Introduction To CPSC 331

James Tam

James Tam

Administrative Information For James Tam

» Contact Information

- Office: ICT 707
- Phone: 210-9455
- Email: tamj@cpsc.ucalgary.ca

* Office hours
- Office hours: MW (12:00 — 12:50)
- Email: (any time)
- Appointment: phone or call) o
- Drop by for urgent requests (but no guarantee that I will be in!)

James Tam

Feedback

Dilbert © United Features Syndicate James Tam

Course Resources

*Course website:
- http://pages.cpsc.ucalgary.ca/~tamj/331

*Required course text book:
- Data Structures and Algorithms in Java by Adam Drozdek

*Another good resource (previous version of the course)
- http://pages.cpsc.ucalgary.ca/~marina/331/

James Tam

How To Use The Course Resources

*They are provided to support and supplement the class.

*Neither the course notes nor the text book are meant as a
substitute for regular attendance to lecture and lab
: - B

James Tam

What This Course Is About

*Data Structures

*Algorithms

James Tam

Data Structure

*A composite type that has a set of basic operations that may be

performed on instances of that type:

- The type may be a built-in part of the programming language
=¢.g., arrays are a basic part of the Pascal language
=Some basic operations on arrays include: adding, deleting or modifying array

elements.

- The type may also be defined by the programmer inside a program
=e.g. linked lists must be defined by the programmer when writing Pascal

programs
=Some basic list operations include: creating and initializing a new list, adding,

deleting, modifying and searching the nodes on the list.

In this course you will learn how to define additional types of data structures

James Tam

Algorithms

* “An algorithm is clearly specified set of instructions to be
followed to solve a problem.” (Weiss)

» It is one the factors affecting the speed of software

1. Type of inputs to the program e.g., Memory vs. disk access
2. Type of program code e.g., High vs. low level languages

3. Processor speed
4. The complexity of an algorithm

The focus of this course will be on the last point

James Tam

Algorithm Complexity

* This is the “cost” of an algorithm is typically measured in terms
of computational time.

120

100
: /
g . —&— Processing time (Fast
£ 60 algorithm)
§ / —— Processing time (Slow
§ 40 algorithm)
o /

. M
O+ +——"7 """ T 1

1 2 3 4 5 6 7 8 9 10 M1
Amount of information

With a large data set the algorithm chosen can be the most important
factor in determining the speed of a program

James Tam

Algorithm Speeds

*Measured in terms of time needed “t” for a given amount of data

e

n
*Time will be some function of n.

*T equals some function with n as input

James Tam

How Many Times Do The Following Loops Run?

Exanmple 1
for (int i =1; i <=05; i++)
Exampl e 2
for (int i =1; i <= n; i++)
Exanpl e 3
for (int i =1; i <= 3; i++)
for (int j =1; j <=5; j++)
Common Algorithm Speeds
N = T=N |[T= T=N?2 [T=N3 [T=NM |T=2N |T=N!
Log,N N*Log,
N M >3
1 0 1 0 1 1 1 2 1
2 1 2 2 4 8 16 4 2
4 2 4 8 16 64 256 16 24
8 3 8 24 64 512 4096 256 | 40320
16 4 16 64 256 4096 | 65536 | 65536 ~20
trillion
32 5 32 160 1024 | 32768 | ~One| ~Four| REAL
Million | Billion BIG!

Algorithm Analysis Focuses On Large Data Sets

*Notice that some of the slower algorithms run quicker than faster
algorithms when the n values are smaller e.g., n! vs. n?

* Algorithm analysis focuses asymptotic efficiency of algorithms: “after
some (unspecified) point [n,]” how fast will the algorithm run.

t
f(n)

James Tam

Algorithm Analysis Focuses On The Largest Term

*We are interested in analyzing performance for large data sets
(i.e., when n is large).

