
Introduction to CPSC 231 1

James Tam

Introduction To CPSC 331

James Tam

James Tam

Administrative Information For James Tam

• Contact Information
- Office: ICT 707
- Phone: 210-9455
- Email: tamj@cpsc.ucalgary.ca

• Office hours
- Office hours: MW (12:00 – 12:50)
- Email: (any time)
- Appointment: phone or call
- Drop by for urgent requests (but no guarantee that I will be in!)

Introduction to CPSC 231 2

James Tam

Feedback

???

Dilbert © United Features Syndicate

James Tam

Course Resources

•Course website:
- http://pages.cpsc.ucalgary.ca/~tamj/331

•Required course text book:
- Data Structures and Algorithms in Java by Adam Drozdek

•Another good resource (previous version of the course)
- http://pages.cpsc.ucalgary.ca/~marina/331/

Introduction to CPSC 231 3

James Tam

How To Use The Course Resources

•They are provided to support and supplement the class.

•Neither the course notes nor the text book are meant as a
substitute for regular attendance to lecture and lab

James Tam

What This Course Is About

•Data Structures

•Algorithms

Introduction to CPSC 231 4

James Tam

Data Structure

•A composite type that has a set of basic operations that may be
performed on instances of that type:
- The type may be a built-in part of the programming language

e.g., arrays are a basic part of the Pascal language
Some basic operations on arrays include: adding, deleting or modifying array
elements.

- The type may also be defined by the programmer inside a program
e.g. linked lists must be defined by the programmer when writing Pascal
programs
Some basic list operations include: creating and initializing a new list, adding,
deleting, modifying and searching the nodes on the list.

In this course you will learn how to define additional types of data structures

James Tam

Algorithms

• “An algorithm is clearly specified set of instructions to be
followed to solve a problem.” (Weiss)

• It is one the factors affecting the speed of software
1. Type of inputs to the program e.g., Memory vs. disk access
2. Type of program code e.g., High vs. low level languages
3. Processor speed
4. The complexity of an algorithm

The focus of this course will be on the last point

Introduction to CPSC 231 5

James Tam

Algorithm Complexity

• This is the “cost” of an algorithm is typically measured in terms
of computational time.

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10 11

Amount of information

Pr
oc

es
si

ng
 ti

m
e

Processing time (Fast
algorithm)
Processing time (Slow
algorithm)

With a large data set the algorithm chosen can be the most important
factor in determining the speed of a program

James Tam

Algorithm Speeds

•Measured in terms of time needed “t” for a given amount of data
“n”

•Time will be some function of n.

•T equals some function with n as input

Introduction to CPSC 231 6

James Tam

How Many Times Do The Following Loops Run?

Example 1

for (int i = 1; i <= 5; i++)

: :

Example 2

for (int i = 1; i <= n; i++)

: :

Example 3

for (int i = 1; i <= 3; i++)

for (int j = 1; j <= 5; j++)

: :

James Tam

Common Algorithm Speeds

~ Four
Billion

65536

256

16

4

2

T= 2N

REAL
BIG!

~ One
Million

32768102416032532

~ 20
trillion

6553640962566416416

4032040965126424838

2425664168424

216842212

11110101

T= N!T = NM

M >3

T = N3T = N2T =
N*Log2
N

T = NT =
Log2N

N

Introduction to CPSC 231 7

James Tam

Algorithm Analysis Focuses On Large Data Sets

•Notice that some of the slower algorithms run quicker than faster
algorithms when the n values are smaller e.g., n! vs. n3

•Algorithm analysis focuses asymptotic efficiency of algorithms: “after
some (unspecified) point [n0]” how fast will the algorithm run.

n0
n

t

James Tam

Algorithm Analysis Focuses On The Largest Term

•We are interested in analyzing performance for large data sets
(i.e., when n is large).

•Therefore the slowest (largest) part of a function will be used to
determine the speed of that function

•e.g., t = n2 + 10n + log2n

Introduction to CPSC 231 8

James Tam

O-Notation

•The big O-notation describes a function g(n) that acts as the
upper bound for the algorithm that we are trying to analyze f(n).

