
Graphs: Minimum spanning trees, topological sorts 1

James Tam

Minimum Spanning Trees

•In this section of notes you will learn two
algorithms for creating a connected graph
at minimum cost as well as a method for
ordering a graph

James Tam

Minimum Spanning Trees

•Applies to weighted, undirected and connected graph

•Create the minimum number of edges/arcs so that all
nodes/vertices are connected

Graphs: Minimum spanning trees, topological sorts 2

James Tam

Example Of A Problem Dealing With Minimum
Spanning Trees

James Tam

Example Of A Problem Dealing With Minimum
Spanning Trees

Graphs: Minimum spanning trees, topological sorts 3

James Tam

Example Of A Problem Dealing With Minimum
Spanning Trees

$$$

James Tam

Example Of A Problem Dealing With Minimum
Spanning Trees

Graphs: Minimum spanning trees, topological sorts 4

James Tam

Algorithms For Determining The Minimum
Spanning Tree

•Prim’s Algorithm

•Kruskal’s Algorithm

James Tam

Prim’s Algorithm

primsAlgorithm (Graph g, Tree t, Node start)

{

PriorityQueue nodesLeft = new PriorityQueue();

Node temp;

Node neighbor;

for (int i = 1; i <= g.noNodes (); i++)

{

g[i].setWeight = ∞;

g[i].setParent (null);

nodesLeft.add (g[i]);

}

start.setWeight (0);

Pseudo code is based roughly on the algorithm provided by Matthew A. Becker
http://www.andrew.cmu.edu/user/mbecker/

Graphs: Minimum spanning trees, topological sorts 5

James Tam

Prim’s Algorithm (2)

while (nodesLeft.isEmpty() == false)

{

temp = nodesLeft.dequeueMinWeightNode ();

t.add (temp);

for each node “neighbor” which is adjacent to temp and is in nodesLeft

{

if (weight (temp, neighbor) < neighbor.getWeight())

{

neighbor.setParent (temp);

neighbor.setWeight (weight (temp, neighbor));

}

}

}

}
Pseudo code based roughly on the algorithm provided by Matthew A. Becker
http://www.andrew.cmu.edu/user/mbecker/

James Tam

Example: Finding The Minimum Spanning Tree In
A Graph (Prim’s Algorithm)

i

a b

c

d

e

f
g

h

4

6
7

9

3

8

2
5

4

1

2

Graphs: Minimum spanning trees, topological sorts 6

James Tam

Initialized Values For The Graph And Queue

i

a b

c

d

e

f
g

h

4

6
7

9

3

82 5

4

1

2

Graph

Queue

Predecessor
Node
Weight

000000000
IHGFEDCBA
∞∞∞∞∞∞∞∞0

Tree

James Tam

Mark “A” As Visited, Update Neighbors

i

a b

c

d

e

f
g

h

4

6
7

9

3

82 5

4

1

2

Queue

Predecessor
Node
Weight

A00A000A0
IHGFEDCBA
2∞∞4∞∞∞60

Tree

a

Graph

Graphs: Minimum spanning trees, topological sorts 7

James Tam

Mark Node “I” As Visited And Include
The Edge (A,I)

i

a b

c

d

e

f
g

h

4

6
7

9

3

82 5

4

1

2

Queue

Predecessor
Node
Weight

A00A000A0
IHGFEDCBA
2∞∞4∞∞∞60

Tree

a

i

Graph

James Tam

Mark Node “F” As Visisted And Include
The Edge (A,F)

i

a b

c

d

e

f
g

h

4

6
7

9

3

82 5

4

1

2

Queue

Predecessor
Node
Weight

A0FA000A0
IHGFEDCBA
2∞24∞∞∞60

Tree

a

i

f

Graph

Graphs: Minimum spanning trees, topological sorts 8

James Tam

Mark Node “G” As Visisted And Include
The Edge (F,G)

i

a b

c

d

e

f
g

h

4

6
7

9

3

82 5

4

1

2

Queue

Predecessor
Node
Weight

A0FAGG0A0
IHGFEDCBA
2∞2485∞60

Tree

a

i

f
g

Graph

James Tam

Mark Node “D” As Visisted And Include
The Edge (D,G)

i

a b

c

d

e

f
g

h

4

6
7

9

3

82 5

4

1

2

Queue

Predecessor
Node
Weight

ADFAGGDA0
IHGFEDCBA
212485460

Tree

a

i

f
g

d

Graph

Graphs: Minimum spanning trees, topological sorts 9

James Tam

Mark Node “H” As Visisted And Include
The Edge (D,H)

