
Heaps ole' heaps 1

James Tam

The Heap ADT

•In this section of notes you will learn
about a new abstract data type, the heap,
as well how heaps can be used.

James Tam

A (Binary) Heap Is A Complete Binary Tree

•A complete binary tree of height h is full down to height h – 1.

•Example:
- Height = 5

-Full from height = 1 to
height = 4

Heaps ole' heaps 2

James Tam

A (Binary) Heap Is A Complete Binary Tree

•A complete binary tree of height h is full down to height h – 1.

•Example:
- Height = 5

-Full from height = 1 to
height = 4

A B C

-Complete tree: When a node at
height 4 has children all nodes at the
same height and to it’s left have two
children each

-Complete tree: When a node at height
4 has one child it’s a left child

James Tam

A (Binary) Heap Is A Complete Binary Tree

•A complete binary tree of height h is full down to height h – 1.

•Example:
- Height = 5

-Full from height = 1 to
height = 4

A B C

-Complete tree: When a node at
height 4 has children all nodes at the
same height and to it’s left have two
children each

-Complete tree: When a node at height
4 has one child it’s a left child

Nodes on the
lowest level
are filled left
to right

Heaps ole' heaps 3

James Tam

Complete Tree: General Specification

• A complete binary of height h is a binary tree that is full down
to height h – 1 with height h filled in from left to right

1. All nodes at h – 2 and above have two children each
2. When a node at h – 1 has children, all nodes at the same height which

are to the left of this node will each have two children.
3. When a node at h – 1 has one child, it’s a left child.

James Tam

Heaps

1. A complete binary tree

2. Max heap (most common type of heap): The data in a parent
node is greater than or equal to the it’s descendent objects.

3. Min heap: The data in a parent node is lesser than or equal to
the it’s descendent objects.

Heaps ole' heaps 4

James Tam

Maxheap

9

8 6

7 3 2 5

1 4

James Tam

Minheap

1

2 4

3 7 8 5

9 6

Heaps ole' heaps 5

James Tam

Array Representation Of A Heap

•Heap as a binary tree
90

80 60

70 30 20 50

10 40

401050203070608090

[12][11][10][9][8][7][6][5][4][3][2][1][0]

•Array representation of a heap:

[1]

[2] [3]

[4] [5] [6] [7]

[8] [9]

James Tam

Array Representation Of A Heap

•Recall: For a given node at index “I”:
- The left child of that node will be at index = (I * 2)
- The right child will be at index = (I * 2) + 1

Heaps ole' heaps 6

James Tam

Ternary Heaps (0, 1, 2, 3 Children)

•A heap as a ternary tree

90

80 60

[1]

[2] [3] [4]

70608090

[4][3][2][1][0]

•Array representation of a trinary heap:

70

•For a given index “I”, the index of it’s children:
- First: (3 * I) – 1
- Second: (3 * I)
- Third: (3 * I) + 1

James Tam

Alternative Indexing: Consider The Cases

9

2

6

3

10

5

5236910

[8][7][6][5][4][3][2][1][0]

Tree implementation

Array implementation

[0]

[1] [2]

[3] [4] [5]

Heaps ole' heaps 7

James Tam

Alternative Indexing: General Formula

•For a given node at index “I”:
- The left child of that node will be at index = (2I + 1)
- The right child will be at index = (2I + 2)

James Tam

Methods Of Creating A Heap

1. Ensure that the heap retains the property of a max/min heap as
the heap is built.

2. Build the heap and then transform the heap into a max/min
heap (“heapify” the heap).

Heaps ole' heaps 8

James Tam

Method 1: Add The First Element

•Array representation

20

[6][5][4][3][2][1][0]

20

•The corresponding tree
[1]

James Tam

Method 1: Add The Second Element

•Array representation

4020

[6][5][4][3][2][1][0]

20

•The corresponding tree

40

[1]

[2]

Heaps ole' heaps 9

James Tam

Method 1: Swap The First And Second Elements

•Array representation

2040

[6][5][4][3][2][1][0]

40

•The corresponding tree

20

[1]

[2]

James Tam

Method 1: Add The Third Element

•Array representation

302040

[6][5][4][3][2][1][0]

40

•The corresponding tree

20

[1]

[2]
30

[3]

Heaps ole' heaps 10

James Tam

Method 1: Add The Fourth Element

•Array representation

10302040

[6][5][4][3][2][1][0]

40

•The corresponding tree

20

[1]

[2]
30

[3]

10
[4]

