
Introduction to CPSC 231 1

James Tam

Lists

•Lists as an abstract data type (ADT)

•Different list implementations and the
tradeoffs of each approach

James Tam

What Is A List?

•A method of organizing data

From “Data Structures and Abstractions with Java” by Carrano
and Savitch

Introduction to CPSC 231 2

James Tam

Common List Operations

•Adding new elements
- Ordered by time
- Ascending/descending order
- Ordered by frequency

•Removing an element/elements

•Replace an element with a new value

•Searching the list for an element

•Counting the elements in the list

•Checking if the list is full or empty

•Display all elements

James Tam

List Implementations

List

Array Linked list

ADT (general
concept)

Data structure
(specific)

Introduction to CPSC 231 3

James Tam

Lists Implemented As Arrays

•Advantages
- Simple to use (often a built-in type)
- Retrievals are quick if the index is known (O(n1))

•Disadvantages
- Adding/removing elements may be awkward
- Fixed size arrays either limits the size of the list or wastes space
- Dynamic sized arrays requires copying

James Tam

Arrays: Adding Elements In The Middle

123

125

135

155

161

166

167

167

169

177

178

165

Introduction to CPSC 231 4

James Tam

Arrays: Deleting Elements From The Middle

123

125

135

155

161

166

167

167

169

177

178

James Tam

Arrays: Dynamic Sized Arrays

int [] arr = new int[4];

: : :

int [] temp = arr;

int [] arr = new int[8];

// Copy from temp to arr is needed

Introduction to CPSC 231 5

James Tam

Lists Implemented As Linked Lists

• Types Of Linked Lists
1. Singly linked
2. Circular
3. Doubly linked

James Tam

Singly Linked List

Example:
The full example can be found in the directory:
/home/331/tamj/examples/lists/singlyLinked

class ListManager

{

private Node head;

private int length;

private int currentDataValue = 10;

private static final int MAX_DATA = 100;

: :

}

Introduction to CPSC 231 6

James Tam

List Operations: Arrays Vs. Singly Linked Lists

O (1)O (n)Initialization

Singly Linked ListArrayOperation

James Tam

Examples Of List Initializations

• Array
for (i = 0; i < list.length; i++)

list[i] = -1;

• Linked list
public ListManager ()
{

head = null;
length = 0;

}
public ListManager (Node newHead)
{

head = newHead;
length = 1;

}

Introduction to CPSC 231 7

James Tam

List Operations: Arrays Vs. Singly Linked Lists

O (n)O (n) Sequential

O (log2n) Binary

Search

Singly Linked ListArrayOperation

James Tam

Example Of A Linked List Search

public int search (int key)
{

Node temp = head;
boolean isFound = false;
int index = 1;

Introduction to CPSC 231 8

James Tam

Example Of A Linked List Search (2)

while ((temp != null) && (isFound == false))
{

if (temp.data == key)
{

isFound = true;
}
else
{

temp = temp.next;
index++;

}
}

James Tam

Example Of A Linked List Search (3)

if (isFound == true)

return index;

else

return -1;

}

Introduction to CPSC 231 9

James Tam

List Operations: Arrays Vs. Singly Linked Lists

O (n)O (1) No shifting

O (n) Shifting

Insertion

Singly Linked ListArrayOperation

James Tam

Example Of A Linked List Insertion

public void addToEnd ()
{

Node anotherNode = new Node (currentDataValue);
currentDataValue += 10;
Node temp;

if (isEmpty() == true)
{

head = anotherNode;
length++;

}

Introduction to CPSC 231 10

James Tam

Example Of A Linked List Insertion (2)

else

{

temp = head;

while (temp.next != null)

{

temp = temp.next;

}

temp.next = anotherNode;

length++;

}

}

James Tam

Another Example Of A Linked List Insertion

public void addToPosition (int position)
{

Node anotherNode = new Node (currentDataValue);
Node temp;
Node current;
int index;

if ((position < 1) || (position > (length+1)))
{

System.out.println("Position must be a value between 1-" +
(length+1));

}

Introduction to CPSC 231 11

James Tam

Another Example Of A Linked List Insertion (2)

else
{

if (isEmpty() == true)
{

if (position == 1)
{

length++;
head = anotherNode;

}
else

System.out.println("List empty");
}
else if (position == 1)
{

anotherNode.next = head;
head = anotherNode;

