
Introduction to hashing 1

James Tam

Introduction To Hashing

•In this section of notes you will learn an
approach for organizing information that
allows for searches in constant time

James Tam

Searching For Information: Algorithms You Know

•Linear search:
- Best case efficiency: O(1)
- Worse case efficiency: O(N)
- Average case efficiency: O(N)
- Works on sorted or unsorted data

•Binary search:
- Efficiency (all cases): O (log2N)
- Requires that the data is already sorted

•Interpolation search:
- Best case efficiency: O(1)
- Worse case efficiency: O(N)
- Average case efficiency: ~O(log2(log2n))
- Requires that the data is already sorted
- Works most efficiently when the data is uniformly distributed

Introduction to hashing 2

James Tam

Searching For Information: When Speed Is
Essential

:

Mr. Winston
Zeddemore

[7]

Mr. Walter
Peck

[6]

Ms. Dana
Barrett

[5]

Mr. Louis Tully[4]

Dr. Egon
Spengler

[3]

Ms. Janine
Melnitz

[2]

Dr. Raymond
Stantz

[1]

Dr. Peter
Venkman

[0]

Map 555-5555 to a list element

Report an emergency from 555-5555

Ghostbusters © Columbia Tri-Star

James Tam

Storing/Searching For Information: Terminology

Mr. Walter
Peck

[6]

Ms. Dana
Barrett

[5]

Mr. Louis
Tully

[4]

Dr. Egon
Spengler

[3]

Ms. Janine
Melnitz

[2]

Dr. Raymond
Stantz

[1]

Dr. Peter
Venkman

[0]

Hash table

555-5555

Key

Hash function

Introduction to hashing 3

James Tam

Hashing Is The Mapping Of Keys To Positions In A
Table: Storing Or Searching

222-2222

210-9455

123-4567

888-8888

220-3532 666-6666

[6]

[5]

Mr. Louis
Tully

[4]

Dr. Egon
Spengler

[3]

[2]

Dr. Raymond
Stantz

[1]

Dr. Peter
Venkman

[0]

James Tam

An Example Of How Hashing Can Be Done:
Take One

: : ::

Mr. Winston
Zeddemore

[5555560]

Mr. Walter Peck [5555559]

Ms. Dana Barrett[5555558]

Mr. Louis Tully[5555557]

Dr. Egon Spengler [5555556]

Ms. Janine
Melnitz

[5555555]

Dr. Raymond Stantz [5555554]

: : ::

Key = 555-5555

Perfect hash function: Each key
(e.g., phone number) maps to a
unique list entry (7 digit value)

O(1) search times but yields many
empty elements

Key = 555-5554

Key = 555-5556

: : :

Introduction to hashing 4

James Tam

An Example Of How Hashing Can Be Done:
Take Two

: : ::

Mr. Winston
Zeddemore

[5560]

Mr. Walter Peck [5559]

Ms. Dana Barrett[5558]

Mr. Louis Tully[5557]

Dr. Egon Spengler [5556]

Ms. Janine
Melnitz

[5555]

Dr. Raymond Stantz [5554]

: : ::

In reality, even if the number of
keys = number of array elements,
multiple keys may be mapped to
the same list element

Hash
function

Key =
555-5555

Key =

210-9455

James Tam

Collision At 5555

: : ::

Mr. Winston
Zeddemore

[5560]

Mr. Walter Peck [5559]

Ms. Dana Barrett[5558]

Mr. Louis Tully[5557]

Dr. Egon Spengler [5556]

Ms. Janine
Melnitz

[5555]

Dr. Raymond Stantz [5554]

: : ::

In reality, even if the number of
keys = number of array elements,
multiple keys may be mapped to
the same list element

Hash
function

Key =
555-5555

Key =

210-9455

Introduction to hashing 5

James Tam

Perfect Hash Functions

• Ideal case: Every key maps to a unique location in the hash
table.

• Typically not possible because:
1. All of the keys are not known in advance

− e.g., flight numbers mapping to actual flights
2. Only a small percentage of the possible key combinations are used.

− e.g., a company with 500 employees would not create a hash table
mapped to the 1 billion combinations of SIN numbers

James Tam

Example Hash Functions

1. Selecting digits

2. Folding

3. Modular arithmetic

4. Converting characters to integers

Introduction to hashing 6

James Tam

1. Example Hash Function: Selecting Digits

•Select a portion of the key to use as the index into the hash table

•Works only for keys that are positive integers.

•Example

403-210-9455
Hash function:
Select the even
position digits
starting with the
4th digit

:

[2049]

[2048]

[2047]

[2046]

[2045]

:

James Tam

1. Example Hash Function: Selecting Digits (2)

•The mapping of a key to an index is quick.

