
Classes and objects: Part III 1

James Tam

Classes And Objects Part III

Relationships between classes:
• Inheritance
Access modifiers:
• Public, private, protected
Interfaces: Types Vs. Classes
Abstract classes
Packages
Design issues for Object-Oriented systems
Object-Oriented design & testing

James Tam

What Is Inheritance?

Creating new classes that are based on existing classes.

Existing class

Classes and objects: Part III 2

James Tam

What Is Inheritance?

•Creating new classes that are based on existing classes.
•All non-private data and methods are available to the new
class (but the reverse is not true).

•The new class is composed of the information and behaviors
of the existing class (and more).

Existing class

New class

James Tam

Inheritance Terminology

Superclass

Subclass

Generalization

Specialization

Parent class

Child class

Classes and objects: Part III 3

James Tam

When To Employ Inheritance

•If you notice that certain behaviors or data is common
among a group of candidate classes

•The commonalities may be defined by a superclass
•What is unique may be defined by particular subclasses

Generic user

Engineer Management
Technical
support

Dilbert © United Features Syndicate

James Tam

Using Inheritance

Format:
class <Name of Subclass > extends <Name of Superclass>
{
// Definition of subclass – only what is unique to subclass

}

Example:
class Dragon extends Monster
{

public void displaySpecial ()
{

System.out.println("Breath weapon: ");
}

}

Classes and objects: Part III 4

James Tam

The Parent Of All Classes

•You’ve already employed inheritance
•Class Object is at the top of the inheritance hierarchy
Inheritance from class Object is implicit

•All other classes inherit it’s data and methods
•For more information about this class see the url:

http://java.sun.com/j2se/1.4.2/docs/api/java/lang/Object.html

James Tam

Review: Relations Between Classes

Association (“knows-a”)
Aggregation (“has-a”)
Inheritance (“is-a”)

Classes and objects: Part III 5

James Tam

Association “Knows-A”

A association relation can exist between two classes if within one class’
method(s), there exists as a local variable an instance of another class

e.g., A car uses (knows-a) instance of fuel
class Car
{

public void method ()
{

Fuel = new Fuel ();
}

}

Car Fuel
+method () 1 1

James Tam

Association “Knows-As” (2)

A association relation can also exist between two classes if an instance of
one class is an attribute of another class.

e.g., A square uses (knows-a) line
class Square
{

private Line side;
}

Square Line
- side : Line 1 4

Classes and objects: Part III 6

James Tam

Aggregation “Has-A”

An aggregation relation exists between two classes if one class is an
attribute of another class.

And
The first class is part of the second class (or the second class is an
aggregate of the first class)

e.g., A car has an (has-a) engine
class Car
{

private Engine e;
}

Car Engine

-e: Engine
1 1

James Tam

Inheritance “Is-A”

An inheritance relation exists between two classes if one class is one type
of another class

e.g., A car is a type of (is-a) vehicle
class Vehicle
{

:
}

class Car extends Vehicle
{

:
}

Vehicle

Car

Instances of the
subclass can be used
in place of instances
of the super class

Classes and objects: Part III 7

James Tam

Levels Of Access Permissions

Private “-”
•Can only access the attribute/method in the methods of the class
where the attribute is originally defined.

Protected “#”
•Can access the attribute/method in the methods of the class where the
attribute is originally defined or the subclasses of that class.

Public “+”
•Can access attribute/method anywhere in the program

James Tam

Levels Of Access Permissions

NoYesYesProtected

NoNoYesPrivate

YesYesYesPublic

Not a
subclassSubclass Same class

Access
level

Accessible to

Classes and objects: Part III 8

James Tam

Levels Of Access Permission: An Example

class P
{

private int num1;
protected int num2;
public int num3;
// Can access num1, num2 & num3 here.

}

class C extends P
{

// Can’t access num1 here
}

class Driver
{

// Can’t access num1 here.
}

James Tam

General Rule Of Thumb

• Variable attributes should not have protected access but
instead should be private.

• Most methods should be public
• Methods that are used only by the parent and child classes

should be made protected.

Classes and objects: Part III 9

James Tam

Method Overriding

•Different versions of a method can be implemented in
different ways by the parent and child class in an inheritance
hierarchy.

•Methods have the same name and parameter list (identical
signature) but different bodies

• e.g.,
class Parent class Child extends Parent
{ {

: : : :
public void method () public void method ()
{ {

System.out.println(“m1”); num = 1;
} }

} }

James Tam

Method Overloading Vs. Method Overriding

Method Overloading
•Multiple method implementations for the same class
•Each method has the same name but the type, number or order of the
parameters is different (signatures are not the same)

•The method that is actually called is determined at program compile
time (early binding).

•i.e., <reference name>.<method name> (parameter list);

Distinguishes
overloaded methods

Classes and objects: Part III 10

James Tam

Method Overloading Vs. Method Overriding (2)

Example of method overloading:
class Foo
{

public void display () { }
public void display (int i) { }
public void display (char ch) { }

}

Foo f = new Foo ();
f.display();
f.display(10);
f.display(‘c’);

James Tam

Method Overloading Vs. Method Overriding (3)

Method Overriding
•The method is implemented differently between the parent and child
classes

•Each method has the same return value, name and parameter list
(identical signatures)

•The method that is actually called is determined at program run time
(late binding)

•i.e., <reference name>.<method name> (parameter list);

The type of the reference
(implicit parameter “this”)
distinguishes overridden
methods

Classes and objects: Part III 11

James Tam

Method Overloading Vs. Method Overriding (4)

Example of method overriding:
class Foo
{

public void display () { … }
: :

}
class FooChild extends Foo
{

public void display () { … }
}

Foo f = new Foo ();
f.display();

FooChild fc = new FooChild ();
fc.display ();

James Tam

Polymorph

The ability to take on different forms

Images from the game Dungeon Master by FTL

Classes and objects: Part III 12

James Tam

Polymorphism In Object-Orientated Theory

• An overridden method that can take on many forms
• The type of an instance (the implicit parameter) determines

at program run-time which method will be executed.

