

<u>Recall: The Efficiency Of Most Tree Operations Is</u> <u>**Dependent Upon The Height Of The Tree**</u>

Operation	Average case	Worse case
Search	$O(\log_2 n)$	<i>O</i> (n)
Insertion	$O(\log_2 n)$	<i>O</i> (n)
Deletion	$O(\log_2 n)$	<i>O</i> (n)

James Tam

Balancing Of Binary Search Trees Is Highly Dependent Upon The Order Of The Inputs

•Contrast the trees built with the following data:

- e.g. one, 20, 10, 30 - e.g. two, 10 20 30

A Quick Comparison Of The Algorithms

N	$T = Log_2N$	T = root(N)	
	(Height of Balanced tree)	(Height of tree after many operations)	
1	0	1	
2	1	1.41	
:	:	:	
32	5	5.66	
64	6	8	
1 million	20	1000	
1 minion			

One Approach: Self Balancing Trees

- •As insertions and deletions are performed a check is made to determine if the tree is still balanced:
 - If the tree is still balanced then nothing more needs to be done
 - If the tree is now unbalanced then rearrange the nodes to re-balance the tree
- •The type of self-balancing tree that will be covered are AVL trees (Adelson, Velskii & Landis)

•An imbalance occurs for node N if an insertion occurs in the left sub-tree of node N's right sub child

•Given that node "C" is the left child of N.

```
- Rotate left around child "C"
- Rotate right around the parent "N"
Pseudo-Code:
rotateLeftRight: (Node n)
{
    Node c = n.getLeft ()
    n.setLeft ( rotateLeft ( c) )
    rotateRight ( n )
}
```

Graphically Illustrating Left-Right Rotations (a) Before addition (b) After addition G T₂ T., T₁ T., T₁ T₂ (c) After left rotation (d) After right rotation CC h + 1T₃ T₄ T₁ Т, Image from "Data Structures and Abstractions with Java" by Frank M. Carrano and Walter Savitch James Tam

James Tan

•An imbalance occurs for node N if an insertion occurs in the right sub-tree of node N's left sub child

•Given that node "C" is the right child of N.

```
-Rotate right around the child "C"
-Rotate left around the parent "P"
Pseudo-Code:
rotateLeftRight: (Node n)
{
    Node c = n.getRight ()
    n.setRight ( rotateRight ( c) )
    rotateLeft ( n )
}
```


James Tan

Type of imbalance		Balance factor of parent	Balance factor of child	Direction of 1 st rotation	Direction of 2 nd Rotation
Left-left	-	-2	-1	Right	NA
Right-right		+2	+1	Left	NA
Left-right		-2	+1	Left (child)	Right (node
Right-left		+2	-1	Right (child)	Left (node)

Efficiency Of AVL Trees

- •Effect of balancing on other tree operations
 - Typically the height is \sim 1.44 *($log_2N)$ which effects searches, insertions and deletions
- •Efficiency of the balance operation itself
 - Search time (to find the imbalance): log_2N
 - Time to perform the rotation: Constant time

Sources Of Lecture Material

- •"Data Abstraction and Problem Solving with Java: Walls and Mirrors" by Frank M. Carrano and Janet J. Prichard
- "Data Structures and Abstractions with Java" by Frank M. Carrano and Walter Savitch
- •"Data Structures and Algorithms in Java" by Adam Drozdek
- •The Wiley Science web site <u>http://www3.interscience.wiley.com:8100/legacy/college/koffm</u> <u>an/0471467561/ppt/ch11.ppt</u>
- •CPSC 331 course notes by Marina L. Gavrilova <u>http://pages.cpsc.ucalgary.ca/~marina/331/</u>