•It usually does not evenly distribute items through the hash table
(may lead to many collisions or clustering around certain parts of
the has table).

Introduction to hashing 7

James Tam

2. Example Hash Function: Folding

•An improvement of the previous method because the entire
number is used (folded into the index)

•Example one:

403-210-9455 Hash function:
Sum all the
digits to get the
index 33

:

[37]

[36]

[35]

[34]

[33]

:

James Tam

2. Example Hash Function: Folding (2)

•Analysis of the example:
- Range of possible keys is limited:

:
9

1
0

1 digit
key

Index from
0 - 9

:
99

11
00

2 digit
key

Index from
0 - 18

:
999

001
000

3digit
key

Index from
0 - 27

Introduction to hashing 8

James Tam

2. Example Hash Function: Folding (3)

•To increase the size of the hash table (and increase the range of
possible values generated by the hash function) groups of
numbers can be added instead of individual numbers.

•Example two:

403-210-9455
Hash function:
Key of
4032109455
maps to an
index of 6001

:

[603]

[602]

[601]

[600]

:

1: 4 + 032 + 109 + 455 = 600

James Tam

2. Example Hash Function: Folding (4)

•Other examples of hashing algorithms that employ folding could
combine selecting certain digits to be “folded” into a key e.g.,
sum only the odd positioned digits.

•Other mathematical/bitwise operations could be employed e.g.,
multiplying digits together, bit shifting or bit rotating the
numerical values.

•The quality of the hash function using folding will vary.

Introduction to hashing 9

James Tam

3. Example Hash Function: Modular arithmetic

•The index = (key) modulo (table size)

•Example:

1250 Hash function:
1250 modulo
100 = 50

[99]

:

[51]

[50]

:

[0]

James Tam

3. Example Hash Function: Modular arithmetic (2)

•The index = (key) modulo (table size)
- In Java the modulo operator is “%”.

•To ensure an even distribution of keys to the different parts of
the table, the table size should be prime number (e.g., 101)

Introduction to hashing 10

James Tam

4. Example Hash Function: Converting Characters
To Integers

• If the search key is a string of characters, computing the index
could be a two step process:

1. Convert the characters to an integer value e.g., Unicode

2. Apply one of the previous hash functions to the integer values

• Note: To avoid having anagrams (e.g., “NOTE” and “TONE”)
yielding the same integer value concatenate rather than add
the results.

- TONE: 84 79 78 69 = 84797869
- NOTE: 78 79 84 69 = 78798469

‘T’ ‘O’ ‘N’ ‘E’
84 79 78 69

Character key:
Integer value:

James Tam

Characteristics Of A Good Hash Function

1. It should be as uncomplicated as possible and fast to compute
e.g., a single mathematical or bitwise operation.

2. It should scatter the data evenly throughout the hash table –
collisions are unavoidable except for the case of perfect
hashing but they should be minimized.
a) The calculation of the index should involve the entire search key.
b) If the hash function uses modulo arithmetic then the base should be

prime
• e.g., index = key MODULO <base>

Introduction to hashing 11

James Tam

Collision Resolution Techniques

1. Closed hashing/Open addressing
a) Linear probing
b) Quadratic probing
c) Double hashing using key dependent increments
d) Increasing the size of the hash table: rehashing

2. Restructuring the hash table: Open hashing/closed addressing
a) Buckets
b) Separate (external) chaining

James Tam

Closed Hashing / Open Addressing

•When collisions occur, find a new table entry to make the
insertion.

•Each table entry can only store one key.

KeyIndex

Collision

Closed hashing:
Can’t look outside
the table for new
places to insert
hashed keys.

Introduction to hashing 12

James Tam

Closed Hashing / Open Addressing

•When collisions occur, find a new table entry to make the
insertion.

•Each table entry can only store one key.

KeyIndex

Collision

Open addressing:
When a collision
occurs, the other
addresses in the
table are “opened
up” as possible
locations to hash
to.

[1]

[2]

[3]

James Tam

Open Hashing / Closed Addressing

•When a collision occurs, accommodate the addition key by
adding additional keys at the same location in the table.

•Each table entry can only store multiple keys.

KeyIndex

Collision

Open up a table element
when hashing: Multiple
keys can be hashed and
stored here

Introduction to hashing 13

James Tam

Open Hashing / Closed Addressing

•When a collision occurs, accommodate the addition key by
adding additional keys at the same location in the table.

•Each table entry can only store multiple keys.

KeyIndex

Collision

Closed addressing: The
remaining addresses are
“closed” off when collisions
occur.