James Tam

Another Example Of A Linked List Insertion (3)

else
{

current = head;
index = 1;
while (index < (position-1))
{

current = current.next;
index++;

}
anotherNode.next = current.next;
current.next = anotherNode;
length++;

}
}

}

Introduction to CPSC 231 12

James Tam

List Operations: Arrays Vs. Singly Linked Lists

O (n)O (1) No shifting

O (n) Shifting

Deletion

Singly Linked ListArrayOperation

James Tam

An Example Of A Linked List Deletion

public void delete (int key)
{

int indexToDelete;
int indexTemp;
Node previous;
Node toBeDeleted;

indexToDelete = search(key);
if (indexToDelete == -1)
{

System.out.println("Cannot delete element because it was not found in
the list.");

}

Introduction to CPSC 231 13

James Tam

An Example Of A Linked List Deletion (2)

else
{

if (indexToDelete == 1)
{

head = head.next;
length--;

}

James Tam

An Example Of A Linked List Deletion (3)

else
{

previous = null;
toBeDeleted = head;
indexTemp = 1;
while (indexTemp < indexToDelete)
{

previous = toBeDeleted;
toBeDeleted = toBeDeleted.next;
indexTemp++;

}
previous.next = toBeDeleted.next;
length--;

}
}

}

Introduction to CPSC 231 14

James Tam

Recursively Processing A List

public void displayReverse ()
{

Node temp = head;
System.out.println("Displaying list in reverse order");
if (isEmpty() == false)

reverse(temp);
else

System.out.println("Nothing to display, list is empty");
}
private void reverse (Node temp)
{

if (temp.next != null)
reverse(temp.next);

System.out.println(temp.data);
}

James Tam

Circular Linked Lists

•An extra link from the end of the list to the front forms the list
into a ring

Data Ptr Data Ptr Data Ptr

List

Introduction to CPSC 231 15

James Tam

Uses Of A Circular List

A = B + C

RAM

•e.g., Memory management by operating systems

James Tam

Searches With A Circular Linked Lists

•Cannot use a null reference as the signal that the end of the list
has been reached.

•Must use the list reference as a point reference (stopping point)
instead

Data Ptr Data Ptr Data Ptr

List

temp temp temp

Introduction to CPSC 231 16

James Tam

Traversing A Circular Linked List

•Cannot use a null reference as the signal that the end of the list
has been reached.

•Must use the list reference as a point reference (stopping point)
instead

Data Ptr Data Ptr Data Ptr

List

temp

James Tam

An Example Of Traversing A Circular Linked List

public void display ()
{

Node temp = list;
System.out.println("Displaying list");
if (isEmpty() == true)
{

System.out.println("Nothing to display, list
is empty.");

}
do
{

System.out.println(temp.data);
temp = temp.next;

} while (temp != list);
System.out.println();

}

Introduction to CPSC 231 17

James Tam

Worse Case Times For Circular Linked Lists

O(n)Deletion

O(n)Addition

O(n)Search

TimeOperation

James Tam

Doubly Linked Lists

•Each node has a reference or pointer back to the previous nodes
Head

Data PtrPtr Data
PtrPtr

Data
PtrPtr

null
null

Introduction to CPSC 231 18

James Tam

Pros Of Doubly Linked Lists

• Pros
- Traversing the list in reverse order is now possible.
- You can traverse a list without a trailing reference (or by scanning ahead)
- It’s more efficient for lists that require frequent additions and deletions
near the front and back

From “Data Structures and Abstractions with
Java” by Carrano and Savitch

James Tam

Cons Of Doubly Linked Lists

•Cons
- An extra reference is needed
- Additions and deletions are more complex (especially near the front and
end of the list)

Introduction to CPSC 231 19

James Tam

Doubly Linked List

Example:
The full example can be found in the directory:
/home/331/tamj/examples/lists/doublyLinked

class ListManager

{

private Node head;

private int length;

private int currentDataValue = 10;

private static final int MAX_DATA = 100;

: : : :

}

James Tam

Doubly Linked List: Adding To The End

public void addToEnd ()
{

Node anotherNode = new Node (currentDataValue);
Node temp;

if (isEmpty() == true)
head = anotherNode;

Introduction to CPSC 231 20

James Tam

Doubly Linked List: Adding To The End (2)

else
{

temp = head;
while (temp.next != null)
{

temp = temp.next;
}
temp.next = anotherNode;
anotherNode.previous = temp;

