Stacks and Queues

*In this section of notes you will learn
about two additional data structures as
well as the consequences of different
implementations

Stacks

*A list where additions and deletions are made at only one end
of the list.

*The last element to be added is the first element to be
removed (LIFO).

Top of stack

e

Stacks and queues James Tam

Common Stack Operations

*Push

*Pop

*Peek

*Check if empty
*Clear

Stacks and queues

James Tam

Push Operation

*Adding an item to the top of the stack

10 < Top of stack

albdIN|Oo

Stacks and queues

James Tam

Push Operation

*“7 has been added to the stack and this new item becomes the
top of the stack.

Before push

After push
7 [« Top of stack
10 [« Topof stack 10
5 5
2 2
4 4
5 5

Stacks and queues

James Tam

Pop Operation

*Removing an item from the top of the stack

10 < Top of stack

albdIN|Oo

Stacks and queues

James Tam

Pop Operation

*“10” has been removed and “5” becomes the new top of the
stack.

Before pop After pop

10 +— Top of stack

5 5 +— Top of stack

2 2

4 4

° 5

Stacks and queues James Tam
Peek Operation

*Examine the item at the top of the stack without removing it

10 «—— Top of stack

Stacks and queues James Tam

Implementing A Stack As An Array: Class Driver

The full example can be found in the directory:
/home/33 1/tamj/examples/stacksQueues/arrayStack

class Driver
{
public static void main (String [] args)
{
MyStack tamjStack = new MyStack (4);
System.out.println(ms.peek());
tamjStack.push(4);
tamjStack.push(3);
tamjStack.push(2);
tamjStack.push(1);
tamjStack.push(0);
while (tamjStack.isEmpty() == false)
System.out.println(tamjStack.pop());

Stacks and queues James Tam

Implementing A Stack As An Array: Class MyStack

public class MyStack
{
private int [] stack;
private int topOfStack;
private static final int DEFAULT MAX_SIZE = 100;
public MyStack ()
{
stack = new intf DEFAULT MAX SIZE];
topOfStack = -1;
}
public MyStack (int maxSize)
{
stack = new int[maxSize];
topOfStack = -1;
}

Stacks and queues James Tam

Implementing A Stack As An Array:

Class MyStack (2)

public boolean isFull ()
{
if (topOfStack >= (stack.length-1))
return true;
else

return false;

public boolean isEmpty ()
{
if (topOfStack < 0)
return true;
else

return false;

}

Stacks and queues

James Tam

Implementing A Stack As An Array:
Class MyStack (3)

public void push (int newValue)
{

if (isFull() == true)

{

System.out.println("Stack is full, unable to add element");

return;

}
topOfStack++;

stack[topOfStack] = newValue;

Stacks and queues

James Tam

Implementing A Stack As An Array:
Class MyStack (4)

public int peek ()
{
if (isEmpty() == false)
return stack[topOfStack];
else

return -1;

Stacks and queues James Tam

Implementing A Stack As An Array:
Class MyStack (5)

public int pop ()
{
int top;
if (isEmpty() == false)
{
top = stack[topOfStack];
stack[topOfStack] = -1;
topOfStack--;
5
else
{
top =-1;
}

return top;

}

Stacks and queues James Tam

Implementing A Stack As An Array:

Class MyStack (6)
public void clear ()
{
while (topOfStack >= 0)
{

stack[topOfStack] = -1;
topOfStack--;

Stacks and queues James Tam

Implementing A Stack As A Linked List:
Class Driver

The full example can be found in the directory:
/home/33 1/tamj/examples/stacksQueues/linkedStack

class Driver

{

public static void main (String [] args)

{
int temp;
MyStack tamjStack = new MyStack ();
System.out.println(tamjStack.peek());
tamjStack.push();
tamjStack.push();
while (tamjStack.isEmpty() == false)

System.out.println(tamjStack.pop());

}

Stacks and queues James Tam

Implementing A Stack As A Linked List:

Class MyStack

public class MyStack

f
1

private Node topNode;
private int currentDataValue = 10;
public MyStack ()
{

topNode = null;
¥
public boolean isEmpty ()
{

if (topNode == null)

return true;
else

return false;