*Therefore the slowest (largest) part of a function will be used to
determine the speed of that function

*e.g.,t=n’+ 10n + log,n

James Tam

O-Notation

*The big O-notation describes a function g(n) that acts as the
upper bound for the algorithm that we are trying to analyze f(n).

*If after a given number of inputs n, the values of f(n) are equal
to or smaller than the values of g(n) then f(n) is in Big O of g(n).

*O(g(n)) = {f(n) : there exists positive constants ¢ and n, such
that 0 <= f(n) <= c*g(n) for all n >=n}.

-n: The number of inputs to the function
-c: A constant that accounts for factors such as machine speed, disk
accesses, the number of program statements etc.

*Important concept for this course

James Tam

Graphically Illustrating Big O-Notation

I :
IRl ={(AXein

From “Introduction to Algorithms” by Cormen, Leirserson and Rivest James Tam

O-Notation

*The theta-notation describes a function g(n) that acts as an upper
and lower bound for the algorithm that we are trying to analyze
f(n).

+If after a given number of inputs n,, there exists constants ¢, and
¢, such that the values of f(n) are “sandwiched” between c,*g(n)
and c,*g(n), then f(n) is in ® of g(n).

*0O(g(n)) = {f(n) : there exits positive constants c¢,, ¢, and n, such
that 0 <= ¢,*g(n) <= f(n) <= ¢,*g(n) for all n >=n,}.

*This means that f(n) is equal to g(n) within a constant factor.

*F(n) must be non-negative whenever n is sufficiently large so
that g(n) must also be non-negative.

Graphically Illustrating The @-Notation

fiml=ENFnmll

From “Introduction to Algorithms” by Cormen, Leirserson and Rivest

Big-O And ©

*Theta is the more restrictive version of Big-O (Asymptotically
tight)

*Theta is a subset of Big O

Q-Notation

*The Omega-notation describes a function g(n) that acts as the
lower bound for the algorithm that we are trying to analyze f(n).

+If after a given number of inputs n, the values of f(n) are
greater than or equal to than the values of g(n) then f(n) is in Q

of g(n).

*Q(g(n)) = {f(n) : there exists positive constants ¢ and n, such
that 0 <= c*g(n) <= f(n) < for all n >=n,}.

Graphically Illustrating The Q-Notation

From “Introduction to Algorithms” by Cormen, Leirserson and Rivest)
ames Tam

Determining The Running Time Of Code: Big-O

Assume that each statement takes up an equal amount of time.

1. Loops

*Running tinme of a loop = (running tine of statenents)
* (loop iterations)

it++)

Loop running time = O(1) + O(n+1) + O(n)
=0(2n+2)
Body running time = O(2 statements * n repetitions) = O(2n)
TOTAL = Loop running time + Body running time
=0(2n +2)+0(2n)=0(4n +2)
=0(n)

. Examp1e’''—‘_’_________’____ﬂ,_,.-————""""'O(1)
for (i=1; on+1)
1=1 ‘ o(n)
1<= q O(1+1) -
/ excludes
num +=1 * i; loop

James Tam

Determining The Running Time Of Code: Big-0 (2)

2. Nested loops

* Analyze it inside out:
e running time = (running time of statements) * (product
of the sizes of all the | oops)

e This is the product rule
3. Consecutive statements
¢ Add the total number of executions

4. Decision making constructs

» It’s the running time of the test plus the running time of the largest of
the conditions (sum rule)

James Tam

Recursion In Programming

* “A programming technique whereby a function or procedure
(called a method in Java) calls itself either directly or
indirectly.”