James Tam

A Blast From The Past

Mummy

Scorpion

Dragon

Screamer

Ghost

Knight

Monsters

Weapons

Armour

Falchion

Longbow
Ninjato

Dungeon
Master

:

Classes and objects: Part III 13

James Tam

The Inheritance Hierarchy For The Monsters

Monster

Undead StoneBased Giggler Dragon

James Tam

The Dragon Sub-Hierarchy

Dragon

Red Dragon Blue Dragon Halitosis Dragon

Classes and objects: Part III 14

James Tam

The Dragon Sub-Hierarchy

Dragon

Red Dragon Blue Dragon Halitosis Dragon

James Tam

Class DungeonMaster

Example (The complete example can be found in the directory
/home/233/examples/object_programming/DMExample

class DungeonMaster
{

public static void main (String [] args)
{

BlueDragon electro = new BlueDragon ();
RedDragon pinky = new RedDragon ();
HalitosisDragon stinky = new HalitosisDragon () ;

electro.displaySpecialAbility ();
pinky.displaySpecialAbility ();
stinky.displaySpecialAbility ();

}
}

Classes and objects: Part III 15

James Tam

Class Monster

class Monster
{

private int protection;
private int damageReceivable;
private int damageInflictable;
private int speed;
private String name;
public Monster ()
{

protection = 0;
damageReceivable = 1;
damageInflictable = 1;
speed = 1;
name = "Monster name: ";

}

James Tam

Class Monster (2)

public int getProtection () {return protection;}
public void setProtection (int newValue) {protection = newValue;}
public int getDamageReceivable () {return damageReceivable;}
public void setDamageReceivable (int newValue) {damageReceivable =

newValue;}
public int getDamageInflictable () {return damageInflictable;}
public void setDamageInflictable (int newValue) {damageInflictable =

newValue;}
public int getSpeed () {return speed;}
public void setSpeed (int newValue) {speed = newValue;}
public String getName () {return name; }
public void setName (String newValue) {name = newValue;}
public void displaySpecialAbility ()
{

System.out.println("No special ability");
}

Classes and objects: Part III 16

James Tam

Class Monster (3)

public String toString ()
{

String s = new String ();
s = s + "Protection: " + protection + "\n";
s = s + "Damage receivable: " + damageReceivable + "\n";
s = s + "Damage inflictable: " + damageInflictable + "\n";
s = s + "Speed: " + speed + "\n";
s = s + "Name: " + name + "\n";
return s;

}
} // End of definition for class Monster.

James Tam

Class Dragon

class Dragon extends Monster
{

public void displaySpecialAbility ()
{

System.out.print("Breath weapon: ");
}

}

Classes and objects: Part III 17

James Tam

Class BlueDragon

class BlueDragon extends Dragon
{

public void displaySpecialAbility ()
{

super.displaySpecialAbility ();
System.out.println("Lightening");

}
}

James Tam

Class HalitosisDragon

class HalitosisDragon extends Dragon
{

public void displaySpecialAbility ()
{

super.displaySpecialAbility();
System.out.println("Stinky");

}
}

Classes and objects: Part III 18

James Tam

Class RedDragon

class RedDragon extends Dragon
{

public void displaySpecialAbility ()
{

super.displaySpecialAbility();
System.out.println("Fire");

}
}

James Tam

Updated Scoping Rules

When referring to an identifier in the method of a class
1. Look in the local memory space for that method
2. Look in the definition of the class
3. Look in the definition of the classes’ parent

Classes and objects: Part III 19

James Tam

Updated Scoping Rules (2)

class P
{

}
class C extends P
{

public void method ()
{

}
}

<<< First >>>

<<< Second >>>

<<< Third >>>

James Tam

Accessing The Unique Attributes
And Methods Of The Parent

• All protected or public attributes and methods of the parent
class can be accessed directly in the child class

e.g.
class P
{

protected int num;
}

class C extends P
{

public void method ()
{

this.num = 1;
// OR
num = 2;

}
}

Classes and objects: Part III 20

James Tam

Accessing The Non-Unique Attributes
And Methods Of The Parent

• An attribute or method exists in both the parent and child
class (has the same name in both)

• The method or attribute has public or protected access
• Must prefix the attribute or method with “super” to

distinguish it from the child class.
• Format:

•super.methodName ()
•super.attributeName ()

• Note: If you don’t preface the method attribute with the keyword “super”
then the by default the attribute or method of the child class will be
accessed.

James Tam

Accessing The Non-Unique Attributes And Methods
Of The Parent: An Example

e.g.
class P
{

protected int num;
protected void method ()
{

:
}

}

Classes and objects: Part III 21

James Tam

Accessing The Non-Unique Attributes And Methods
Of The Parent: An Example (2)

class C extends P
{

protected int num;
public void method ()
{

num = 2;
super.num = 3;
super.method();

}

James Tam

Casting And Inheritance

• Remember: You can substitute instances of a subclass for
instances of a superclass.

