The Heap ADT

*In this section of notes you will learn
about a new abstract data type, the heap,
as well how heaps can be used.

A (Binary) Heap Is A Complete Binary Tree

*A complete binary tree of height 4 is full down to height 4 — 1.

*Example:
-Height=5

-Full from height =1 to
height = 4

A (Binary) Heap Is A Complete Binary Tree

*A complete binary tree of height 4 is full down to height 4 — 1.

*Example:
-Height =5

-Full from height=1 to
height = 4

-Complete tree: When a node at
height 4 has children all nodes at the
same height and to it’s left have two
children each

- Complete tree: When a node at height
4 has one child it’s a left child

James Tam

A (Binary) Heap Is A Complete Binary Tree

*A complete binary tree of height 4 is full down to height 4 — 1.

*Example:
-Height=5

-Full from height =1 to
height = 4

-Complete tree: When a node at
height 4 has children all nodes at the
same height and to it’s left have two
children each

-Complete tree: When a node at height
4 has one child it’s a left child

Nodes on the
lowest level
are filled left
to right

James Tam

Complete Tree: General Specification

* A complete binary of height 4 is a binary tree that is full down

to height 2 — 1 with height h filled in from left to right

1. All nodes at 4 — 2 and above have two children each

2. When anode at 2 — 1 has children, all nodes at the same height which

are to the left of this node will each have two children.
3. When anode at 2 — 1 has one child, it’s a left child.

Heaps

1. A complete binary tree

2. Max heap (most common type of heap): The data in a parent
node is greater than or equal to the it’s descendent objects.
3. Min heap: The data in a parent node is lesser than or equal to

the it’s descendent objects.

Maxheap

James Tam

Minheap

James Tam

Array Representation Of A Heap

*Heap as a binary treem

* Array representation of a heap:

o |11 | |[B] @ |1 (6] |[71 |8 |[e1 |[10] | [11]

(2]

90 |80 |60 |70 |30 |20 |50 |10 |40

James Tam

Array Representation Of A Heap

*Recall: For a given node at index “I”:

- The left child of that node will be at index = (I * 2)
- The right child will be at index = (I * 2) + 1

James Tam

Ternary Heaps (0, 1, 2, 3 Children)

* A heap as a ternary tree

* Array representation of a trinary heap:

o |01 |2 B |4
90 |80 |60 |70

*For a given index “1”, the index of it’s children:
-First: 3*D -1
-Second: (3 * 1)
~Third: 3*1)+1

James Tam

Alternative Indexing: Consider The Cases

Tree implementation

Array implementation

o (1 |2 [[381 |4 [[5] |[[6] |[7] |[8]
109 |6 [3 |2 |5

James Tam

Alternative Indexing: General Formula

*For a given node at index “I”:

- The left child of that node will be at index = (21 + 1)
- The right child will be at index = (21 + 2)

Methods Of Creating A Heap
1. Ensure that the heap retains the property of a max/min heap as
the heap is built.

2. Build the heap and then transform the heap into a max/min
heap (“heapify” the heap).

Method 1: Add The First Element

*Array representation

O |11 |2 |[B8] |4 |[8] |[6]
20

*The corresponding tree

@

Method 1: Add The Second Element

*Array representation

] |1 |2 |[B |4 |[6] |[6]
20 |40

*The corresponding tree
[l

Method 1: Swap The First And Second Elements

*Array representation

] |01

40

(2]
20

8] |4 |[8] |[6]

*The corresponding tree
[1

Method 1: Add The Third Element

*Array representation

o] (1

40

(2]
20

(3]
30

4] |[5] |I[6]

*The corresponding tree
[l

Method 1: Add The Fourth Element

*Array representation

O |11 |2 |[B8] |4 |[8] |[6]
40 (20 |30 |10

*The corresponding tree
[1

141

Method 1: Add The Fifth Element

*Array representation

] |1 |2 |[B |4 |[6] |[6]
40 |20 |30 |10 |90

*The corresponding tree

Method 1: Swap the Second And Fifth Elements

*Array representation

O |11 |2 |[B8] |4 |[8] |[6]
40 (90 |30 (10 |20

*The corresponding tree

Method 1: Swap the First And Second Elements

*Array representation

] |1 |2 |[B |4 |[6] |[6]
90 |40 |30 |10 |20

*The corresponding tree

Method 1: Add The Sixth Element

*Array representation

O |11 |2 |[B8] |4 |[8] |[6]
90 (40 |30 |10 |20 |70

*The corresponding tree

Method 1: Swap The Third And Sixth Elements

*Array representation

] |1 |2 |[B |4 |[6] |[6]
90 |40 |70 |10 |20 |30

*The corresponding tree

Method 1: The Final State Of The Heap

*Array representation

O |1 |2 |[B8] |4 |[8] |[6]
90 (40 |70 |10 |20 |30

*The corresponding tree

Method 2 For Building A Heap

*The information is read into an array

] |1 |2 |[B |4 |[6] |[6]
20 |40 |30 |10 |90 |70

*The corresponding tree

Method 2 For Building A Heap: Where To Start

«Start with node [LnoNodes/2 |], examine if the heap is a

maxheap
0 |11 |2 |81 [[] |[5] |[[6]

