
Balanced trees 1

James Tam

Balanced Trees

•In this section of notes you will learn
about a special type of binary search tree:
the balanced AVL tree

James Tam

Recall: The Efficiency Of Most Tree Operations Is
Dependent Upon The Height Of The Tree

O (n)O (log2n)Deletion

O (n)O (log2n)Insertion

O (n)O (log2n)Search

Worse caseAverage caseOperation

Balanced trees 2

James Tam

Balanced Trees Allow For Faster Operations Than
Unbalanced Trees

O(c) ☺ O(n) /

...

A balanced tree: The height difference of the sub-trees of all nodes is
either zero or one.

James Tam

Balancing Of Binary Search Trees Is
Highly Dependent Upon The Order Of The Inputs

•Contrast the trees built with the following data:
- e.g. one, 20, 10, 30
- e.g. two, 10 20 30

Balanced trees 3

James Tam

A Randomly Generated Binary Tree

Image from “Data Structure and Algorithm Analysis in C++” by Mark Allen Weiss.

James Tam

After Normal Use A Tree Can Quickly
Become Unhinged

Image from “Data Structure and Algorithm Analysis in C++” by Mark Allen Weiss.

Balanced trees 4

James Tam

A Quick Comparison Of The Algorithms

8664

5.66532

1000201 million

:::

1.4112

101

T= root (N)

(Height of tree after many operations)

T = Log2N

(Height of Balanced tree)

N

James Tam

One Approach: Self Balancing Trees

•As insertions and deletions are performed a check is made to
determine if the tree is still balanced:
- If the tree is still balanced then nothing more needs to be done
- If the tree is now unbalanced then rearrange the nodes to re-balance the
tree

•The type of self-balancing tree that will be covered are AVL
trees (Adelson, Velskii & Landis)

Balanced trees 5

James Tam

Example Of Balancing A Tree

60 60

50

60

50

20

Problem: Tree
is unbalanced
/

Solution: Re-
balance tree by a
right “rotation”

20

60

50

60

50

20
Tree is
balanced again
☺

James Tam

Example Of A Deletion Resulting In An
Unbalanced Tree

60

50

20

70

X 60

50

20

70

60

50

70

Problem: Tree
is unbalanced
/

Solution: Re-balance tree
by a left “rotation”

60

50

70
70

60

50
Tree is
balanced again
☺

Balanced trees 6

James Tam

Balance Factors

•In order to determine if the height of the left and right sub-trees
for a particular node are balanced you need add an additional
attribute to the Node class.

•The balance factor is equal to the difference between the height
of the right and left sub-trees of that node.

public class AVLNode extends BinaryNode

{

private int balanceFactor;

: : :

}

James Tam

Balance Factors(2)

•Examples (right - left)

0

0

0 0

+1

0

00

+2

+3

+1

0

-2

-3

-1

0

Balanced trees 7

James Tam

Graphically Illustrating The Single Right Rotation

N

C

T1 T2

T3

Height
= h

N

C

T1
T2

T3

Height
= h + 1

C

T1 T2 T3

Height
= h

N
Before
addition

After
addition

After right rotation

James Tam

Algorithm For Performing Single Right Rotations

•Prior to the addition or deletion the tree was balanced.

•The addition or deletion of a node causes an imbalance

•Starting at the newly inserted node and working towards the root find the
first unbalanced node “N”. Balance that node and you are done.1

- If node “C” is the left child of node N:
- Set node N’s left child to node C’s right child
- Set node C’s right child to refer to node N

Pseudo-Code:
rotateRight (Node n)

{

Node c = n.getLeft ()

n.setLeft (c.getRight())

c.setRight (n)

}
1 Obviously for all rotations Node C must take the place of Node N in the tree: a) if Node N was the root then Node
C becomes the new root. b) otherwise Node N’s parent will refer to Node C instead of Node N.

Balanced trees 8

James Tam

Graphically Illustrating The Single Left Rotation

Before
addition

After
addition

After right rotation

N

T1

T2 T3

Height
= h

C

Height
= h + 1

N

T1

T2
T3

C
C

T1 T2

Height
= h

N

T3

James Tam

Algorithm For Performing Single Left Rotations

•Prior to the addition or deletion the tree was balanced.

•The addition or deletion of a node causes an imbalance

•Starting at the newly inserted node and working towards the root find the
first unbalanced node “N”. Balance that node and you are done.