Monster

Dragon

BlueDragon

You can substitute a
Dragon for a
Monster

You can substitute a
BlueDragon for a
Dragon

Classes and objects: Part III 22

James Tam

Casting And Inheritance (2)

• Remember: You cannot substitute instances of a superclass
for instances of a subclass

Monster

Dragon

BlueDragon

You cannot
substitute a
Monster for a
Dragon

You cannot
substitute a
Dragon for a
BlueDragon

James Tam

Casting And Inheritance: A Previous Example

class Monster
{

private int protection;
private int damageReceivable;
private int damageInflictable;
private int speed;
private String name;

: : :
public int getProtection () {return protection;}

: : :
}

Classes and objects: Part III 23

James Tam

Casting And Inheritance: An Previous
Example

class Dragon extends Monster
{

public void displaySpecialAbility ()
{

System.out.print("Breath weapon: ");
}

public void fly ()
{

System.out.println("Flying");
}

}

James Tam

Casting And Inheritance: An Previous
Example

class BlueDragon extends Dragon
{

public void displaySpecialAbility ()
{

super.displaySpecialAbility ();
System.out.println("Lightening");

}

public void absorbElectricity ()
{

System.out.println("Absorbing electricity.");
}

}

Classes and objects: Part III 24

James Tam

Substituting Sub And Super Classes

• You can substitute an instance of a sub class for an
instance of a super class.

BlueDragon electro = new BlueDragon ();
Monster aMonster = new Monster ();

System.out.println(aMonster.getProtection());
System.out.println(electro.getProtection());

Dragon

BlueDragon

Monster
+getProtection ()

James Tam

Substituting Sub And Super Classes

• You cannot substitute an instance of a super class for an
instance of a sub class.

BlueDragon electro = new BlueDragon ();
Monster aMonster = new Monster ();

electro.absorbElectricity ();
aMonster.absorbElectricity ();

Monster

Dragon

BlueDragon

+absorbElectricity()

Classes and objects: Part III 25

James Tam

Casting And Inheritance

BlueDragon electro = new BlueDragon ();
Monster aMonster;

aMonster = electro;
aMonster.fly();
aMonster.absorbElectricity();

aMonster = new Monster ();
electro = aMonster;

electro = (BlueDragon) aMonster;
electro.fly();
electro.absorbElectricity();

x
x

x

x
x
x

Monster

BlueDragon

+absorbElectricity()

Dragon
+fly()

James Tam

Casting And Inheritance (2)

• Only use the cast operator if you are sure of the type.

BlueDragon electro = new BlueDragon ();
Monster aMonster;
aMonster = electro;

if (aMonster instanceof BlueDragon)
{

System.out.println("AMonster is a reference to an instance of a
BlueDragon");

electro = (BlueDragon) aMonster;
electro.fly();
electro.absorbElectricity();

}

Classes and objects: Part III 26

James Tam

Casting And Inheritance (3)

• Only use the cast operator if you are sure of the type.

BlueDragon electro = new BlueDragon ();
Monster aMonster;
aMonster = electro;

if (aMonster instanceof BlueDragon)
{

System.out.println("AMonster is actually a reference to an instance of
a BlueDragon");

((BlueDragon) aMonster).fly();
((BlueDragon) aMonster).absorbElectricity();

}

James Tam

Shadowing

•Local variables in a method or parameters to a method have
the same name as instance fields

•Attributes of the subclass have the same name as attributes
of the superclass

Classes and objects: Part III 27

James Tam

Attributes Of The Subclass Have The Same
Name As The SuperClasses’ Attributes

class Foo
{

private int num;
public Foo () { num = 1; }
public int getNum () { return num; }
public void setNum (int newValue) {num = newValue; }

}

class Bar extends Foo
{

public Bar ()
{

num = 10;
}

}

James Tam

Attributes Of The Subclass Have The Same
Name As The SuperClasses’ Attributes

class Foo
{

private int num;
public Foo () { num = 1; }
public int getNum () { return num; }
public void setNum (int newValue) {num = newValue; }

}

class Bar extends Foo
{

public Bar ()
{

num = 10;
}

}

Insufficient access
permissions: Program
won’t compile

Classes and objects: Part III 28

James Tam

Attributes Of The Subclass Have The Same
Name As The SuperClasses’ Attributes (2)

class Foo
{

private int num;
public Foo () { num = 1; }
public int getNum () { return num; }
public void setNum (int newValue) {num = newValue; }

}

class Bar extends Foo
{

private int num;
public Bar ()
{

num = 1;
}

}

James Tam

Attributes Of The Subclass Have The Same
Name As The SuperClasses’ Attributes (2)

class Foo
{

private int num;
public Foo () { num = 1; }
public int getNum () { return num; }
public void setNum (int newValue) {num = newValue; }

}

class Bar extends Foo
{

private int num;
public Bar ()
{

num = 1;
}

}

NO!