}

Stacks and queues

James Tam

Implementing A Stack As A Linked List:
Class MyStack (2)

public void push ()
{
Node temp = new Node (currentDataValue, topNode);
currentDataValue += 10;
topNode = temp;
¥
public int peek ()
{
Node top;
if (isEmpty() == false)
{
top = topNode;
return top.data;

}

return -1;

Stacks anc)f queues

James Tam

Implementing A Stack As A Linked List:

Class MyStack (3)

public int pop ()
{
Node top;
if (isEmpty() == false)
{
top = topNode;
topNode = topNode.next;
return top.data;
}

return -1;

Stacks and queues

James Tam

Implementing A Stack As A Linked List:

Class MyStack (4)

public void clear ()

{
while (topNode != null)
topNode = topNode.next;

Stacks and queues

James Tam

Implementing A Stack As A Linked List:

(Inner) Class Node

private class Node
{
private int data;
private Node next;
private Node ()
{
data = 0;
next = null;
}
private Node (int startingData)
{
data = startingData;
next = null;

}

Stacks and queues

James Tam

Implementing A Stack As A Linked List:
(Inner) Class Node (2)

private Node (Node startingNext)
{

data = 0;

next = startingNext;
}

private Node (int startingData, Node nextNode)

{

data = startingData;

next = nextNode;

}
public String toString ()

{
String s = new String ();
s = s + data;

return s;

Stacks and ql}eues

James Tam

A Real Life Application Of Stacks

*Web navigation using the “back” button.

Question: You start out at my CPSC home page
and then you go to my 233 course page. Next you
press back to go to my home page and then follow
the link to my 331 course page. How many clicks
of the back button are needed to get back to my
233 course page?

Stacks and queues

James Tam

Start At My CPSC Home Page

£
Contact Information

« Office number: ICT 707
» Office phone: (403) 210-
9455

» Email:
tamj@ cpac.ucalgary.ca

Current teaching (Fall 2004 - Spring 2005)
wan null
null
null
null

Stacks and queues

+==T0OS

James Tam

Click On The Link To My 233 Course Page

) Back

..('/ * -JB3 r
CPSC 233: Fall 2004
Lecture Information
Lecture 01
DayTime MWF 10:00.
10:50
Locarion 5T133
null
Tutorial (formerly referred to as labs) Information
null
LA IO% Dy Time Location Lab instructor Labwebpage Emsil
ol :‘:ts" 0 ng20% AQ DUONG aduongBepss ucalgary.ca null
Toz T;_\m:""""' ENA2I3 AQDUONG adusng@epsc uealoary ca Home | TOS
Stacks and queues James Tam
3 (11 9.
Click “Back”: Return To My Home Pages

- * * oa
Contact Information
« Office number: ICT 707

» Office phone: (403) 210-
9455

+ Email:
tamj@ cpac.ucalgary.ca

Current teaching (Fall 2004 - Spring 2005)
wan null
null
null
null

+==T0OS

Stacks and queues James Tam

Click On The Link To My 331 Course Page

/ QBadc

R

& 2 H-URS ar

EPSC 331: Fall 2004

Lecture Information

Lecture 01 Lecture 02 Lecture 03
null
Instructor Gavrilova Tam Manzara
Dray TR:9.30- MWE: @00 - TR: 11:00-
Time 10:45 9:50 12:15 null
Location 55109 ES443 ICTII4
null
Tutorial (formerly called labs) Information Home }je===TQOS
Tutoriak
2:,__ Day/Time Location E ,, gl Tutarial web page Email
Stacks and queues James Tam

Queues

*A list where additions occur only at one end of the list
and deletions occur only at the other end.

*The first element that was added to the queue is the
first element to be removed (FIFO).

Front: Exit queue Back: Enter queue

Stacks and queues James Tam

Common Operations On Queues

*Enqueue (add)

*Dequeue (remove)

*Peek

*Check if empty

*Clear

Stacks and queues James Tam
Array Implementation Of A Queue

el s [3o [| L
| [

f b
[s[sTslol+[[T |
| |

f b

|8] 5 3 [o] 1]64] L
|]

f b

B
N
R
-

—h m— (] —h m— (]
w
o
—_
»
IS
N
o= W

Stacks and queues James Tam

The Array Implementation Is “Circular”

[0] (1 [2] [3] [4] [5] (6] [7]

Stacks and queues

Array Implementation Of A Queue

*The challenges:

- Detecting when the queue is empty.
- Detecting when the queue is full.