- If node “C” is the right child of node N:
- Set node N’s right child to node C’s left child
- Set node C’s left child to refer to node N

Pseudo-Code:
rotateLeft: (Node n)

{

Node c = n.getRight ()

n.setRight (c.getLeft())

c.setLeft (n)

}

Balanced trees 9

James Tam

Spotting Single Rotations: Left-Left Imbalance

•Balance factor of the parent (unbalanced node) = -2

•Balance factor the left child = -1

James Tam

Example: Single Right Rotation For
Left-Left Imbalance

12

8 14

5 9

2

Balanced trees 10

James Tam

Spotting Single Rotations: Right-Right Imbalance

•Balance factor of parent (unbalanced node) = +2

•Balance factor of the right child = + 1

James Tam

Example: Single Left Rotation For
Right-Right Imbalance

2

3

4

1

5

2.5

Balanced trees 11

James Tam

Spotting Double Rotations: Left-Right Imbalance

•A single rotation will not fix the problem

•Single rotation: Rotating node n right won’t work

R

N

C

21

R

C

2

1 N

James Tam

Spotting Double Rotations:
Left-Right Imbalance (2)

•Balance factor of parent (unbalanced node) = - 2

•Balance factor of child = +1

Balanced trees 12

James Tam

Spotting Double Rotations: Right-Left Imbalance

•A single rotation will not fix the problem.

•Single rotation: Rotating node n left won’t work

N

21

C

C

2

1

N

James Tam

Spotting Double Rotations:
Right-Left Imbalance (2)

•Balance factor of the parent (unbalanced node): +2

•Balance factor of the child: -1

Balanced trees 13

James Tam

Algorithm For Performing Left-Right Rotations

•An imbalance occurs for node N if an insertion occurs in the left
sub-tree of node N’s right sub child

•Given that node “C” is the left child of N.
- Rotate left around child “C”
- Rotate right around the parent “N”

Pseudo-Code:
rotateLeftRight: (Node n)

{

Node c = n.getLeft ()

n.setLeft (rotateLeft (c))

rotateRight (n)

}

James Tam

Graphically Illustrating Left-Right Rotations

Image from “Data Structures and Abstractions with Java” by Frank M. Carrano and Walter Savitch

Balanced trees 14

James Tam

Algorithm For Performing Right-Left Rotations

•An imbalance occurs for node N if an insertion occurs in the
right sub-tree of node N’s left sub child

•Given that node “C” is the right child of N.
- Rotate right around the child “C”
- Rotate left around the parent “P”

Pseudo-Code:
rotateLeftRight: (Node n)

{

Node c = n.getRight ()

n.setRight (rotateRight (c))

rotateLeft (n)

}

James Tam

Graphically Illustrating Right-Left Rotations

Image from “Data Structures and Abstractions with Java” by Frank M. Carrano and Walter Savitch

Balanced trees 15

James Tam

Summary Table Of Rotations

Left (node)Right (child)-1+2
Right-left

Right (node)Left (child)+1-2
Left-right

NALeft+1+2
Right-right

NARight-1-2
Left-left

Direction of
2nd Rotation

Direction of
1st rotation

Balance
factor of
child

Balance
factor of
parent

Type of
imbalance

James Tam

Efficiency Of AVL Trees

•Effect of balancing on other tree operations
- Typically the height is ~ 1.44 *(log2N) which effects searches, insertions
and deletions

•Efficiency of the balance operation itself
- Search time (to find the imbalance): log2N
- Time to perform the rotation: Constant time

Balanced trees 16

James Tam

You Should Now Know

•How additions and deletions to a tree can cause it become
unbalanced?

•How balance factors can be used to determine if a node has an
unbalanced left and right sub tree

•How to determine the type of imbalance
- Left-left
- Right-right
- Left-right
- Right-left

•How to rebalance the different types of unbalanced trees

James Tam

Sources Of Lecture Material

•“Data Abstraction and Problem Solving with Java: Walls and
Mirrors” by Frank M. Carrano and Janet J. Prichard

•“Data Structures and Abstractions with Java” by Frank M.
Carrano and Walter Savitch

•“Data Structures and Algorithms in Java” by Adam Drozdek

•The Wiley Science web site
http://www3.interscience.wiley.com:8100/legacy/college/koffm
an/0471467561/ppt/ch11.ppt

•CPSC 331 course notes by Marina L. Gavrilova
http://pages.cpsc.ucalgary.ca/~marina/331/