Classes and objects: Part III 29

James Tam

The Result Of Attribute Shadowing

class Bar extends Foo
{

private int num;
public Bar ()
{

num = 10;
}
public int getSecondNum () { return num; }

}
class Driver
{

public static void main (String [] arv)
{

Bar b = new Bar ();
System.out.println(b.getNum());
System.out.println(b.getSecondNum());

}
}

James Tam

Another Scoping Example

class ScopingExample
{

public static void main (String [] args)
{

P p1 = new P ();
C c1 = new C ();
GC gc = new GC ();
gc.method1();
gc.method2();
gc.method3();
gc.method();

}
}

Classes and objects: Part III 30

James Tam

Another Scoping Example (2)

class GC extends C
{

private int num1;
public GC ()
{

num1 = 1;
}
public void method1 ()
{

System.out.println("GC's method 1");
super.method1();

}
public void method2 ()
{

System.out.println("GC's method 2");
super.method2();

}

James Tam

Another Scoping Example (3)

public void method3 ()
{

int num0 = 0;
System.out.println("num0=" + num0);
System.out.println("num1=" + num1);
System.out.println("num2=" + num2);
System.out.println("num3=" + num3);
System.out.println("ch=" + ch);

}

public void method ()
{

super.method1();
}

} // End of class GC

Classes and objects: Part III 31

James Tam

Another Scoping Example (4)

class C extends P
{

protected int num2;
protected char ch1;

public C ()
{

ch = 'C';
num2 = 2;

}
public void method1 ()
{

System.out.println("C's method 1");
}
public void method2 ()
{

System.out.println("C's method 2");
super.method2();

}
} // End of class C

James Tam

Another Scoping Example (5)

class P
{

protected int num3;
protected char ch;
public P ()
{

ch = 'P';
num3 = 3;

}
public void method1 ()
{

System.out.println("P's method 1");
}
public void method2 ()
{

System.out.println("P's method 2");
}

} // End of class P

Classes and objects: Part III 32

James Tam

Changing Permissions Of
Overridden Methods

•The overridden method must have equal or stronger (less
restrictive) access permissions in the child class.

Parent
#method()

Child
+method()

Parent
#method()

Child
-method()

James Tam

The Final Modifier (Inheritance)

Methods preceded by the final modifier cannot be overridden
e.g., public final void displayTwo ()

Classes preceded by the final modifier cannot be extended
•e.g., final class ParentFoo

Classes and objects: Part III 33

James Tam

Why Employ Inheritance

• To allow for code reuse
• It may result in more robust code

Existing class

New class

James Tam

Java Interfaces (Type)

• Similar to a class
• Provides a design guide rather than implementation details
• Specifies what methods should be implemented but not how
• Cannot be instantiated

<< interface >>

Interface name
method specification

Class name
method implementation

Realization / Implements

Classes and objects: Part III 34

James Tam

Java Interfaces (Type): Lollipop Notation

• Similar to a class
• Provides a design guide rather than implementation details
• Specifies what methods should be implemented but not how
• Cannot be instantiated

Class name
method implementation

Interface
name

James Tam

Interfaces: Format

Format for defining an interface
interface <name of interface>
{

constants
methods to be implemented by the class that realizes this interface

}

Format for realizing / implementing the interface
class <name of class> implements <name of interface>
{

attributes
methods actually implemented by this class

}

Classes and objects: Part III 35

James Tam

Interfaces: A Checkers Example

Basic board

Regular rules

Variant rules

James Tam

Interface Board

interface Board
{

public static final int SIZE = 8;
public void displayBoard ();
public void initializeBoard ();
public void movePiece ();
boolean moveValid (int xSource, int ySource, int xDestination,

int yDestination);
public void displayBoard ();
public void initializeBoard ();

: : :
}

Classes and objects: Part III 36

James Tam

Class RegularBoard

class RegularBoard implements Board
{

public void displayBoard ()
{

:
}

public void initializeBoard ()
{

:
}

James Tam

Class RegularBoard (2)

public void movePiece ()
{

// Get (x, y) coordinates for the source and destination
if (moveValid == true)

// Actually move the piece
else

// Don’t move piece and display error message
}

public boolean moveValid (int xSource, int ySource, int xDestination,
int yDestination)

{
if (moving forward diagonally)

return true;
else

return false;
}

}

Classes and objects: Part III 37

James Tam

Class VariantBoard

class VariantBoard implements Board
{

public void displayBoard ()
{

:
}

public void initializeBoard ()
{

:
}

James Tam

Class VariantBoard (2)

public void movePiece ()
{

// Get (x, y) coordinates for the source and destination
if (moveValid == true)

// Actually move the piece
else

// Don’t move piece and display error message
}

public boolean moveValid (int xSource, int ySource, int xDestination,
int yDestination)

{
if (moving straight-forward or straight side-ways)

return true;
else

return false;
}

}

Classes and objects: Part III 38

James Tam

Interfaces: Recapping The Example

Interface Board
•No state (data) or behavior (body of the method is empty)
•Specifies the behaviors that a board should exhibit e.g., clear screen
•This is done by listing the methods that must be implemented by
classes that implement the interface.

Class RegularBoard and VariantBoard
•Can have state and methods
•They must implement all the methods specified by interface Board
(but can also implement other methods too)

James Tam

Implementing Multiple Interfaces

Class

Interface1 Interface2 Interface3

Classes and objects: Part III 39

James Tam

Implementing Multiple Interfaces

Format:
class <class name> implements <interface name 1>,

<interface name 2>, <interface name 3>…
{

}

James Tam

Multiple Implementations Vs. Multiple Inheritance

•A class can implement all the methods multiple interfaces
•Classes in Java cannot extend more than one class
•This is not possible in Java (but is possible in some other
languages such as C++):

class <class name 1> extends <class
name 2>, <class name 3>…

{

}

Classes and objects: Part III 40

James Tam

Multiple Implementations Vs.
Multiple Inheritance (2)

• A class can implement all the methods of multiple interfaces
• Classes in Java cannot extend more than one class
• This is not possible in Java (but is possible in some other

languages such as C++):

Parent class 1 Parent class 2 Parent class 3

Child class

James Tam

Abstract Classes

•Classes that cannot be instantiated
•A hybrid between regular classes and interfaces
•Some methods may be implemented while others are only
specified

•Used when the parent class cannot define a complete default
implementation (implementation must be specified by the
child class).