James Tam

Direct Call

aMethod ()
{

module aMethod ();

Indirect Call

ml’l

Indirect Call (2)

methodOne ()
{

methodTwo();

methodTwo ()

f
1

methodOne();

James Tam

Determining The Running Time Of Simple
Recursive Programs

Example:

The full example can be found in the directory:
/home/33 1/tamj/examples/intro/simpleRecursion

(Given a positive number “num” the program will count from that number
down to one).

class DriverRecursive

{
public static void main (String [] args)
{
final int NUM= 5;
RecursiveTail rl1 = new RecursiveTail ();
r1. count (NUM ;
}
}

This is a modified version of an example from “Data Structures and Abstractions with Java” by Frank M. Carrano
and Walter Savitch James Tam

Determining The Running Time Of Simple

Recursive Programs (2)

public class RecursiveTail

{
public void count (int num
{
System out. println(nun;
if (num> 1)
count (num1);
return;
}
}

James Tam

Solving The Recursive Example

*First determine what is the general recurrence relation
-t(n)=1+t(n-1) forn>=1and t(1) =1

*Solve the relation for a value of n (e.g., n=15)
t(5)=1+1t4)

t(4)=1+1(3)

t3)=1+1(2)

t(2)=1+1t(1)

(1)=1

This recursive function is in O(n)

James Tam

Tail Recursion

*The last action is the method (aside from a return statement) is a recursive
call

public void count (int num

{
if (num> 1)
count (num1);
return;
}

*Tail recursion can be implemented easily as a loop.
public static void main (String [] args)

{
int i;
for (i =5; i >=1; i--)
Systemout. println(i);

James Tam

Non-Tail Recursion

*The last action (excluding the return statement) is not a recursive call.
«It is harder to convert to an iterative equivalent.

*(Given a number “num” the program will count up from one to that number).

public class RecursiveNonTai l

{

public void count (int num

{
if (num> 1)

count (num1);

System out . println(num;
return;

}

James Tam

An Example Of Inappropriate Use Of Recursion

*Fibonacci sequence is modeled on wabbit reproduction

Month zero

Month one

Month two

Month three \

Month four

AA43

Image from www.rabbit.org

General Definition Of The Fibonacci Sequence

n ifn<2
Fib (n) =
Fib(n-2) + Fib (n-1) otherwise

James Tam

Recursive Solution

The full example can be found in the directory:
/home/331/tamj/examples/intro/fibonacciRecursion

class DriverFib

{
public static void main (String [] args)
{
int num
Fib f = newFib ();;
Systemout. print("Enter the no of fibonacci nunbers to
cal culate: ");
num = Console.in.readlnt();
Systemout.printin("Fib. of " + num+ " =" +
f.calculate(nun));
}
}

James Tam

Recursive Solution (2)

public class Fib

{
public int calculate (int num
{
if (num< 2)
{
return num
}
el se
{
return (cal cul ate(num 1) + calculate(num?2));
}
}

James Tam

The Recursive Solution Is Redundant

F(6)
F©) F(4)
/\ /\
F(4) F(3) /F(?< F(2)
/F(3< F(2) F(2) F(1) F(2) F(1) F(1) F(0)
F(2) F(1) F(1) F@O) F(1) F(©) F(1) F(0)
F(1) F(0) / / / / / I /
1 0 1 1 0 1 0 1 10 1 1 0

You Should Now Know

*What is a data structure.

*What is an algorithm.

*What are some of the factors that effect the speed of a program.
*What is meant by algorithm complexity.

*What are some common algorithm speeds and how they rank vs.
each other in terms of speed.

*What asymptotic notations mean in terms of algorithm analysis:
-Big-O
- Theta
-Omega
*How to determine the worse case running time an algorithm
(Big O-Notation)

You Should Now Know (2)

*Recursion

-How to determine the running time of simple recursive programs.
- What is tail recursion and how it differs from non-tail recursion.

Sources Of Material

*Data Structures and Algorithms in Java by Adam Drozdek

*Data Structures and Algorithm Analysis in C++ by Mark Allen
Weiss

Introducing Algorithms by Thomas H. Cormen, Charles E.
Leiserson, Ronald L. Rivest

*Data Structures and Abstractions with Java by Frank M.
Carrano and Walter Savitch

*CPSC 331 course notes by Marina L. Gavrilova
http://pages.cpsc.ucalgary.ca/~marina/331/

