
public MyStack (int maxSize)
{

stack = new int[maxSize];
topOfStack = -1;

}

Stacks and queues 6

James TamStacks and queues

Implementing A Stack As An Array:
Class MyStack (2)

public boolean isFull ()
{

if (topOfStack >= (stack.length-1))
return true;

else
return false;

}

public boolean isEmpty ()
{

if (topOfStack < 0)
return true;

else
return false;

}

James TamStacks and queues

Implementing A Stack As An Array:
Class MyStack (3)

public void push (int newValue)

{

if (isFull() == true)

{

System.out.println("Stack is full, unable to add element");

return;

}

topOfStack++;

stack[topOfStack] = newValue;

}

Stacks and queues 7

James TamStacks and queues

Implementing A Stack As An Array:
Class MyStack (4)

public int peek ()
{

if (isEmpty() == false)
return stack[topOfStack];

else
return -1;

}

James TamStacks and queues

Implementing A Stack As An Array:
Class MyStack (5)

public int pop ()
{

int top;
if (isEmpty() == false)
{

top = stack[topOfStack];
stack[topOfStack] = -1;
topOfStack--;

}
else
{

top = -1;
}
return top;

}

Stacks and queues 8

James TamStacks and queues

Implementing A Stack As An Array:
Class MyStack (6)

public void clear ()

{

while (topOfStack >= 0)

{

stack[topOfStack] = -1;

topOfStack--;

}

}

}

James TamStacks and queues

Implementing A Stack As A Linked List:
Class Driver

The full example can be found in the directory:
/home/331/tamj/examples/stacksQueues/linkedStack

class Driver
{

public static void main (String [] args)
{

int temp;
MyStack tamjStack = new MyStack ();
System.out.println(tamjStack.peek());
tamjStack.push();
tamjStack.push();
while (tamjStack.isEmpty() == false)

System.out.println(tamjStack.pop());
}

}

Stacks and queues 9

James TamStacks and queues

Implementing A Stack As A Linked List:
Class MyStack

public class MyStack
{

private Node topNode;
private int currentDataValue = 10;
public MyStack ()
{

topNode = null;
}
public boolean isEmpty ()
{

if (topNode == null)
return true;

else
return false;

}

James TamStacks and queues

Implementing A Stack As A Linked List:
Class MyStack (2)

public void push ()
{

Node temp = new Node (currentDataValue, topNode);
currentDataValue += 10;
topNode = temp;

}
public int peek ()
{

Node top;
if (isEmpty() == false)
{

top = topNode;
return top.data;

}
return -1;

}

Stacks and queues 10

James TamStacks and queues

Implementing A Stack As A Linked List:
Class MyStack (3)

public int pop ()

{

Node top;

if (isEmpty() == false)

{

top = topNode;

topNode = topNode.next;

return top.data;

}

return -1;

}

James TamStacks and queues

Implementing A Stack As A Linked List:
Class MyStack (4)

public void clear ()

{

while (topNode != null)

topNode = topNode.next;

}

Stacks and queues 11

James TamStacks and queues

Implementing A Stack As A Linked List:
(Inner) Class Node

private class Node

{

private int data;

private Node next;

private Node ()

{

data = 0;

next = null;

}

private Node (int startingData)

{

data = startingData;

next = null;

}

James TamStacks and queues

Implementing A Stack As A Linked List:
(Inner) Class Node (2)

private Node (Node startingNext)
{

data = 0;
next = startingNext;

}
private Node (int startingData, Node nextNode)
{

data = startingData;
next = nextNode;

}
public String toString ()
{

String s = new String ();
s = s + data;
return s;

}

Stacks and queues 12

James TamStacks and queues

A Real Life Application Of Stacks

•Web navigation using the “back” button.

Question: You start out at my CPSC home page
and then you go to my 233 course page. Next you
press back to go to my home page and then follow
the link to my 331 course page. How many clicks
of the back button are needed to get back to my
233 course page?

James TamStacks and queues

Start At My CPSC Home Page

null

null

null

null

TOS

Stacks and queues 13

James TamStacks and queues

Click On The Link To My 233 Course Page

Home

null

null

null

TOS

James TamStacks and queues

Click “Back”: Return To My Home Pages

null

null

null

null

TOS

Stacks and queues 14

James TamStacks and queues

Click On The Link To My 331 Course Page

Home

null

null

null

TOS

James TamStacks and queues

Queues

•A list where additions occur only at one end of the list
and deletions occur only at the other end.