Format:
abstract class <class name>
{

<public/private/protected> abstract method ();
}

Classes and objects: Part III 41

James Tam

Abstract Classes (2)

Example1:
abstract class BankAccount

{
protected float balance;
public void displayBalance ()
{

System.out.println("Balance $" + balance);
}
public abstract void deductFees () ;

}

1) From “Big Java” by C. Horstmann pp. 449 – 500.

James Tam

Packages

•A collection of related classes that are bundled together
•Used to avoid naming conflicts for classes
•Also it allows for only some implementation details to be exposed to
other classes in the package (only some classes can be instantiated
outside of the package)

java.lang

Object

String System

Error
Exception

StringBuffer

Object

org.omg.CORBA

Classes and objects: Part III 42

James Tam

Fully Qualified Names

pack3.OpenFoo.toString()

package name

class name method name

James Tam

Importing Packages

Importing all classes from a package
Format

import <package name>.*;

Example
import java.util.*;

Importing a single class from a package
Format

import <package name>.<class name>;

Example
import java.util.Vector;

Classes and objects: Part III 43

James Tam

Importing Packages (2)

When you do not need an import statement:
•When you are using the classes in the java.lang package.
•You do not need an import statement in order to use classes which are
part of the same package

James Tam

Default Package

• If you do not use a package statement then the class
implicitly becomes part of a default package

• All classes which reside in the same directory are part of the
default package for that program.

Classes and objects: Part III 44

James Tam

Fully Qualified Names: Matches Directory Structure

pack3.OpenFoo.toString()

package name

class name

method name

:

home

233

examples

packageExample

pack3

OpenFoo.java ClosedFoo.java

classesObjects3

James Tam

Where To Match Classes To Packages

1. In directory structure: The classes that belong to a
package must reside in the directory with the same name
as the package (previous slide).

2. In the classes’ source code: At the top class definition
you must indicate the package that the class belongs to.

Format:
package <package name>;
<visibility – public or package> class <class name>
{

}

Classes and objects: Part III 45

James Tam

Matching Classes To Packages (2)

Example
package pack3;
public class OpenFoo
{

:
}

package pack3;
class ClosedFoo

{
:

}

James Tam

Matching Classes To Packages (2)

Example
package pack3;
public class OpenFoo
{

:
}

package pack3;
class ClosedFoo

{
:

}

Public access: Class can be
instantiated by classes that aren’t a part
of package pack3

Package access (default): Class can
only be instantiated by classes that are
a part of package pack3

Classes and objects: Part III 46

James Tam

Sun’s Naming Conventions For Packages

Based on Internet domains (registered web addresses)
e.g., www.tamj.com

com.tamj .games

.productivity

James Tam

Sun’s Naming Conventions For Packages

Alternatively it could be based on your email address
e.g., tamj@cpsc.ucalgary.ca

ca.ucalgary.cpsc.tamj .games

.productivity

Classes and objects: Part III 47

James Tam

Graphically Representing Packages In UML

Package name

Package name

+Classes visible outside the package

-Classes not visible outside the package
(protected class)

James Tam

Packages An Example

The complete example can be found in the directory:
/home/233/examples/classesObjects3/packageExample

(But you should have guessed the path from the package name)

packageExample

pack1 pack2 pack3 Driver

IntegerWrapper IntegerWrapper ClosedFoo OpenFoo

Classes and objects: Part III 48

James Tam

Graphical Representation Of The Example

(Unnamed)

-Driver

pack1

+IntegerWrapper

pack2

+IntegerWrapper

pack3

+OpenFoo

-ClosedFoo

James Tam

Package Example: The Driver Class

import pack3.*;
class Driver
{

public static void main (String [] argv)
{

pack1.IntegerWrapper iw1 = new pack1.IntegerWrapper ();
pack2.IntegerWrapper iw2 = new pack2.IntegerWrapper ();
System.out.println(iw1);
System.out.println(iw2);

OpenFoo of = new OpenFoo ();
System.out.println(of);
of.manipulateFoo();

}
}

Classes and objects: Part III 49

James Tam

Package Example: Package Pack1,
Class IntegerWrapper

package pack1;
public class IntegerWrapper
{

private int num;

public IntegerWrapper ()
{

num = (int) (Math.random() * 10);
}
public IntegerWrapper (int newValue)
{

num = newValue;
}
public void setNum (int newValue)
{

num = newValue;
}

James Tam

Package Example: Package Pack1,
Class IntegerWrapper (2)

public int getNum ()
{

return num;
}

public String toString ()
{

String s = new String ();
s = s + num;
return s;

}
}

Classes and objects: Part III 50

James Tam

Package Example: Package Pack2,
Class IntegerWrapper

package pack2;
public class IntegerWrapper
{

private int num;

public IntegerWrapper ()
{

num = (int) (Math.random() * 100);
}
public IntegerWrapper (int newValue)
{

num = newValue;
}
public void setNum (int newValue)
{

num = newValue;
}

James Tam

Package Example: Package Pack2,
Class IntegerWrapper (2)

public int getNum ()
{

return num;
}

public String toString ()
{

String s = new String ();
s = s + num;
return s;

}
}

Classes and objects: Part III 51

James Tam

Package Example: Package Pack3,
Class OpenFoo

package pack3;
public class OpenFoo
{

private boolean bool;
public OpenFoo () { bool = true; }
public void manipulateFoo ()
{

