Balanced Trees

*In this section of notes you will learn
about a special type of binary search tree:
the balanced AVL tree

Recall: The Efficiency Of Most Tree Operations Is
Dependent Upon The Height Of The Tree

Operation Average case Worse case
Search O (log,n) O (n)
Insertion O (log,n) O (n)
Deletion O (log,n) O (n)

Balanced Trees Allow For Faster Operations Than
Unbalanced Trees

O(c) © on) ®

A balanced tree: The height difference of the sub-trees of all nodes is
either zero or one.

Balancing Of Binary Search Trees Is
Highly Dependent Upon The Order Of The Inputs

*Contrast the trees built with the following data:

-e.g. one, 20, 10, 30
-e.g. two, 10 20 30

A Randomly Generated Binary Tree

Image from “Data Structure and Algorithm Analysis in C++” by Mark Allen Weiss. James Tam

After Normal Use A Tree Can Quickly
Become Unhinged

Image from “Data Structure and Algorithm Analysis in C++” by Mark Allen Weiss. James Tam

A Quick Comparison Of The Algorithms

N T =Log,N T=root (N)
(Height of Balanced tree) | (Height of tree after many operations)
1 0 1
2 1 1.41
32 5 5.66
64 6 8
1 million |20 1000

James Tam

One Approach: Self Balancing Trees

*As insertions and deletions are performed a check is made to
determine if the tree is still balanced:

- If the tree is still balanced then nothing more needs to be done

- If the tree is now unbalanced then rearrange the nodes to re-balance the
tree

*The type of self-balancing tree that will be covered are AVL
trees (Adelson, Velskii & Landis)

James Tam

Example Of Balancing A Tree

Problem: Tree
is unbalanced

(50) :

@ @ Tree is

balanced again
©

Solution: Re-

balance tree by a
right “rotation”

Example Of A Deletion Resulting In An
Unbalanced Tree

Problem: Tree
is unbalanced
®

@ @ @ Tree is

balanced again
©

Solution: Re-balance tree
by a left “rotation”

Balance Factors

*In order to determine if the height of the left and right sub-trees
for a particular node are balanced you need add an additional
attribute to the Node class.

*The balance factor is equal to the difference between the height
of the right and left sub-trees of that node.

public class AVLNode extends BinaryNode
{

private int balanceFactor;

Balance Factors(2)

*Examples (right - left)

Graphically Illustrating The Single Right Rotation

\
_ ™
>He|ght
=h
Height)
T3 >= h+ 1
_/
T1 T2
Before T3 Ti‘ght
addition =
T2 _
T1
After .
addition - T2 T3

After right rotation James Tamm

Algorithm For Performing Single Right Rotations

«Prior to the addition or deletion the tree was balanced.
*The addition or deletion of a node causes an imbalance

«Starting at the newly inserted node and working towards the root find the
first unbalanced node “N”. Balance that node and you are done.!

- If node “C” is the left child of node N:
- Set node N’s left child to node C’s right child ({‘\
- Set node C’s right child to refer to node N

Pseudo-Code:

rotateRight (Node n)

S

1
Node ¢ = n.getLeft ()
n.setLeft (c.getRight())
c.setRight (n)

}

1 Obviously for all rotations Node C must take the place of Node N in the tree: a) if Node N was the root then Node
C becomes the new root. b) otherwise Node N'’s parent will refer to Node C instead of Node N. James Tam

Graphically Illustrating The Single Left Rotation

\
\
>Height
=h
Height ™
T =h+1
1/

T2 T3 ™ Height
Before =h
addition T2 |

After 3
addition
T1 T2 T3

After right rotation James Tamm

Algorithm For Performing Single Left Rotations

«Prior to the addition or deletion the tree was balanced.
*The addition or deletion of a node causes an imbalance

«Starting at the newly inserted node and working towards the root find the
first unbalanced node “N”. Balance that node and you are done.