James Tam

Method 1: Add The Fifth Element

•Array representation

9010302040

[6][5][4][3][2][1][0]

40

•The corresponding tree

20

[1]

[2]
30

[3]

10
[4]

90
[5]

Heaps ole' heaps 11

James Tam

Method 1: Swap the Second And Fifth Elements

•Array representation

2010309040

[6][5][4][3][2][1][0]

40

•The corresponding tree

90

[1]

[2]
30

[3]

10
[4]

20
[5]

James Tam

Method 1: Swap the First And Second Elements

•Array representation

2010304090

[6][5][4][3][2][1][0]

90

•The corresponding tree

40

[1]

[2]
30

[3]

10
[4]

20
[5]

Heaps ole' heaps 12

James Tam

Method 1: Add The Sixth Element

•Array representation

702010304090

[6][5][4][3][2][1][0]

90

•The corresponding tree

40

[1]

[2]
30

[3]

10
[4]

20
[5]

70
[6]

James Tam

Method 1: Swap The Third And Sixth Elements

•Array representation

302010704090

[6][5][4][3][2][1][0]

90

•The corresponding tree

40

[1]

[2]
70

[3]

10
[4]

20
[5]

30
[6]

Heaps ole' heaps 13

James Tam

Method 1: The Final State Of The Heap

•Array representation

•The corresponding tree

90

40

[1]

[2]
70

[3]

10
[4]

20
[5]

30
[6]

302010704090

[6][5][4][3][2][1][0]

James Tam

Method 2 For Building A Heap

•The information is read into an array

709010304020

[6][5][4][3][2][1][0]

20

•The corresponding tree

40 30

10 90 70

[1]

[2] [3]

[4] [5] [6]

Heaps ole' heaps 14

James Tam

Method 2 For Building A Heap: Where To Start

•Start with node [└noNodes/2 ┘], examine if the heap is a
maxheap

709010304020

[6][5][4][3][2][1][0]

20

•The corresponding tree

40 30

10 90 70

[1]

[2] [3]

[4] [5] [6] Nodes after
node 3 will be
leaves

Start
examining the
first non-leaf
node

James Tam

Method 2 For Building A Heap: Examine Element
[3]

•The information is read into an array

709010304020

[6][5][4][3][2][1][0]

20

•The corresponding tree

40 30

10 90 70

[1]

[2] [3]

[4] [5] [6]

Heaps ole' heaps 15

James Tam

Method 2 For Building A Heap: Reheap Related To
Element [3]

•The information is read into an array

309010704020

[6][5][4][3][2][1][0]

20

•The corresponding tree

40 70

10 90 30

[1]

[2] [3]

[4] [5] [6]

James Tam

Method 2 For Building A Heap: Examine Element
[2]

•The information is read into an array

309010704020

[6][5][4][3][2][1][0]

20

•The corresponding tree

40 70

10 90 30

[1]

[2] [3]

[4] [5] [6]

Heaps ole' heaps 16

James Tam

Method 2 For Building A Heap: Reheap Related To
Element [2]

•The information is read into an array

304010709020

[6][5][4][3][2][1][0]

20

•The corresponding tree

90 70

10 40 30

[1]

[2] [3]

[4] [5] [6]

James Tam

Method 2 For Building A Heap: Examine Element
[1]

•The information is read into an array

304010709020

[6][5][4][3][2][1][0]

20

•The corresponding tree

90 70

10 40 30

[1]

[2] [3]

[4] [5] [6]

Heaps ole' heaps 17

James Tam

Method 2 For Building A Heap: First Reheap
Related To Element [1]

•The information is read into an array

304010702090

[6][5][4][3][2][1][0]

90

•The corresponding tree

20 70

10 40 30

[1]

[2] [3]

[4] [5] [6]

James Tam

Method 2 For Building A Heap: Second Reheap
Related To Element [1]

•The information is read into an array

302010704090

[6][5][4][3][2][1][0]

90

•The corresponding tree

40 70

10 20 30

[1]

[2] [3]

[4] [5] [6]

Heaps ole' heaps 18

James Tam

Determining The First Non-Leaf Element

•└noNodes/2 ┘ is first non-leaf node

•└1/2 ┘= 0 : No non-leaf nodes exist

90
[1]

James Tam

Determining The First Non-Leaf Element (2)

•└noNodes/2 ┘ is first non-leaf node

•└2/2 ┘= 1

90

40

[1]

[2]

Heaps ole' heaps 19

James Tam

Determining The First Non-Leaf Element (3)