ClosedFoo cf = new ClosedFoo ();
System.out.println(cf);

}
public boolean getBool () { return bool; }
public void setBool (boolean newValue) { bool = newValue; }
public String toString ()
{

String s = new String ();
s = s + bool;
return s;

}
}

James Tam

Package Example: Package Pack3,
Class ClosedFoo

package pack3;
class ClosedFoo
{

private boolean bool;

public ClosedFoo () { bool = false; }
public boolean getBool () { return bool; }

public void setBool (boolean newValue) { bool = newValue; }

public String toString ()
{

String s = new String ();
s = s + bool;
return s;

}
}

Classes and objects: Part III 52

James Tam

Updated Levels Of Access Permissions:
Attributes And Methods

Private “-”
•Can only access the attribute/method in the methods of the class
where it’s originally defined.

Protected “#”
•Can access the attribute/method in the methods of the class where it’s
originally defined or the subclasses of that class.

Package - no UML symbol for this permission level
•Can access the attribute/method from the methods of the classes
within the same package

•If the level of access is unspecified in a class definition this is the
default level of access

Public “+”
•Can access attribute/method anywhere in the program

James Tam

Updated Levels Of Access Permissions

NoNoYesYesPackage

NoYesYesYesProtected

NoNoNoYesPrivate

YesYesYesYesPublic

Not a
subclass,
different
package

Subclass in a
different
package

Class in
same
package

Same class

Access level

Accessible to

Classes and objects: Part III 53

James Tam

Some Principles Of Good Design

1. Avoid going “method mad”
2. Keep an eye on your parameter lists
3. Avoid real values when an integer will do
4. Minimize modifying immutable objects
5. Be cautious in the use of references
6. Be cautious when writing accessor and mutator methods
7. Consider where you declare local variables

This list was partially derived from “Effective Java” by Joshua Bloch and is by
no means complete. It is meant only as a starting point to get students
thinking more about why a practice may be regarded as “good” or “bad” style.

James Tam

1. Avoid Going Method Mad

•There should be a reason for each method
•Creating too many methods makes a class difficult to
understand, use and maintain

•A good approach is to check for redundancies that exist
between different methods

Classes and objects: Part III 54

James Tam

2. Keep An Eye On Your Parameter Lists

•Avoid long parameter lists
•Rule of thumb: Three parameters is the maximum

•Avoid distinguishing overloaded methods solely by the order
of the parameters

James Tam

3. Avoid Real Values When An Integer Will Do

double db = 1.03 - 0.42;
if (db == 0.61)

System.out.println("Sixty one cents");
System.out.println(db);

Classes and objects: Part III 55

James Tam

4. Minimize Modifying Immutable Objects

• Immutable objects
• Once instantiated they cannot change (all or nothing)
e.g., String s = "hello";

s = s + " there";

James Tam

4. Minimize Modifying Immutable Objects (2)

•If you must make changes substitute immutable objects with
mutable ones

e.g.,
class StringBuffer
{

public StringBuffer (String str);
public StringBuffer append (String str);

: : : :

}

For more information about this class
http://java.sun.com/j2se/1.4/docs/api/java/lang/StringBuffer.html

Classes and objects: Part III 56

James Tam

4. Minimize Modifying Immutable Objects (3)

class StringExample
{

public static void main (String [] args)
{

String s = "0";
for (int i = 1; i < 10000; i++)

s = s + i;
}

}

class StringBufferExample
{

public static void main (String [] args)
{

StringBuffer s = new StringBuffer("0");
for (int i = 1; i < 10000; i++)

s = s.append(i);
}

}

James Tam

5. Be Cautious In The Use Of References

Similar to global variables:
program globalExample (output);
var

i : integer;

procedure proc;
begin

for i:= 1 to 100 do;
end;

begin
i := 10;
proc;

end.

Classes and objects: Part III 57

James Tam

5. Be Cautious In The Use Of References (2)

class Foo
{

private int num;
public int getNum () { return num; }
public void setNum (int newValue) { num = newValue; }

}

James Tam

5. Be Cautious In The Use Of References (3)

class Driver
{

public static void main (String [] argv)
{

Foo f1, f2;
f1 = new Foo ();
f1.setNum(1);

f2 = f1;
f2.setNum(2);

System.out.println(f1.getNum());
System.out.println(f2.getNum());

}
}

Classes and objects: Part III 58

James Tam

6. Be Cautious When Writing Accessor And Mutator
Methods: First Version

class Driver
{

public static void main (String [] args)
{

CreditInfo newAccount = new CreditInfo (10, "James Tam");
newAccount.setRating(0);
System.out.println(newAccount);

}
}

James Tam

6. Be Cautious When Writing Accessor And Mutator
Methods: First Version (2)

class CreditInfo
{

private int rating;
private StringBuffer name;
public CreditInfo ()
{

rating = 5;
name = new StringBuffer("No name");

}
public CreditInfo (int newRating, String newName)
{

rating = newRating;
name = new StringBuffer(newName);

}
public int getRating ()
{

return rating;
}

Classes and objects: Part III 59

James Tam

6. Be Cautious When Writing Accessor And Mutator
Methods: First Version (3)

public void setRating (int newRating)
{

if ((newRating >= 0) && (newRating <= 10))
rating = newRating;