Stacks and queues

First Approach: Queue Is When “Back” Refers To

The Last Element
*Queue full when back = last element
(length - 1)
L8 [s [3 o1 [7]2 1]
f b

Stacks and queues

Problem With The First Approach

*Queue is full?

L [sfslof 7] [|
[[
f b
L [Jeslof 7 [[|
[[
f b
L [Jslof 73] |
[[
f b
L [[slof 7]]7]
I I
f b

Stacks and queues

Second Approach: Employ A Counter

*Enqueue operation: increment the counter
*Dequeue operation: decrement the counter
*When the counter equals the zero the queue is empty

*When the counter equals the length of the list the queue is full

Stacks and queues

Second Approach: Employ A Counter

L [[[[[| coumters=o

[]
fob
| 1 | | | | | | | | Counter =1
[
f b
| " | 17 | | | | | | | Counter = 2
[
f b
| | 17 | | | | | | | Counter = 1

Stacks and queues James

General Problem With Circular Queues

*Confusing the “queue empty” and “queue full” conditions.

L[[[100] 67 |
]

L[[[[er]
N

Ahal When “f’ is just ahead of
“b” then the queue is empty.

Stacks and queues James Tam

General Problem With Circular Queues

*Confusing the “queue empty” and “queue full” conditions.

[67 | 17 | | 99 | 85 |

b f

[67 | 17 | 11 | 99 | 85 |

b f

Is the queue empty or full???

Stacks and queues James Tam

Third Approach: Reserve An Array Element

*The index of the unused element lies between the front and the
back indices (one greater than the back index and one less than
the front index).

*The full condition occurs when all elements but one are
occupied or when:

- The front index is two elements ahead of the back index or

| 67 | 17 | | 99 | 85 |
b f
- The back index is two ahead of the front index (front is two behind the
back)
67 | 17 | 1 | | 85 |

L

f

Stacks and queues James Tam

Third Approach: Reserve An Array Element

*General formula to detect when the queue is full:

Front index = (back index + 2) % queue.length

Stacks and queues James Ta

Third Approach: Reserve An Array Element

*The empty condition occurs when all array elements are
unoccupied or when:

- The front index is one element “ahead” of the back index.

[N N e A A N

OR

Stacks and queues James Tam

Third Approach: Reserve An Array Element

*General formula to detect when the queue is empty:

Front index = (back index + 1) % queue.length

Stacks and queues James Tam

Implementing A Stack As An Array: Class Driver

The full example can be found in the directory:
/home/33 1/tamj/examples/stacksQueues/arrayQueue

class Driver

{

public static void main (String [] args)

{
MyQueue tamjQueue = new MyQueue (4);
System.out.println(tamjQueue.peek());
tamjQueue.enqueue(4);
tamjQueue.enqueue(3);
tamjQueue.enqueue(2);
tamjQueue.dequeue();

tamjQueue.enqueue(4);

Stacks and queues James Tam

Implementing A Stack As An Array:
Class Driver (2)

tamjQueue.enqueue(4);
while (tamjQueue.isEmpty() == false)
{

System.out.println(tamjQueue.dequeue());

Stacks and queues James Tam

Implementing A Stack As An Array:
Class MyQueue

public class MyQueue

f
1

private int [] queue;

private int front;

private int back;

private static final int DEFAULT MAX_SIZE = 100;

public MyQueue ()

{
queue = new int [DEFAULT MAX SIZE];
front = 0;
back = queue.length - 1;

Stacks and queues James Tam

Implementing A Stack As An Array:
Class MyQueue (2)

public MyQueue (int maxSize)
{

queue = new int[maxSize];

front = 0;

back = queue.length - 1;

public boolean isFull ()
{
if (front == (back+2) % queue.length)
return true;
else

return false;