•└noNodes/2 ┘ is first non-leaf node

•└3/2 ┘= 1

90

40 70

[1]

[2] [3]

James Tam

Determining The First Non-Leaf Element (4)

•└noNodes/2 ┘ is first non-leaf node

•└4/2 ┘= 2

90

40 70

10

[1]

[2] [3]

[4]

Heaps ole' heaps 20

James Tam

Determining The First Non-Leaf Element (5)

•└noNodes/2 ┘ is first non-leaf node

•└5/2 ┘= 2

90

40 70

10 20

[1]

[2] [3]

[4] [5]

James Tam

Determining The First Non-Leaf Element (6)

•└noNodes/2 ┘ is first non-leaf node

•└6/2 ┘= 3

90

40 70

10 20 30

[1]

[2] [3]

[4] [5] [6]

Heaps ole' heaps 21

James Tam

Priority Queue

•Review: Regular queues (FIFO)
- Elements are de-queued according their order of arrival

•Priority queue:
- Elements are removed according to their priority level.

Front: Exit
queue

Back: Enter
queue

1 1 1 2 3

James Tam

Priority Queue

•Review: Regular queues (FIFO)
- Elements are de-queued according their order of arrival

•Priority queue:
- Elements are removed according to their priority level.

Front: Exit
queue

Back: Enter
queue

1 1 1 2
3

Heaps ole' heaps 22

James Tam

Priority Queue: ADT

Priority
Queue

Linked
List

Tree Heap

James Tam

Linked List Implementations Of A Priority Queue

•Sorted1
- Insertion: O(n)
- Remove: O(1)

•Unsorted
- Insertion: O(1)
- Remove: O(n)

111234

141312

1 Sorted in this case refers to maintaining the list in order but it is done by in-order insertions rather than applying a
sorting algorithm.

Heaps ole' heaps 23

James Tam

Binary Search Tree Implementation Of A Priority
Queue

10

4 16

2

3

12

18

24

James Tam

Binary Search Tree Implementation Of A Priority
Queue: Remove Largest Element

10

4 16

2

3

12

18

24

Heaps ole' heaps 24

James Tam

Efficiency Of The Binary Search
Tree Implementation Of A Priority Queue

Worse CaseAverage
caseOperation

O (n)O (log2n)Deletion

O (n)O (log2n)Insertion

The worse case is always a possibility unless a self-balancing tree implementation
(e.g., AVL tree) is employed

1

James Tam

Heap Implementation Of A Priority Queue

•Example: A Maxheap implementation

10

9 6

23 5

Heaps ole' heaps 25

James Tam

Heap Implementation: Insertions

10

9 6

23 5

Best case: O(1)

Worse case: O(log2N)

James Tam

Heap Implementation: Deletions

6

10

9

23 5

If the priority queue removes
the largest numbers first then
the top element would have to
be deleted

Heaps ole' heaps 26

James Tam

Heap Implementation: Deletions (2)

•Move the last element to the top of the heap

6

10

9

23 5

James Tam

Heap Implementation: Deletions (3)

•Move the last element to the top of the heap

6

5

9

23

Heaps ole' heaps 27

James Tam

Heap Implementation: Deletions (4)

•The element at the top “trickles down” to it’s proper location in
the tree via a swap or series of swaps.

6

9

5

23

James Tam

Efficiency Of Deletions From a Heap

•Trickling down the top element to it’s proper place:
- When the element must be moved the height of the tree: O(log2N)

Heaps ole' heaps 28

James Tam

You Should Now Know

•What is a heap / complete tree?

•The difference between the categories of heaps:
- Min vs. max heaps.
- Binary and ternary heaps.

•What types of data structures can be used to implement heaps?

•How to build a heap using two different approaches.

•The different ways in which a priority queue can be
implemented and the efficiency of each approach?

James Tam

Sources Of Lecture Material

•“Data Abstraction and Problem Solving With Java: Walls and
Mirrors” updated edition by Frank M. Carrano and Janet J.
Prichard

•From “Data Structures and Abstractions with Java” by Frank
M. Carrano and Walter Savitch.

•“Introduction to Algorithms” by Thomas M. Cormen, Charles E.
Leiserson and Ronald L. Rivest.

•Course notes by Claudio T. Silva
http://www.cs.utah.edu/classes/cs3510-csilva/lectures/

•CPSC 331 course notes by Ken Loose
http://pages.cpsc.ucalgary.ca/~marina/331/