20 |40 |30 |10 |90 |70

*The corresponding tree
[1] Start

examining the

(20) .
first non-leaf
[2] @ node
o) et

leaves

Method 2 For Building A Heap: Examine Element

131

*The information is read into an array

] |1 |2 |[B |4 |[6] |[6]
20 |40 |30 |10 [90 |70

*The corresponding tree

Method 2 For Building A Heap: Reheap Related To

Element [3]

*The information is read into an array

[0]

(1]

(2]

(3]

[4]

[5]

[6]

20

40

70

10

90

30

*The corresponding tree

Method 2 For Building A Heap: Examine Element

121

*The information is read into an array

[0]

(1]

(2]

(3]

[4]

(5]

[6]

20

40

70

10

90

30

*The corresponding tree

Method 2 For Building A Heap: Reheap Related To

Element [2]

*The information is read into an array

[0]

(1]

(2]

(3]

[4]

[5]

[6]

20

90

70

10

40

30

*The corresponding tree

Method 2 For Building A Heap: Examine Element

i

*The information is read into an array

[0]

(1]

(2]

(3]

[4]

(5]

[6]

20

90

70

10

40

30

*The corresponding tree

Method 2 For Building A Heap: First Reheap
Related To Element [1]

*The information is read into an array

O |11 |2 |[B8] |4 |[8] |[6]
90 (20 |70 |10 |40 |30

*The corresponding tree

Method 2 For Building A Heap: Second Reheap

Related To Element [1]

*The information is read into an array

] |1 |2 |[B |4 |[6] |[6]
90 |40 |70 |10 |20 |30

*The corresponding tree

Determining The First Non-Leaf Element

* noNodes/2 | is first non-leaf node

*11/2 ;=0 : No non-leaf nodes exist

@)

Determining The First Non-Leaf Element (2)

* noNodes/2 ; is first non-leaf node
° |_2/2 1= 1

1

Determining The First Non-Leaf Element (3)

* noNodes/2 | is first non-leaf node

32 ,=1

11

Determining The First Non-Leaf Element (4)

* noNodes/2 ; is first non-leaf node

* |_4/2 1= 2
[1]

[4]

Determining The First Non-Leaf Element (5)

* noNodes/2 | is first non-leaf node

152 4=2

Determining The First Non-Leaf Element (6)

* noNodes/2 ; is first non-leaf node

'|_6/2_J=3

Priority Queue

*Review: Regular queues (FIFO)
- Elements are de-queued according their order of arrival

Front: Exit Back: Enter
queue queue

*Priority queue:

- Elements are removed according to their priority level. fm—————— -
. I i

P N N [3 | !
Uy uy Ly % : :

1 1 1 2 3 TTTTTTTT

James Tam

Priority Queue

*Review: Regular queues (FIFO)

- Elements are de-queued according their order of arrival

Front: Exit Back: Enter
queue queue

*Priority queue:

- Elements are removed according to their priority level.

| \ Q_ \}_ Fﬂ

James Tam

Priority Queue: ADT

Priority
Queue

Linked Tree Heap
List

James Tam

Linked List Implementations Of A Priority Queue

Sorted, [4 3 [2 |1 U |1

- Insertion: O(n)
-Remove: O(1)

oUnsorted 2 1 3 1 4 1

- Insertion: O(1)
-Remove: O(n)

1 Sorted in this case refers to maintaining the list in order but it is done by in-order insertions rather than applying a
sorting algorithm. James Tam

Binary Search Tree Implementation Of A Priority

Queue

Binary Search Tree Implementation Of A Priority
Queue: Remove Largest Element

Efficiency Of The Binary Search
Tree Implementation Of A Priority Queue

. Average
Operation g Worse Case,
case
Insertion O (log,n) O (n)
Deletion O (log,n) O (n)

The worse case is always a possibility unless a self-balancing tree implementation
(e.g., AVL tree) is employed

James Tam

Heap Implementation Of A Priority Queue

*Example: A Maxheap implementation

James Tam

Heap Implementation: Insertions

Best case: O(1)

Worse case: O(log,N)

ORNONGC

James Tam

Heap Implementation: Deletions

If the priority queue removes
the largest numbers first then

the top element would have to
@ be deleted

James Tam

Heap Implementation: Deletions (2)

*Move the last element to the top of the heap

Heap Implementation: Deletions (3)

*Move the last element to the top of the heap

Heap Implementation: Deletions (4)

*The element at the top “trickles down” to it’s proper location in
the tree via a swap or series of swaps.

James Tam

Efficiency Of Deletions From a Heap

*Trickling down the top element to it’s proper place:
- When the element must be moved the height of the tree: O(log,N)

James Tam

You Should Now Know

*What is a heap / complete tree?

*The difference between the categories of heaps:

- Min vs. max heaps.
- Binary and ternary heaps.

*What types of data structures can be used to implement heaps?
*How to build a heap using two different approaches.

*The different ways in which a priority queue can be
implemented and the efficiency of each approach?

Sources Of Lecture Material

* “Data Abstraction and Problem Solving With Java: Walls and
Mirrors” updated edition by Frank M. Carrano and Janet J.
Prichard

*From “Data Structures and Abstractions with Java” by Frank
M. Carrano and Walter Savitch.

*“Introduction to Algorithms” by Thomas M. Cormen, Charles E.
Leiserson and Ronald L. Rivest.

*Course notes by Claudio T. Silva
http://www.cs.utah.edu/classes/cs3510-csilva/lectures/

*CPSC 331 course notes by Ken Loose
http://pages.cpsc.ucalgary.ca/~marina/331/