}

public StringBuffer getName ()
{

return name;
}

public void setName (String newName)
{

name = new StringBuffer(newName);
}

James Tam

6. Be Cautious When Writing Accessor And Mutator
Methods: First Version (4)

public String toString ()
{

String s = new String ();
s = s + "Name: ";
if (name != null)
{

s = s + name.toString();
}
s = s + "\n";
s = s + "Credit rating: " + rating + "\n";
return s;

}
} // End of class CreditInfo

Classes and objects: Part III 60

James Tam

6. Be Cautious When Writing Accessor And Mutator
Methods: Second Version

• (All mutator methods now have private access).

class Driver
{

public static void main (String [] args)
{

CreditInfo newAccount = new CreditInfo (10, "James Tam");

StringBuffer badGuyName;
badGuyName = newAccount.getName();

badGuyName.delete(0, badGuyName.length());
badGuyName.append("Bad guy on the Internet");

System.out.println(newAccount);
}

}

James Tam

6. Be Cautious When Writing Accessor And Mutator
Methods: Second Version (2)

class CreditInfo
{

private int rating;
private StringBuffer name;

public CreditInfo ()
{

rating = 5;
name = new StringBuffer("No name");

}

public CreditInfo (int newRating, String newName)
{

rating = newRating;
name = new StringBuffer(newName);

}

Classes and objects: Part III 61

James Tam

6. Be Cautious When Writing Accessor And Mutator
Methods: Second Version (3)

public int getRating ()
{

return rating;
}
private void setRating (int newRating)
{

if ((newRating >= 0) && (newRating <= 10))
rating = newRating;

}
public StringBuffer getName ()
{

return name;
}
private void setName (String newName)
{

name = new StringBuffer(newName);
}

James Tam

6. Be Cautious When Writing Accessor And Mutator
Methods: Second Version (4)

public String toString ()
{

String s = new String ();
s = s + "Name: ";
if (name != null)
{

s = s + name.toString();
}
s = s + "\n";
s = s + "Credit rating: " + rating + "\n";
return s;

}
}

Classes and objects: Part III 62

James Tam

6. Be Cautious When Writing Accessor And Mutator
Methods: Third Version

class Driver
{

public static void main (String [] args)
{

CreditInfo newAccount = new CreditInfo (10, "James Tam");
String badGuyName;
badGuyName = newAccount.getName();

badGuyName = badGuyName.replaceAll("James Tam", "Bad guy on
the Internet");

System.out.println(badGuyName + "\n");
System.out.println(newAccount);

}
}

James Tam

6. Be Cautious When Writing Accessor And Mutator
Methods: Third Version (2)

class CreditInfo
{

private int rating;
private String name;
public CreditInfo ()
{

rating = 5;
name = "No name";

}
public CreditInfo (int newRating, String newName)
{

rating = newRating;
name = newName;

}
public int getRating ()
{

return rating;
}

Classes and objects: Part III 63

James Tam

6. Be Cautious When Writing Accessor And Mutator
Methods: Third Version (3)

private void setRating (int newRating)
{

if ((newRating >= 0) && (newRating <= 10))
rating = newRating;

}

public String getName ()
{

return name;
}

private void setName (String newName)
{

name = newName;
}

James Tam

6. Be Cautious When Writing Accessor And Mutator
Methods: Third Version (4)

public String toString ()
{

String s = new String ();
s = s + "Name: ";
if (name != null)
{

s = s + name;
}
s = s + "\n";
s = s + "Credit rating: " + rating + "\n";
return s;

}
}

Classes and objects: Part III 64

James Tam

7. Consider Where You Declare Local Variables

•First Approach: Declare all local variables at the beginning
of a method:

void methodName (..)
{

int num;
char ch;

:

}

Advantage:
•Putting all variable declarations in one place makes them

easy to find

James Tam

7. Consider Where You Declare Local Variables (2)

•Second Approach: declare local variables only as they are
needed

void methodName (..)
{

int num;
num = 10;

:
char ch;
ch = ‘a’;

}

Advantage:
•For long methods it can be hard to remember the declaration if all
variables are declared at the beginning

•Reducing the scope of a variable may reduce logic errors

Classes and objects: Part III 65

James Tam

Object-Oriented Design And Testing

• Start by employing a top-down approach to design
•Start by determining the candidate classes in the system
•Outline a skeleton for candidate classes (methods are stubs)

• Implement each method one-at-a-time.
• Create test drivers for methods that perform calculations.
• Fix any bugs in these methods
• Add the working methods to the code for the class.

James Tam

Determine The Candidate Classes

Example:
A utility company provides three types of utilities:
1. Electricity:

Bill = No. of kilowatt hours used * $0.01

2. Gas:
Bill = No. of gigajoules used * $7.50

3. Water
a) Flat rate: $10.00 + (square footage of dwelling * $0.01)
b) Metered rate: $1.00 * No. cubic of meters used

Classes and objects: Part III 66

James Tam

Determine The Candidate Classes (2)

Some candidate classes
•ElectricityBill
•WaterBill
•GasBill

James Tam

Skeleton For Class WaterBill

class WaterBill
{

private char billType;
private double bill;
public static final double RATE_PER_SQUARE_FOOT = 0.01;
public static final double BASE_FLAT_RATE_VALUE = 10.0;
public static final double RATE_PER_CUBIC_METER = 1.0;

public WaterBill ()
{
}

: : :

Classes and objects: Part III 67

James Tam

Determining The Remaining Methods

calculateBill ()

Utility program

determineBillType ()

Water bill

billType

getSquareFootage ()

If (flatRate)

squareFeet

calculateFlatRate ()

squareFeet bill

getCubicMetersUsed ()

