Introduction To Graphs

*In this section of notes you will learn
about a new ADT: graphs.

Graphs Are Related To Trees

Like a tree a graph consists of nodes (vertex) and arcs (edges)
that connect the nodes

*Unlike a tree there is no “up/down” direction (no parent-child
relation), there is no root node
Start?,

Start?

Start?

Lethbridge

Graph Terminology

*Adjacent nodes

*Cycle

*Acyclic graph

*Sub-graph
*Connected/disconnected graphs
*Complete graphs
*Directed/undirected graphs

*Weighted graphs

Adjacent Nodes

*Nodes are adjacent if they are connected
by an edge

Adjacent
pairs

(a,b)
(a,d)
(b,)
(c,d)
(d,e)

Cycle

*A path that begins and ends with the same node

Acyclic Graph

*Has no cycles

Sub-Graph

*A portion of a graph that is also a graph

James Tam

Connected Graphs

*You can go from any node to any other node by following the
edges

Note: It is not a
requirement for
connected graphs to
have edges from
every pair of nodes

James Tam

Disconnected Graphs

*Some nodes are unreachable because there is no edge that
connects them with the rest of the graph

O

Complete Graphs

*Every pair of nodes has an edge between them (every node is
directly connected to every other node)

Directed Graphs

*Traversal between nodes is not guaranteed to be symmetric

- E.g., map information that represents one way streets

James Tam

Undirected Graphs

*Each connection is symmetric (a connection in one direction
guarantees a connection in other direction)

James Tam

Weighted Graph

*Shows the cost of traversing an edge

*Costs of traveling between cities

- Distance in kilometers
- Travel time in hours
-Dollar cost of a taxi

- Etc.

150
Lethbridge

James Tam

Comparing Trees And Graphs Again

* A Tree is A More Specific Form Of Graph

* A typical! tree is a graph that has the following characteristics

1. TItis connected
2. Tthas no cycles!

3. There is an up/down direction (there is a parent-child relation between
nodes)

4. One node is treated as the top (the root node has no parent node)

Root

N\
NN

1 The type of tree that you were required to implement was somewhat rare James Tam

Graph Implementations

Graph ADT (general
concept)

. Data structure
Adjacency Adjacency list (specific)
matrix (Array) (Linked list)

Adjacency Matrix: Array Implementation

A B CD E F GH I

(—(E—(¥
Gﬂa

ADT: Graph

I @ M m o O W >»

Data structure: A 2D square array

*No rows = no columns
= no. of nodes in the graph

I @ m m o O W >»

A B CD E F GH

Possible Array Implementations

T

T

T

T

T

A 2D array of boolean values

I @G M m o O W >»

A B CDEF GH

1 111

1

1

A 2D array of integer values

James Tam

A Linked List Implementation Of A Graph

James Tam

The List Of Edges Must Be Dynamic!

ﬁ
[||

of []
N i .
o] [

" e
7 [o]

15ds

1 Some sort of resizable list is needed e.g., a linked list or an array that can change in size

An QOutline For A Node

class Node

~—

private dataType data;
private boolean visited;

Dynamic list of connections;

——

Graph Traversals

*Breadth first
*Depth first

Breadth-First Traversals

*Visit a node (N)

*Visit all of the nodes that node N refers to before following the
second level of references

1st @
First level of
2nd @ @ drd }references
Second level of
4th @ }references

Algorithm For Breadth-First Traversals

* In a fashion that is similar to breadth first traversals for trees, a
queue is employed to store all the nodes that are adjacent to the
node that is currently being visited.

breadthFirst (node)
{
Queue nodeList = new Queue ()
Node temp
Mark node as visited and display node

nodeList.enqueue(node)

James Tam

Algorithm For Breadth-First Traversals (2)

while (queue.isEmpty() == false)
{
temp = nodeList.dequeue ()

for (each unvisisted node uNode that is adjacent to temp)

{

Mark uNode as visited
display uNode

nodeList.enqueue(uNode)

James Tam

First Example Of A Breadth First Traversal

First level {
Second
level

_ Starting point

James Tam

Second Example Of A Breadth-First Traversal

Starting point

A ® ©

Q: What order do you get for a breadth-first traversal if
the starting point is node E?

James Tam

Depth-First Traversals

*Visit a node

*Completely follow the series of references for a chain of nodes
before visiting the second reference for that node

1st
s () (110

James Tam

Algorithm For Depth-First Traversals

* Typically recursion is used (requires backtracking and the use
of the system stack).

* If a loop is used then the programmer must create and manage
his or her own stack.

depthFirst (node)
{
Display node
Mark node as visited
for (each unvisited node (uNode) that is adjacent to node)

depthFirst (node)

James Tam

First Example Of A Depth First Traversal

_ Starting point

Second Example Of A Depth-First Traversal

Starting point
A\CijL @
CB) E (i H>

O—@ 0,

Q: What order do you get for a depth-first traversal if the
starting point is node E?

You Should Now Know

*What is a graph
*Common graph definitions

*What are the different ways in which graphs can be
implemented

*How do breadth-first and depth-first traversals work

Sources Of Lecture Material

* “Data Structures and Abstractions with Java” by Frank M.
Carrano and Walter Savitch

*“Data Abstraction and Problem Solving with Java: Walls and
Mirrors” by Frank M. Carrano and Janet J. Prichard

*CPSC 331 course notes by Marina L. Gavrilova
http://pages.cpsc.ucalgary.ca/~marina/331/