i

a b

c

d

e

f
g

h

4

6
7

9

3

82 5

4

1

2

Queue

Predecessor
Node
Weight

ADFAGGDA0
IHGFEDCBA
212485460

Tree

a

i

f
g

d h

Graph

James Tam

Mark Node “C” As Visisted And Include
The Edge (C,D)

i

a b

c

d

e

f
g

h

4

6
7

9

3

82 5

4

1

2

Queue

Predecessor
Node
Weight

ADFACGDA0
IHGFEDCBA
212435460

Tree

a

i

f
g

d h

c
Graph

Graphs: Minimum spanning trees, topological sorts 10

James Tam

Mark Node “E” As Visisted And Include
The Edge (C,E)

i

a b

c

d

e

f
g

h

4

6
7

9

3

2 5

4

1

2

Queue

Predecessor
Node
Weight

ADFACGDA0
IHGFEDCBA
212435460

Tree

a

i

f
g

d h

c

e

Graph

James Tam

Mark Node “B” As Visited And Include
The Edge (A,B)

i

a b

c

d

e

f
g

h

4

6

3

2 5

4

1

2

Tree

a

i

Queue

Predecessor
Node
Weight

ADFACGDA0
IHGFEDCBA
212435460

f
g

d h

c

e

b

Graph

Graphs: Minimum spanning trees, topological sorts 11

James Tam

Kruskal’s Algorithm: Description

•Start out with a “forest” of unconnected trees (“extract” the
nodes from the graph)

Node

Node Node

Node

Becomes

James Tam

Kruskal’s Algorithm: Description

•Make the connections between the separate trees (add edges)
which have the lowest cost.

•Connecting two separate nodes (two separate trees) merges
them into one tree

Graphs: Minimum spanning trees, topological sorts 12

James Tam

Kruskal’s Algorithm

public Set kruskal (Graph g)
{

Set combinedSet = new Set ();
int edgesAccepted = 0;
PriorityQueue edgesLeft = g.sortEdges ();
Edge usedEdge;
Node sourceNode;
Node destinationNode;

James Tam

Kruskal’s Algorithm (2)

while (edgesAccepted < (g.getNumberNodes() - 1))
{

usedEdge = edgesLeft.dequeueMin ();
sourceNode = usedEdge.getSourceNode ();
destinationNode = usedEdge.getDestinationNode ();
if ((sourceNode != destinationNode) &&

(notCycle(sourceNode,destinationNode,combinedSet) == true)
{

edgesAccepted++;
combinedSet.union (sourceNode, destinationNode);

}
}
return combinedSet;

}

Graphs: Minimum spanning trees, topological sorts 13

James Tam

Example Trace Of Kruskal’s Algorithm:
Original Graph

C

A

D

G

B

F

E

4

2

1
10

22

3

5 8 4 6

1

James Tam

Example Trace Of Kruskal’s Algorithm:
Sorted Edges In Priority Queue

Priority queue

B – E: Weight = 10
D – F: Weight = 8
E – G: Weight = 6
C – F: Weight = 5
D - G: Weight = 4
A - C: Weight = 4
B - D: Weight = 3
D - E: Weight = 2
C - D: Weight = 2
A - B: Weight = 2
F - G: Weight = 1
A - D: Weight = 1

C

A

D

G

B

F

E

4

2

1
10

22

3

5 8 4 6

1

Graphs: Minimum spanning trees, topological sorts 14

James Tam

Example Trace Of Kruskal’s Algorithm:
Forest Of Nodes

Priority queue

B – E: Weight = 10
D – F: Weight = 8
E – G: Weight = 6
C – F: Weight = 5
D - G: Weight = 4
A - C: Weight = 4
B - D: Weight = 3
D - E: Weight = 2
C - D: Weight = 2
A - B: Weight = 2
F - G: Weight = 1
A - D: Weight = 1

C

A

D

G

B

F

E

James Tam

Example Trace Of Kruskal’s Algorithm:
First Edge Added (A-D)

Priority queue

B – E: Weight = 10
D – F: Weight = 8
E – G: Weight = 6
C – F: Weight = 5
D - G: Weight = 4
A - C: Weight = 4
B - D: Weight = 3
D - E: Weight = 2
C - D: Weight = 2
A - B: Weight = 2
F - G: Weight = 1
A - D: Weight = 1