}
currentDataValue += 10;
length++;

}

James Tam

Doubly Linked List: Adding Anywhere

public void addToPosition (int position)

{

Node anotherNode = new Node (currentDataValue);

Node temp;

Node prior;

Node after;

int index;

if ((position < 1) || (position > (length+1)))

{

System.out.println("Position must be a value between 1-" +

(length+1));

}

Introduction to CPSC 231 21

James Tam

Doubly Linked List: Adding Anywhere (2)

else
{

// List is empty
if (head == null)
{

if (position == 1)
{

currentDataValue += 10;
length++;
head = anotherNode;

}
else

System.out.println("List empty, unable to add node to " +
"position " + position);

}

James Tam

Doubly Linked List: Adding Anywhere (3)

// List is not empty, inserting into first position.
else if (position == 1)
{

head.previous = anotherNode;
anotherNode.next = head;
head = anotherNode;
currentDataValue += 10;
length++;

}

Introduction to CPSC 231 22

James Tam

Doubly Linked List: Adding Anywhere (4)

// List is not empty inserting into a position other than the first
else
{

prior = head;
index = 1;
// Traverse list until current is referring to the node in front
// of the position that we wish to insert the new node into.
while (index < (position-1))
{

prior = prior.next;
index++;

}
after = prior.next;

James Tam

Doubly Linked List: Adding Anywhere (5)

// Set the references to the node before the node to be
// inserted.
prior.next = anotherNode;
anotherNode.previous = prior;

// Set the references to the node after the node to be
// inserted.
if (after != null)

after.previous = anotherNode;
anotherNode.next = after;

currentDataValue += 10;
length++;

}
}

}

Introduction to CPSC 231 23

James Tam

Doubly Linked List: Deleting A Node

public void delete (int key)

{

int indexToDelete;

int indexTemp;

Node previous;

Node toBeDeleted;

Node after;

James Tam

Doubly Linked List: Deleting A Node (2)

indexToDelete = search(key);
// No match, nothing to delete.
if (indexToDelete == -1)
{

System.out.println("Cannot delete element with a data value of "
+ key + " because it was not found.");

}
else
{

// Deleting first element.
if (indexToDelete == 1)
{

head = head.next;
length--;

}

Introduction to CPSC 231 24

James Tam

Doubly Linked List: Deleting A Node (3)

else
{

previous = null;
toBeDeleted = head;
indexTemp = 1;
while (indexTemp < indexToDelete)
{

previous = toBeDeleted;
toBeDeleted = toBeDeleted.next;
indexTemp++;

}
previous.next = toBeDeleted.next;
after = toBeDeleted.next;
after.previous = previous;
length--;
: : :

James Tam

Tracking Two-Dimensional Information

•Example: Student grades1

1 Example based on the described in “Data Structures and Algorithms in Java” by Adam Drozdek

[0] [1] [2] … [30000]

[0]

[1]

[2]

:

[300]

Students

Courses

Introduction to CPSC 231 25

James Tam

Tracking Two-Dimensional Information

•Example: Student grades1

•Problem: Wasted space

1 Example based on the described in “Data Structures and Algorithms in Java” by Adam Drozdek

D

B-

W

FA

[0] [1] [2] … [30000]

[0]

[1]

[2]

:

[300]

Students

Courses

James Tam

Sparse Matrices/ Sparse Table

•Memory is allocated only as needed (compile arrays and linked
lists)

Example based on the described in “Data Structures and Algorithms in Java” by Adam Drozdek

Introduction to CPSC 231 26

James Tam

You Should Now Know

•The advantages and disadvantages of implementing a list as an
array and as a linked list.
- The amount of time taken to perform different list operations on an array
vs. a linked list.

•How different types of linked lists are implemented, issues
associated with each implementation and the speed of different
list operations.

•What is a sparse table and what is the advantage and
disadvantage of implementing it as an array vs. as a linked list.

James Tam

Sources Of Lecture Material

•Data Structures and Abstractions with Java by Frank M.
Carrano and Walter Savitch

•Data Abstraction and Problem Solving With Java: Walls and
Mirrors by Frank M. Carrano and Janet J. Prichard

•“Data Structures and Algorithms in Java” by Adam Drozdek

•CPSC 331 course notes by Marina L. Gavrilova
http://pages.cpsc.ucalgary.ca/~marina/331/