•The first element that was added to the queue is the
first element to be removed (FIFO).

Front: Exit queue Back: Enter queue

Stacks and queues 15

James TamStacks and queues

Common Operations On Queues

•Enqueue (add)

•Dequeue (remove)

•Peek

•Check if empty

•Clear

James TamStacks and queues

Array Implementation Of A Queue

0358

f b

10358

f b

6410358

f b

641035

f b

13641035

f b

Stacks and queues 16

James TamStacks and queues

The Array Implementation Is “Circular”

4321

f b

43215

fb

[0] [1] [2] [3] [4] [5] [6] [7]

[0] [1] [2] [3] [4] [5] [6] [7]

0

1

2

34

5

6

7

1
2
3

4

f

b

b

0

1

2

34

5

6

7

1
2
3

4

f

5

James TamStacks and queues

Array Implementation Of A Queue

•The challenges:
- Detecting when the queue is empty.
- Detecting when the queue is full.

Stacks and queues 17

James TamStacks and queues

First Approach: Queue Is When “Back” Refers To
The Last Element

•Queue full when back = last element
(length - 1)

12710358

f b

James TamStacks and queues

Problem With The First Approach

71035

f b

7103

f b

37103

f b

737103

f b

•Queue is full?

Stacks and queues 18

James TamStacks and queues

Second Approach: Employ A Counter

•Enqueue operation: increment the counter

•Dequeue operation: decrement the counter

•When the counter equals the zero the queue is empty

•When the counter equals the length of the list the queue is full

James TamStacks and queues

Second Approach: Employ A Counter

f b

Counter = 0

11

f b

Counter = 1

1711

f b

Counter = 2

17

f b

Counter = 1

Stacks and queues 19

James TamStacks and queues

General Problem With Circular Queues

•Confusing the “queue empty” and “queue full” conditions.

67100

f b

67

f b

f b

Aha! When “f” is just ahead of
“b” then the queue is empty.

James TamStacks and queues

General Problem With Circular Queues

•Confusing the “queue empty” and “queue full” conditions.

85991767

fb

Is the queue empty or full???

8599111767

fb

Stacks and queues 20

James TamStacks and queues

Third Approach: Reserve An Array Element

•The index of the unused element lies between the front and the
back indices (one greater than the back index and one less than
the front index).

•The full condition occurs when all elements but one are
occupied or when:
- The front index is two elements ahead of the back index or

- The back index is two ahead of the front index (front is two behind the
back)

85991767

fb

8511767

f b

James TamStacks and queues

Third Approach: Reserve An Array Element

•General formula to detect when the queue is full:

Front index = (back index + 2) % queue.length

Stacks and queues 21

James TamStacks and queues

Third Approach: Reserve An Array Element

•The empty condition occurs when all array elements are
unoccupied or when:
- The front index is one element “ahead” of the back index.

1

f b fb

1

f b f b

OR

James TamStacks and queues

Third Approach: Reserve An Array Element

•General formula to detect when the queue is empty:

Front index = (back index + 1) % queue.length

Stacks and queues 22

James TamStacks and queues

Implementing A Stack As An Array: Class Driver

The full example can be found in the directory:
/home/331/tamj/examples/stacksQueues/arrayQueue

class Driver

{

public static void main (String [] args)

{

MyQueue tamjQueue = new MyQueue (4);

System.out.println(tamjQueue.peek());

tamjQueue.enqueue(4);

tamjQueue.enqueue(3);

tamjQueue.enqueue(2);

tamjQueue.dequeue();

tamjQueue.enqueue(4);

James TamStacks and queues

Implementing A Stack As An Array:
Class Driver (2)

tamjQueue.enqueue(4);

while (tamjQueue.isEmpty() == false)

{

System.out.println(tamjQueue.dequeue());

}

}

}

Stacks and queues 23

James TamStacks and queues

Implementing A Stack As An Array:
Class MyQueue

public class MyQueue
{

private int [] queue;
private int front;
private int back;
private static final int DEFAULT_MAX_SIZE = 100;

public MyQueue ()
{

queue = new int [DEFAULT_MAX_SIZE];
front = 0;
back = queue.length - 1;