If (metered)

cubicMetersUsed

calculateMeteredRate ()

cubicMetersUsed

bill

Methods of class
WaterBill

James Tam

Remaining Skeleton For Class WaterBill (2)

public double calculateBill () { return 1.0;}
public void determineBillType () { }
public int getSquareFootage () { return 1; }
public double calculateFlatRate (int squareFootage) { return 1.0; }
public double cubicMetersUsed () { return 1.0; }
public double calculateMeteredRate (double cubicMetersUsed) { return; }

Classes and objects: Part III 68

James Tam

Implementing The Bodies For The Methods

1. calculateBill
2. determineBillType
3. getSquareFootage
4. calculateFlatRate (to be tested)
5. cubicMetersUsed
6. calculateMeteredRate (to be tested)

James Tam

Body For Method CalculateBill

public double calculateBill ()
{

int squareFootage;
double cubicMetersUsed;
determineBillType();
if (billType == 'f')
{

squareFootage = getSquareFootage ();
bill = calculateFlatRate (squareFootage);

}
else if (billType == 'm')
{

cubicMetersUsed = getCubicMetersUsed();
bill = calculateMeteredRate (cubicMetersUsed);

}
else
{

System.out.println("Bill must be either based on a flat rate or metered.");
}
return bill;

}

Classes and objects: Part III 69

James Tam

Body For DetermineBillType

public void determineBillType ()
{

System.out.println("Please indicate the method of billing.");
System.out.println("(f)lat rate");
System.out.println("(m)etered billing");
billType = (char) Console.in.readChar();
Console.in.readChar();

}

James Tam

Body For GetSquareFootage

public int getSquareFootage ()
{

int squareFootage;
System.out.print("Enter square footage of dwelling: ");
squareFootage = Console.in.readInt();
Console.in.readChar();
return squareFootage;

}

Classes and objects: Part III 70

James Tam

Body For CalculateFlatRate

public double calculateFlatRate (int squareFootage)
{

double total;
total = BASE_FLAT_RATE_VALUE + (squareFootage *

RATE_PER_SQUARE_FOOT);
return total;

}

James Tam

Creating A Driver For CalculateFlatRate

class DriverCalculateFlatRate
{

public static void main (String [] args)
{

WaterBill water = new WaterBill ();
double bill;
int squareFootage;

squareFootage = 0;
bill = water.calculateFlatRate(squareFootage);
if (bill != 10)

System.out.println("Incorrect flat rate for 0 square feet");
else

System.out.println("Flat rate okay for 0 square feet");

Classes and objects: Part III 71

James Tam

Creating A Driver For CalculateFlatRate (2)

squareFootage = 1000;
bill = water.calculateFlatRate(squareFootage);
if (bill != 20)

System.out.println("Incorrect flat rate for 1000 square feet");
else

System.out.println("Flat rate okay for 1000 square feet");
}

} // End of Driver

James Tam

Body For GetCubicMetersUsed

public double getCubicMetersUsed ()
{

double cubicMetersUsed;
System.out.print("Enter the number of cubic meters used: ");
cubicMetersUsed = Console.in.readDouble();
Console.in.readChar();
return cubicMetersUsed;

}

Classes and objects: Part III 72

James Tam

Body For CalculateMeteredRate

public double calculateMeteredRate (double cubicMetersUsed)
{

double total;
total = cubicMetersUsed * RATE_PER_CUBIC_METER;
return total;

}

James Tam

Driver For CalculateMeteredRate

class DriverCalculateMeteredRate
{

public static void main (String [] args)
{

WaterBill water = new WaterBill ();
double bill;
double cubicMetersUsed;

cubicMetersUsed = 0;
bill = water.calculateMeteredRate(cubicMetersUsed);
if (bill != 0)

System.out.println("Incorrect metered rate for 0 cubic meters consumed.");
else

System.out.println("Metered rate for 0 cubic meters consumed is okay.");

Classes and objects: Part III 73

James Tam

Driver For CalculateMeteredRate (2)

cubicMetersUsed = 100;
bill = water.calculateMeteredRate(cubicMetersUsed);
if (bill != 100)

System.out.println("Incorrect metered rate for 100 cubic meters
consumed.");

else
System.out.println("Metered rate for 100 cubic meters consumed is

okay.");
}

}

James Tam

General Rule Of Thumb: Test Drivers

• Write a test driver class if you need to verify that a method
does what it is supposed to do (is it correct).

•e.g., When a method performs a calculation

• Benefits of writing test drivers:
1) Ensuring that you know precisely what your code is

supposed to do.
2) Making code more robust (test it before adding it the code

library).

Classes and objects: Part III 74

James Tam

You Should Now Know

• How the inheritance relationship works
•When to employ inheritance and when to employ other types of
relations

•What are the benefits of employing inheritance
• How to create and use an inheritance relation in Java
•How casting works within an inheritance hierarchy
•What is the effect of the keyword "final" on inheritance relationships
•Issues related to methods and attributes when employing inheritance

• What is method overloading?
•How does it differ from method overriding
•What is polymorphism

• What are interfaces/types
•How do types differ from classes
•How to implement and use interfaces in Java

James Tam

You Should Now Know (2)

•What are abstract classes in Java and how do they differ
from non-abstract classes and interfaces

•UML notations for inheritance and packages
•How do packages work in Java

•How to utilize the code in pre-defined packages
•How to create your own packages

•How the 4 levels of access permission work
•Some general design principles

•What constitutes a good or a bad design.

•How to write test drives and what are the benefits of using
test drivers in your programs