C

A

D

G

B

F

E

1

Graphs: Minimum spanning trees, topological sorts 15

James Tam

Example Trace Of Kruskal’s Algorithm:
Second Edge Added (F-G)

Priority queue

B – E: Weight = 10
D – F: Weight = 8
E – G: Weight = 6
C – F: Weight = 5
D - G: Weight = 4
A - C: Weight = 4
B - D: Weight = 3
D - E: Weight = 2
C - D: Weight = 2
A - B: Weight = 2
F - G: Weight = 1
A - D: Weight = 1

C

A

D

G

B

F

E

1

1

James Tam

Example Trace Of Kruskal’s Algorithm:
Third Edge Added (A-B)

Priority queue

B – E: Weight = 10
D – F: Weight = 8
E – G: Weight = 6
C – F: Weight = 5
D - G: Weight = 4
A - C: Weight = 4
B - D: Weight = 3
D - E: Weight = 2
C - D: Weight = 2
A - B: Weight = 2
F - G: Weight = 1
A - D: Weight = 1

C

A

D

G

B

F

E

1

1

2

Graphs: Minimum spanning trees, topological sorts 16

James Tam

Example Trace Of Kruskal’s Algorithm:
Fourth Edge Added (C-D)

Priority queue

B – E: Weight = 10
D – F: Weight = 8
E – G: Weight = 6
C – F: Weight = 5
D - G: Weight = 4
A - C: Weight = 4
B - D: Weight = 3
D - E: Weight = 2
C - D: Weight = 2
A - B: Weight = 2
F - G: Weight = 1
A - D: Weight = 1

C

A

D

G

B

F

E

1

1

2

2

James Tam

Example Trace Of Kruskal’s Algorithm:
Add Fifth Edge (D-E)

Priority queue

B – E: Weight = 10
D – F: Weight = 8
E – G: Weight = 6
C – F: Weight = 5
D - G: Weight = 4
A - C: Weight = 4
B - D: Weight = 3
D - E: Weight = 2
C - D: Weight = 2
A - B: Weight = 2
F - G: Weight = 1
A - D: Weight = 1

C

A

D

G

B

F

E

1

1

2

22

Graphs: Minimum spanning trees, topological sorts 17

James Tam

Example Trace Of Kruskal’s Algorithm:
Don’t Use Edge (B-D)

Priority queue

B – E: Weight = 10
D – F: Weight = 8
E – G: Weight = 6
C – F: Weight = 5
D - G: Weight = 4
A - C: Weight = 4
B - D: Weight = 3
D - E: Weight = 2
C - D: Weight = 2
A - B: Weight = 2
F - G: Weight = 1
A - D: Weight = 1

C

A

D

G

B

F

E

1

1

2

2

3

Skip
2

James Tam

Example Trace Of Kruskal’s Algorithm:
Don’t Use Edge (A-C)

Priority queue

B – E: Weight = 10
D – F: Weight = 8
E – G: Weight = 6
C – F: Weight = 5
D - G: Weight = 4
A - C: Weight = 4
B - D: Weight = 3
D - E: Weight = 2
C - D: Weight = 2
A - B: Weight = 2
F - G: Weight = 1
A - D: Weight = 1

C

A

D

G

B

F

E

1

1

2

2

3

Skip
2

Skip

4

Graphs: Minimum spanning trees, topological sorts 18

James Tam

Example Trace Of Kruskal’s Algorithm:
Sixth Edge Added (D-G)

Priority queue

B – E: Weight = 10
D – F: Weight = 8
E – G: Weight = 6
C – F: Weight = 5
D - G: Weight = 4
A - C: Weight = 4
B - D: Weight = 3
D - E: Weight = 2
C - D: Weight = 2
A - B: Weight = 2
F - G: Weight = 1
A - D: Weight = 1

C

A

D

G

B

F

E

1

1

2

2

3

Skip
2

Skip

4

4

James Tam

Example Trace Of Kruskal’s Algorithm: Stop,
Edges Accepted = No Nodes - 1

Priority queue

B – E: Weight = 10
D – F: Weight = 8
E – G: Weight = 6
C – F: Weight = 5
D - G: Weight = 4
A - C: Weight = 4
B - D: Weight = 3
D - E: Weight = 2
C - D: Weight = 2
A - B: Weight = 2
F - G: Weight = 1
A - D: Weight = 1

C

A

D

G

B

F

E

1

1

2

2

3

Skip
2

Skip

4

4

#1

#2

#3

#4

#5

#6

Graphs: Minimum spanning trees, topological sorts 19

James Tam

Example Trace Of Kruskal’s Algorithm:
The Final Tree

C

A

D

G

B

F

E

1

1

2

22

4

James Tam

Topological Sorting Of Graphs: Real Life Example!