James Tam

1. Closed Hashing / Opening Addressing

•When an attempt to insert a new element into hash table hashes
to an element that has already been occupied (collision), find a
new location within the table to insert the element.

222-2222

210-9455

123-4567

888-8888

220-3532 666-6666

[5]

Mr. Louis Tully[4]

Dr. Egon
Spengler

[3]

[2]

Dr. Raymond
Stantz

[1]

[0]

<Next choice?>

<Next choice?>

<Next choice?>

Introduction to hashing 14

James Tam

1A) Linear Probing

•When a collision occurs, sequentially search the table until an
empty location is found.

222-2222
210-9455

123-4567

888-8888
220-3532

666-6666

[5]

Mr. Louis Tully[4]

Dr. Egon
Spengler

[3]

[2]

Dr. Raymond
Stantz

[1]

[0]

Collision

James Tam

1A) Linear Probing

•When a collision occurs, sequentially search the table until an
empty location is found.

222-2222
210-9455

123-4567

888-8888
220-3532

666-6666

Mr. Louis Tully[4]

Dr. Egon
Spengler

[3]

Dr. Raymond
Stantz

[1]

[0]

Collision

Okay

Introduction to hashing 15

James Tam

1A) Linear Probing

•When a collision occurs, sequentially search the table until an
empty location is found.

222-2222
210-9455

123-4567

888-8888
220-3532

666-6666

James Tam[5]

Mr. Louis Tully[4]

Dr. Egon
Spengler

[3]

Dr. Raymond
Stantz

[1]

[0]

Collision

Okay

James Tam

1A) Linear Probing: End Of The Table

•The table is treated as circular: When the end of the table has
been probed, begin probing at the beginning.

•New position = (current position + 1) modulo <table size>

222-2222
210-9455

123-4567

888-8888
220-3532

666-6666

James Tam[5]

Mr. Louis Tully[4]

Dr. Egon
Spengler

[3]

Dr. Raymond
Stantz

[1]

[0]

Introduction to hashing 16

James Tam

1A) Linear Probing

•Strength: As long as there is an unused location in the table, this
approach will always be able to find it (eventually).

James Tam

1A) Linear Probing

•Weakness: Table entries tend to cluster around parts of the table
leaving some continuous sections that are occupied and others
that are empty (uneven distribution)

123-4567

[9]
[8]

6666667[7]
6666666[6]

[5]
[4]
[3]

8888888[2]
2222222[1]
1234567[0]

222-2222
888-8888

666-6666
666-6667

Primary
cluster

Primary
cluster

Introduction to hashing 17

James Tam

1B) Quadratic Probing

•Uses a collision resolution technique to avoid the problem of
primary clustering found with linear probes.
- General formula for the index = hashed key + n2

- First attempt: index = hashed key
- Second attempt: index = (hashed key + 12) modulo <table size> = H.K. + 1
- Third attempt: index = (hashed key + 22) modulo <table size> = H.K. + 4
- Fourth attempt: index = (hashed key + 32) modulo <table size> = H.K. + 9
- : : : : :

Where n is the number of attempts to find a new unoccupied entry in the hash table and it is assumed
that the table indexes from 0 – (size – 1)

k+32k+22k+1k

[12][11][10][9][8][7][6][5][4][3][2][1][0]

First
attempt

Second
attempt

Third
attempt

Fourth
attempt

James Tam

1B) Quadratic Probing (2)

•Secondary clustering may occur: The initial collision requires a
recalculation of a new table entry. (Severity of the problem has
not been fully explored – worse case is overflow – no entry
found).
123-4567

2103532[9]
[8]
[7]

2109455[6]
[5]

8888888[4]
[3]
[2]

2222222[1]
1234567[0]

222-2222
888-8888
210-3532
210-9495

Introduction to hashing 18

James Tam

1C) Double Hashing Using Key Dependent
Increments

•The previous two approaches for collision resolution are key-
independent: finding a new table entry is not effected by the
value of the key.

•Double hashing: When the result of the hash function results in
a collision, a second hash function is used.

•Key dependent: The value of the key is used to determine the
increment for the second hash function.

•With double hashing:
- Make sure that that increment for the second hash function never yields
zero.

- Do not use the same hash function the second time around <gee no
kidding...>

James Tam

1C) Double Hashing Using Key Dependent
Increments

•Example: Last digit of key is the increment (key modulo 10)

123-4567

[9]
[8]
[7]
[6]
[5]
[4]
[3]
[2]
[1]

1234567[0]
222-2222
888-8888
210-3532

2 steps

8 steps

2222222

2 steps

2 steps

2103532

8888888

Introduction to hashing 19

James Tam

1C) Double Hashing Using Key Dependent
Increments

• Having a different increment may reduce the overflow
problems found with quadratic probing and usually results in
less clustering than with linear probing.