•If after a given number of inputs n0, the values of f(n) are equal
to or smaller than the values of g(n) then f(n) is in Big O of g(n).

•O(g(n)) = {f(n) : there exists positive constants c and n0 such
that 0 <= f(n) <= c*g(n) for all n >= n0}.
- n: The number of inputs to the function
- c: A constant that accounts for factors such as machine speed, disk
accesses, the number of program statements etc.

•Important concept for this course

James Tam

Graphically Illustrating Big O-Notation

From “Introduction to Algorithms” by Cormen, Leirserson and Rivest

Introduction to CPSC 231 9

James Tam

Θ-Notation

•The theta-notation describes a function g(n) that acts as an upper
and lower bound for the algorithm that we are trying to analyze
f(n).

•If after a given number of inputs n0, there exists constants c1 and
c2 such that the values of f(n) are “sandwiched” between c1*g(n)
and c2*g(n), then f(n) is in Θ of g(n).

•Θ(g(n)) = {f(n) : there exits positive constants c1, c2 and n0 such
that 0 <= c1*g(n) <= f(n) <= c2*g(n) for all n >= n0}.

•This means that f(n) is equal to g(n) within a constant factor.

•F(n) must be non-negative whenever n is sufficiently large so
that g(n) must also be non-negative.

James Tam

Graphically Illustrating The Θ-Notation

From “Introduction to Algorithms” by Cormen, Leirserson and Rivest

Introduction to CPSC 231 10

James Tam

Big-O And Θ

•Theta is the more restrictive version of Big-O (Asymptotically
tight)

•Theta is a subset of Big O

James Tam

Ω-Notation

•The Omega-notation describes a function g(n) that acts as the
lower bound for the algorithm that we are trying to analyze f(n).

•If after a given number of inputs n0, the values of f(n) are
greater than or equal to than the values of g(n) then f(n) is in Ω
of g(n).

•Ω(g(n)) = {f(n) : there exists positive constants c and n0 such
that 0 <= c*g(n) <= f(n) < for all n >= n0}.

Introduction to CPSC 231 11

James Tam

Graphically Illustrating The Ω-Notation

From “Introduction to Algorithms” by Cormen, Leirserson and Rivest

James Tam

Determining The Running Time Of Code: Big-O

Assume that each statement takes up an equal amount of time.

1. Loops
•Running time of a loop = (running time of statements)
* (loop iterations)

•Example
for (i = 1;

i <= n;
i++)

num += i * i;

O(1)
O(n+1)

O(n)

Loop running time = O(1) + O(n+1) + O(n)

= O(2n+2)

Body running time = O(2 statements * n repetitions) = O(2n)

TOTAL = Loop running time + Body running time

= O(2n + 2) + O(2n) = O(4n + 2)

= O(n)

O(1+1) –
excludes
loop

Introduction to CPSC 231 12

James Tam

Determining The Running Time Of Code: Big-O (2)

2. Nested loops
• Analyze it inside out:
• running time = (running time of statements) * (product

of the sizes of all the loops)
• This is the product rule

3. Consecutive statements
• Add the total number of executions

4. Decision making constructs
• It’s the running time of the test plus the running time of the largest of

the conditions (sum rule)

James Tam

Recursion In Programming

• “A programming technique whereby a function or procedure
(called a method in Java) calls itself either directly or
indirectly.”

Introduction to CPSC 231 13

James Tam

Direct Call

module

aMethod ()

{

:

aMethod ();

:

}

James Tam

Indirect Call

m1

m2

m3

…

mn

Introduction to CPSC 231 14

James Tam

Indirect Call (2)

methodOne ()

{

:

methodTwo();

}

methodTwo ()

{

:

methodOne();

}

James Tam

Determining The Running Time Of Simple
Recursive Programs

Example:
The full example can be found in the directory:
/home/331/tamj/examples/intro/simpleRecursion

(Given a positive number “num” the program will count from that number
down to one).
class DriverRecursive

{

public static void main (String [] args)

{

final int NUM = 5;

RecursiveTail r1 = new RecursiveTail ();

r1.count(NUM);