•Used to order information that
could be represented as nodes in a
directed acyclic graph.

•If there’s a path from a node n1 to
another node n2, then n2 appears
after n1 in the ordering.

: :: :

SENG 311 or
CPSC 333

CPSC 331
CPSC 313CPSC 325

Second year

Math 253 or
Stat 211

Phil 279

Math 271Math 249 or
251

CPSC 265Math 221

CPSC 233CPSC 231 or
235

WinterFall
First year

Graphs: Minimum spanning trees, topological sorts 20

James Tam

Topological Sorting Of Graphs: Real Life Example

•Used to order information that could be represented in the form
of the nodes in a directed acyclic graph:

CPSC 231

CPSC 233

CPSC 235

CPSC 265 CPSC 325

CPSC 331 SENG 311

Many señor
courses

Many señor
courses

James Tam

Note: Topological Sorting Cannot Be Done With
Cyclical Graphs

•Sorry no vacancies today.1

CPSC 231 Admission into the
Department1

Computer Science 231 H(3-2T-1)
Introduction to Computer Science I
Problem solving and programming in a
structured language. Data representation,
program control, basic file handling, the use of
simple data structures and their
implementation. Pointers. Recursion.
Prerequisite: Admission into the Department
of Computer Science

Admission requirements into the
Department of Computer Science
A grade of C- or higher in CPSC 231

1 This example is purely fictional that was created to illustrate the principles of graph theory and should not be taken as
an official description of perquisite requirements for the Department of Computer Science

Graphs: Minimum spanning trees, topological sorts 21

James Tam

Algorithm For A Topological Sort

public List topogicalSort (Graph g)

{

int i;

int noNodes = g.getNumberNodes ();

List orderedNodes = new List ();

Node temp;

for (i = 0; i < noNodes; i++)

{

temp = g.getNextTopParent ();

orderedNodes.add (temp);

g.deleteNodeEdges (temp);

}

}

James Tam

Example Of A Topological Sort

C

A

D

G

B

F

E
0

1 1

3 2

3 2

Graph

List

Graphs: Minimum spanning trees, topological sorts 22

James Tam

Remove “C” And Edges From Graph And
Add To List

C

A

D

G

B

F

E
0

1 1

3 2

3 2

Graph

List

C

[6][5][4][3][2][1][0]

James Tam

Update The Numbers And Remove “A”

A

D

G

B

F

E

0 1

2 2

2 2

Graph

List

AC

[6][5][4][3][2][1][0]

Graphs: Minimum spanning trees, topological sorts 23

James Tam

Update The Numbers And Remove “B”

D

G

B

F

E

0

1 2

2 2

Graph

List

BAC

[6][5][4][3][2][1][0]

James Tam

Update The Numbers And Remove “D”

D

GF

E
0 1

2 2

Graph

List

DBAC

[6][5][4][3][2][1][0]

Graphs: Minimum spanning trees, topological sorts 24

James Tam

Update The Numbers And Remove “E”

GF

E

0

1 1

Graph

List

EDBAC

[6][5][4][3][2][1][0]

James Tam

Update The Numbers And Remove “G”

GF
1 0

Graph

List

GEDBAC

[6][5][4][3][2][1][0]

Graphs: Minimum spanning trees, topological sorts 25

James Tam

Update The Numbers And Remove “F”

F
0

Graph

List

FGEDBAC

[6][5][4][3][2][1][0]

James Tam

You Should Now Know

•What is a minimum spanning tree

•Two algorithms (Prim’s and Kruskal’s) for creating minimum
spanning trees

•What is a topological sort and the algorithm for this sort.

Graphs: Minimum spanning trees, topological sorts 26

James Tam

Sources Of Lecture Material

•“Data Abstraction and Problem Solving With Java: Walls and
Mirrors” updated edition by Frank M. Carrano and Janet J.
Prichard

•“Data Structures and Problem Solving Using C++ (2nd edition)”
by Mark Allan Weiss

•“Data Structures and Problem Solving Using Java (2nd edition)”
by Mark Allan Weiss

•Lecture notes by Matthew A. Becker
http://www.andrew.cmu.edu/user/mbecker/

•CPSC 331 course notes by Marina L. Gavrilova
http://pages.cpsc.ucalgary.ca/~marina/331/