Stacks and queues James Tam

Implementing A Stack As An Array:
Class MyQueue (3)

public boolean isEmpty ()

{
if (front == ((back + 1) % queue.length))

return true;

else

return false;

Stacks and queues James Tam

Implementing A Stack As An Array:
Class MyQueue (4)

public void enqueue (int newValue)

{
if (isFull() == true)

{

System.out.println("Queue is full, unable to add element");

return;

}
back = (back + 1) % queue.length;

queue[back] = newValue;

Stacks and queues James Tam

Implementing A Stack As An Array:
Class MyQueue (5)

public int dequeue ()
{
int first;
if (isEmpty() == false)
{
first = queue[front];
queue|[front] = -1;
front = (front + 1) % queue.length;
}
else
{
first =-1;
}

return first;

}

Stacks and queues James Tam

Implementing A Stack As An Array:
Class MyQueue (6)

public int peek ()
{
if (isEmpty() == false)
return queue[front];
else

return -1;

public void clear ()
{
while (isEmpty() == false)
{
queue|front] = -1;
front = (front + 1) % queue.length;

}

Stacks and queues James Tam

Implementing A Stack As An Array:
Class MyQueue (7)

front = 0;

back = queue.length;

Stacks and queues James Tam

Implementing A Queue As A Linked List:
Class Driver

The full example can be found in the directory:
/home/331/tamj/examples/stacksQueues/linkedQueue

class Driver
{
public static void main (String [] args)
{
int temp;
MyQueue tamjQueue = new MyQueue ();
System.out.println(tamjQueue.peek());
tamjQueue.enqueue();

tamjQueue.enqueue();

Stacks and queues James Tam

Implementing A Queue As A Linked List:
Class Driver (2)

tamjQueue.enqueue();
tamjQueue.dequeue();
System.out.println(tamjQueue.peek());
tamjQueue.dequeue();
System.out.println(tamjQueue.peek());
tamjQueue.clear();

System.out.println(tamjQueue.peek());

Stacks and queues James Tam

Implementing A Queue As A Linked List:
Class MyQueue

public class MyQueue
{

private Node front;
private Node back;

private int currentDataValue = 10;

public MyQueue ()
{

front = null;
back = null;

Stacks and queues James Tam

Implementing A Queue As A Linked List:
Class MyQueue (2)

public boolean isEmpty ()

{
if (front == null)

return true;
else

return false;

Stacks and queues James Tam

Implementing A Queue As A Linked List:
Class MyQueue (3)

public void enqueue ()

{

Node temp = new Node (currentDataValue);
if (isEmpty() == false)

back.next = temp;

else
front = temp;
back = temp;

currentDataValue += 10;

Stacks and queues James Tam

Implementing A Queue As A Linked List:
Class MyQueue (5)

public int peek ()
{
Node temp;
if (isEmpty() == false)
{
temp = front;
return temp.data;

}

return -1;

Stacks and queues

James Tam

Implementing A Queue As A Linked List:
Class MyQueue (6)

public int dequeue ()
{
Node temp;
if (isEmpty() == false)
{
temp = front;
front = front.next;
return temp.data;

}

return -1;

Stacks and queues James Tam

Implementing A Queue As A Linked List:
Class MyQueue (7)

public void clear ()
{
front = null;
back = null;
}

// Plus class Node must also be defined as an inner class of class MyQueue.

Stacks and queues James Tam

A Real Life Application Of Queues

*Printing on a printer

v v =
& xrx2 in main office

Printer Document View Help

Document Name Status Cwner Pages Size Submitted
EMiu'osof't PowerPoint - search_sor. .. Paused tamj 116 5.20 MB 5:02:17PM 10/5/2004

Stacks and queues James Tam

You Should Now Know

*What is a stack?
*What is a queue?

*What are the implications of array vs. a linked list
implementations?

Stacks and queues

Sources Of Lecture Material

*Data Structures and Abstractions with Java by Frank M.
Carrano and Walter Savitch

*Data Abstraction and Problem Solving with Java by Frank M.

Carrano and Janet J. Prichard

*CPSC 331 course notes by Marina L. Gavrilova
http://pages.cpsc.ucalgary.ca/~marina/331/

Stacks and queues