}

}

This is a modified version of an example from “Data Structures and Abstractions with Java” by Frank M. Carrano
and Walter Savitch

Introduction to CPSC 231 15

James Tam

Determining The Running Time Of Simple
Recursive Programs (2)

public class RecursiveTail

{

public void count (int num)

{

System.out.println(num);

if (num > 1)

count(num-1);

return;

}

}

James Tam

Solving The Recursive Example

•First determine what is the general recurrence relation
- t(n) = 1 + t(n-1) for n >= 1 and t(1) = 1

•Solve the relation for a value of n (e.g., n = 5)
t(5) = 1 + t(4)

t(4) = 1 + t(3)

t(3) = 1 + t(2)

t(2) = 1 + t(1)

t(1) = 1

This recursive function is in O(n)

Introduction to CPSC 231 16

James Tam

Tail Recursion

•The last action is the method (aside from a return statement) is a recursive
call

public void count (int num)

{

if (num > 1)

count(num-1);

return;

}

•Tail recursion can be implemented easily as a loop.
public static void main (String [] args)

{

int i;

for (i = 5; i >=1; i--)

System.out.println(i);

}

James Tam

Non-Tail Recursion

•The last action (excluding the return statement) is not a recursive call.
•It is harder to convert to an iterative equivalent.
•(Given a number “num” the program will count up from one to that number).

public class RecursiveNonTail

{

public void count (int num)

{

if (num > 1)

count (num-1);

System.out.println(num);

return;

}

}

Introduction to CPSC 231 17

James Tam

An Example Of Inappropriate Use Of Recursion

•Fibonacci sequence is modeled on wabbit reproduction

Image from www.rabbit.org

Month zero

Month one

Month two

Month three

Month four

James Tam

General Definition Of The Fibonacci Sequence

n if n < 2

Fib (n) =

Fib(n-2) + Fib (n-1) otherwise

Introduction to CPSC 231 18

James Tam

Recursive Solution

The full example can be found in the directory:
/home/331/tamj/examples/intro/fibonacciRecursion

class DriverFib

{

public static void main (String [] args)

{

int num;

Fib f = new Fib ();;

System.out.print("Enter the no of fibonacci numbers to

calculate: ");

num = Console.in.readInt();

System.out.println("Fib. of " + num + " = " +

f.calculate(num));

}

}

James Tam

Recursive Solution (2)

public class Fib

{

public int calculate (int num)

{

if (num < 2)

{

return num;

}

else

{

return (calculate(num-1) + calculate(num-2));

}

}

}

Introduction to CPSC 231 19

James Tam

The Recursive Solution Is Redundant

F(6)

F(5) F(4)

F(4) F(3)

F(3) F(2) F(2) F(1)

F(2) F(1) F(1) F(0) F(1) F(0)

F(1) F(0)

1 0 1 1 10 0

F(3) F(2)

F(2) F(1) F(1) F(0)

F(0)

1 0 1 1 0

F(1)

1

James Tam

You Should Now Know

•What is a data structure.

•What is an algorithm.

•What are some of the factors that effect the speed of a program.

•What is meant by algorithm complexity.

•What are some common algorithm speeds and how they rank vs.
each other in terms of speed.

•What asymptotic notations mean in terms of algorithm analysis:
- Big-O
- Theta
- Omega

•How to determine the worse case running time an algorithm
(Big O-Notation)

Introduction to CPSC 231 20

James Tam

You Should Now Know (2)

•Recursion
- How to determine the running time of simple recursive programs.
- What is tail recursion and how it differs from non-tail recursion.

James Tam

Sources Of Material

•Data Structures and Algorithms in Java by Adam Drozdek

•Data Structures and Algorithm Analysis in C++ by Mark Allen
Weiss

•Introducing Algorithms by Thomas H. Cormen, Charles E.
Leiserson, Ronald L. Rivest

•Data Structures and Abstractions with Java by Frank M.
Carrano and Walter Savitch

•CPSC 331 course notes by Marina L. Gavrilova
http://pages.cpsc.ucalgary.ca/~marina/331/