James Tam

1D) Increasing The Size Of Table: Rehashing

•As the hash table gets fuller, the probability of a collision
increases.

•Whenever the table reaches some predetermined percentage
utilization the size of the table can be increased.

•The array should not be doubled (because the size of the table
should be a prime number).

•Also existing elements cannot simply be copied to the new
table.

Introduction to hashing 20

James Tam

1D) Increasing The Size Of The Table (2)

•Example: index = key modulo <table size>

[4]
Key = 3[3]
Key = 2[2]
Key = 1[1]
Key = 5[0]

Increase table size

[9]
[8]

[5]
[4]

[7]
[6]

[10]

Key = 3[3]
Key = 2[2]
Key = 1[1]
Key = 5[0]

James Tam

1D) Increasing The Size Of The Table (2)

•Example: index = key modulo <table size>

[4]
Key = 3[3]
Key = 2[2]
Key = 1[1]
Key = 5[0]

Increase table size

[9]
[8]

[5]
[4]

[7]
[6]

[10]

Key = 3[3]
Key = 2[2]
Key = 1[1]
Key = 5[0]

This key is
in the wrong
location

Introduction to hashing 21

James Tam

1D) Increasing The Size Of The Table (2)

•Example: index = key modulo <table size>

[4]
Key = 3[3]
Key = 2[2]
Key = 1[1]
Key = 5[0]

Increase table size

[9]
[8]

Key = 5[5]
[4]

[7]
[6]

[10]

Key = 3[3]
Key = 2[2]
Key = 1[1]

[0]

The key
should be
here

James Tam

1D) Increasing The Size Of The Table (3)

• When the table size is increased take care that:
1. The size of the table is still prime
2. That all previous entries are rehashed to new locations based on the

new table size – slow but necessary.

Introduction to hashing 22

James Tam

1) Closed Hashing: Deletions

•Deletion of entry [4] can be problematic

123-4567

888-8888

666-6666

James Tam[5]

Mr. Louis Tully[4]

Dr. Egon
Spengler

[3]

[2]

[1]

[0]

James Tam

1) Closed Hashing: Deletions (2)

•Searching the table for 123-4567 will hash to index [3]

123-4567

888-8888

James Tam[5]

[4]

Dr. Egon
Spengler

[3]

[2]

[1]

[0]

Introduction to hashing 23

James Tam

1) Closed Hashing: Deletions (3)

•Linear probing means that the next entry will be searched

123-4567

888-8888

James Tam[5]

[4]

Dr. Egon
Spengler

[3]

[2]

[1]

[0]

James Tam

1) Closed Hashing: Deletions (4)

•If entry [4] is treated as empty then the search will show as
unsuccessful.

123-4567

888-8888

James Tam[5]

[4]

Dr. Egon
Spengler

[3]

[2]

[1]

[0]

Introduction to hashing 24

James Tam

1) Closed Hashing: Deletions (5)

•Consequence: There must be three kinds of locations in the hash
table: Occupied, empty, available (entry was deleted from the
table)

123-4567

888-8888

James Tam[5]

[4]

Dr. Egon
Spengler

[3]

[2]

[1]

[0]
E

E

O

O

E

A

James Tam

1) Closed Hashing: Deletions (6)

•Searches:
- The search algorithm will continue if an available table entry is
encountered and will only stop if:

A successful match is found
An empty location is found

•Insertions:
- The insertion will occur if the table entry is either empty or available
(when a new entry is placed at an available location then the status changes
from available to occupied).

•Because of the additional complexity arising from deletions
from a hash table when closed hashing is used, table entries will
not be deleted.

Introduction to hashing 25

James Tam

2. Restructuring the hash table

•Change the structure of the hash table so that when collisions
occur, each location in the hash table can accommodate multiple
keys.

123-4567

[9]
[8]
[7]
[6]
[5]
[4]
[3]
[2]
[1]
[0]

222-2222

888-8888
210-3532

Multiple keys can be hashed here

James Tam

2A) Implementing Each Table Entry As A “Bucket”

•Each hash table entry is a 1D array

[3]
[2]
[1]
[0]AB

PQ

MN
NB

[3][2][1][0]

[3][2][1][0]

[3][2][1][0]

[3][2][1][0]

AB PQ

MN NB

Introduction to hashing 26

James Tam

2A) Implementing Each Table Entry As A
Bucket (2)

• Issue: How to choose the optimal sized bucket:
1. Too small: The problem with collisions has only be postponed.
2. Too large: Memory is wasted.