}

James TamStacks and queues

Implementing A Stack As An Array:
Class MyQueue (2)

public MyQueue (int maxSize)
{

queue = new int[maxSize];
front = 0;
back = queue.length - 1;

}

public boolean isFull ()
{

if (front == (back+2) % queue.length)
return true;

else
return false;

}

Stacks and queues 24

James TamStacks and queues

Implementing A Stack As An Array:
Class MyQueue (3)

public boolean isEmpty ()
{

if (front == ((back + 1) % queue.length))
return true;

else
return false;

}

James TamStacks and queues

Implementing A Stack As An Array:
Class MyQueue (4)

public void enqueue (int newValue)

{

if (isFull() == true)

{

System.out.println("Queue is full, unable to add element");

return;

}

back = (back + 1) % queue.length;

queue[back] = newValue;

}

Stacks and queues 25

James TamStacks and queues

Implementing A Stack As An Array:
Class MyQueue (5)

public int dequeue ()
{

int first;
if (isEmpty() == false)
{

first = queue[front];
queue[front] = -1;
front = (front + 1) % queue.length;

}
else
{

first = -1;
}
return first;

}

James TamStacks and queues

Implementing A Stack As An Array:
Class MyQueue (6)

public int peek ()
{

if (isEmpty() == false)
return queue[front];

else
return -1;

}

public void clear ()
{

while (isEmpty() == false)
{

queue[front] = -1;
front = (front + 1) % queue.length;

}

Stacks and queues 26

James TamStacks and queues

Implementing A Stack As An Array:
Class MyQueue (7)

front = 0;

back = queue.length;

}

}

James TamStacks and queues

Implementing A Queue As A Linked List:
Class Driver

The full example can be found in the directory:
/home/331/tamj/examples/stacksQueues/linkedQueue

class Driver

{

public static void main (String [] args)

{

int temp;

MyQueue tamjQueue = new MyQueue ();

System.out.println(tamjQueue.peek());

tamjQueue.enqueue();

tamjQueue.enqueue();

Stacks and queues 27

James TamStacks and queues

Implementing A Queue As A Linked List:
Class Driver (2)

tamjQueue.enqueue();

tamjQueue.dequeue();

System.out.println(tamjQueue.peek());

tamjQueue.dequeue();

System.out.println(tamjQueue.peek());

tamjQueue.clear();

System.out.println(tamjQueue.peek());

}

}

James TamStacks and queues

Implementing A Queue As A Linked List:
Class MyQueue

public class MyQueue
{

private Node front;
private Node back;
private int currentDataValue = 10;

public MyQueue ()
{

front = null;
back = null;

}

Stacks and queues 28

James TamStacks and queues

Implementing A Queue As A Linked List:
Class MyQueue (2)

public boolean isEmpty ()
{

if (front == null)
return true;

else
return false;

}

James TamStacks and queues

Implementing A Queue As A Linked List:
Class MyQueue (3)

public void enqueue ()
{

Node temp = new Node (currentDataValue);
if (isEmpty() == false)

back.next = temp;
else

front = temp;
back = temp;
currentDataValue += 10;

}

Stacks and queues 29

James TamStacks and queues

Implementing A Queue As A Linked List:
Class MyQueue (5)

public int peek ()
{

Node temp;
if (isEmpty() == false)
{

temp = front;
return temp.data;

}
return -1;

}

James TamStacks and queues

Implementing A Queue As A Linked List:
Class MyQueue (6)

public int dequeue ()

{

Node temp;

if (isEmpty() == false)

{

temp = front;

front = front.next;

return temp.data;

}

return -1;

}

Stacks and queues 30

James TamStacks and queues

Implementing A Queue As A Linked List:
Class MyQueue (7)

public void clear ()

{

front = null;

back = null;

}

// Plus class Node must also be defined as an inner class of class MyQueue.

James TamStacks and queues

A Real Life Application Of Queues

•Printing on a printer

Stacks and queues 31

James TamStacks and queues

You Should Now Know

•What is a stack?

•What is a queue?

•What are the implications of array vs. a linked list
implementations?

James TamStacks and queues

Sources Of Lecture Material

•Data Structures and Abstractions with Java by Frank M.
Carrano and Walter Savitch

•Data Abstraction and Problem Solving with Java by Frank M.
Carrano and Janet J. Prichard

•CPSC 331 course notes by Marina L. Gavrilova
http://pages.cpsc.ucalgary.ca/~marina/331/