- If node “C” is the right child of node N:
- Set node N’s right child to node C’s left child E} ’!
- Set node C’s left child to refer to node N
Pseudo-Code:
rotateLeft: (Node n)
{
Node ¢ = n.getRight ()
n.setRight (c.getLeft())
c.setleft (n)

James Tam

Spotting Single Rotations: Left-Left Imbalance

*Balance factor of the parent (unbalanced node) = -2

*Balance factor the left child = -1

Example: Single Right Rotation For
Left-Left Imbalance

James Tam

Spotting Single Rotations: Right-Right Imbalance

*Balance factor of parent (unbalanced node) = +2

*Balance factor of the right child =+ 1

Example: Single Left Rotation For
Right-Right Imbalance

James Tam

Spotting Double Rotations: Left-Right Imbalance

*A single rotation will not fix the problem

+Single rotation: Rotating node n right won’t work

Spotting Double Rotations:
Left-Right Imbalance (2)

*Balance factor of parent (unbalanced node) = - 2

*Balance factor of child = +1

-
=

Spotting Double Rotations: Right-Left Imbalance

*A single rotation will not fix the problem.

*Single rotation: Rotating node n left won’t work

Spotting Double Rotations:
Right-Left Imbalance (2)

*Balance factor of the parent (unbalanced node): +2

*Balance factor of the child: -1

q
<-\

Algorithm For Performing Left-Right Rotations

* An imbalance occurs for node N if an insertion occurs in the left
sub-tree of node N’s right sub child

*Given that node “C” is the left child of N.

- Rotate left around child “C”
- Rotate right around the parent “N”

Pseudo-Code:
rotateLeftRight: (Node n)

{
Node ¢ =n.getLeft ()

n.setLeft (rotateLeft (¢))

rotateRight (n)
H
Graphically Illustrating Left-Right Rotations
(a) Before addition (b) After addition

Image from “Data Structures and Abstractions with Java” by Frank M. Carrano and Walter Savitch James Tam

Algorithm For Performing Right-Left Rotations

*An imbalance occurs for node N if an insertion occurs in the
right sub-tree of node N’s left sub child

*Given that node “C” is the right child of N.

- Rotate right around the child “C”
- Rotate left around the parent “P”

Pseudo-Code:

rotateLeftRight: (Node n)

{
Node ¢ = n.getRight ()
n.setRight (rotateRight (¢))
rotateLeft (n)

James Tam

Graphically Illustrating Right-Left Rotations

(a) Before addition (b) After addition

h+1

Image from “Data Structures and Abstractions with Java” by Frank M. Carrano and Walter Savitch James Tam

Summary Table Of Rotations

Type of Balance |Balance | Direction of | Direction of
imbalance factor of | factor of | 15t rotation 2nd Rotation
parent child

Left-left

-2 -1 Right NA
Right-right

’\‘E +2 +1 Left NA

Left-right

-2 +1 Left (child) | Right (node)
Right-left

+2 -1 Right (child) | Left (node)

James Tam

Efficiency Of AVL Trees

*Effect of balancing on other tree operations

- Typically the height is ~ 1.44 *(log,N) which effects searches, insertions
and deletions

Efficiency of the balance operation itself

- Search time (to find the imbalance): log,N
- Time to perform the rotation: Constant time

James Tam

You Should Now Know

*How additions and deletions to a tree can cause it become
unbalanced?

*How balance factors can be used to determine if a node has an
unbalanced left and right sub tree

*How to determine the type of imbalance
- Left-left
- Right-right
- Left-right
- Right-left

*How to rebalance the different types of unbalanced trees

Sources Of Lecture Material

*“Data Abstraction and Problem Solving with Java: Walls and
Mirrors” by Frank M. Carrano and Janet J. Prichard

* “Data Structures and Abstractions with Java” by Frank M.
Carrano and Walter Savitch

*“Data Structures and Algorithms in Java” by Adam Drozdek

*The Wiley Science web site
http://www3.interscience.wiley.com:8100/legacy/college/koffm
an/0471467561/ppt/chl1.ppt

*CPSC 331 course notes by Marina L. Gavrilova
http://pages.cpsc.ucalgary.ca/~marina/331/

James Tam