• Consequence: Implementing table entries as buckets is seldom
done in actual practice.

James Tam

2B) Separate (External) Chaining

•Each table entry is a reference to a linked list.

[3]
[2]
[1]
[0]AB

PQ

MN
NB

AB

MN

PQ

NB

Introduction to hashing 27

James Tam

Contrasting Closed Vs. Open Hashing

•May be slower in
practice because of the
dynamic memory
allocations

•More complex: needs
another data structure

•Requires a larger hash
table (percentage
utilization of the table
should be lower than
with open hashing)

Weaknesses

•May require less
memory (smaller hash
table)

•Fewer compares

•May be faster in
practice because the
table doesn’t change in
size

Strengths

•Resolve collisions by
inserting additional
elements at the same
location in the hash table

•Resolve collisions by
finding another place in
the hash table

Description

Open hashing:
separate chaining)

Closed hashing
(open addressing)

James Tam

Load Factor

•Describes the utilization of the hash table.

•ά = (Current no. of occupied table elements) / (Table size)
• Closed hashing: 0.0 <= ά <= 1.0

•With open addressing, with external/separate chaining the load factor can
be greater than one):

[2]
[1]
[0] AB PQ

NS BC

MN NB

[3]
Key = 2[2]
Key = 1[1]
Key = 5[0]ά = .75

ά = 2

Introduction to hashing 28

James Tam

Guidelines For Load Factors

•Closed hashing:
- Resolve collisions by finding another place in the table to insert to e.g.,
linear probing, quadratic probing.

- Generally the load factor should be kept below 0.5 – 0.67 (depending upon
the hashing algorithm)

•Open hashing:
- Resolve collisions by allowing more than one element to be inserted at a
particular location in the hash table e.g., making table elements buckets,
making table elements linked lists.

- Generally the load factor should be kept around 1.0.

James Tam

The Time Efficiency Of A Has Function Is
Dependent On The Load Factor

• As the load factor increases, the number of
comparisons/probes increases:

ά
ά

__
2

Separate/external
chaining

1

(1- ά)

-loge(1 – ά)

ά

Quadratic
probing/double
hashing

1

(1- ά)2

1

(1- ά)

Linear probing

Unsuccessful
search

Successful
search

Number of probes/compares

1 +
1_
2 * 1 +

1_
2 *

1 +

Introduction to hashing 29

James Tam

Number Of Comparisons/Probes: Successful Search

Utilization of hash table (ά)

321.51.451.371.251.13Separate
chaining

NANANA2.561.851.331.15Quadratic
probe

NANANA5.52.51.51.17Linear
probe

4.02.01.00.90.750.50.25

James Tam

Number Of Comparisons/Probes:
Successful Search (2)

No. of probes (successful search)

0

1

2

3

4

5

6

0.25 0.5 0.75 0.9

Load factor

No
. o

f c
om

pa
re

s

Linear probe
Quadratic probe
Separate chaining

Introduction to hashing 30

James Tam

Number Of Comparisons/Probes:
Unsuccessful Search

Utilization of hash table (ά)

4.02.01.00.90.750.50.25Separate
chaining

NANANA10421.33Quadratic
probe

NANANA50.58.52.51.39Linear
probe

4.02.01.00.90.750.50.25

James Tam

Number Of Comparisons/Probes:
Unsuccessful Search (2)

No. of probes (unsuccessful search)

0

10

20

30

40

50

60

0.25 0.5 0.75 0.9

Load factor

N
o.

 o
f c

om
pa

rs

Linear probe
Quadratic probe
Separate chaining

Introduction to hashing 31

James Tam

You Should Now Know

•Basic hashing terminology.

•What are some common types of hash functions as well
methods for determining the strengths/weaknesses of a
particular function?

•What are common approaches for collision resolution:
- Closed hashing/open addressing techniques: linear and quadratic probing,
double hashing with key dependent increments, increasing the table size
and rehashing keys.

- Open hashing/closed addressing.

•What are the strengths/weaknesses of each approach to collision
resolution?

James Tam

Sources Of Lecture Material

•“Data Abstraction and Problem Solving With Java: Walls and
Mirrors” updated edition by Frank M. Carrano and Janet J.
Prichard

•“Data Structures and Abstractions With Java” by Frank M.
Carrano and Walter Savitch

•“Introduction to Algorithms” by Thomas M. Cormen, Charles E.
Leiserson and Ronald L. Rivest

•CPSC 331 course notes by Marina L. Gavrilova
http://pages.cpsc.ucalgary.ca/~marina/331/

