CPSC 233: Introduction to
Computers 11

S (5
JAVA

=\

A

Object-oriented . .
Object-oriented

programming ‘ - desi
' esign

And a whole lot ole fun
(you’ll have a ...)

James Tam

Administrative Information For James Tam

Contact Information

* Office: ICT 707

 Phone: 210-9455

* Email: tamj@cpsc.ucalgary.ca

Office hours
» Office hours: MW 12:00 — 12:50
* Email: (any time)

* Appointment: phone or call
* Drop by for urgent requests (but no guarantee that I will be in!)

James Tam

Feedback

Dilbert © United Features Syndicate

James Tam

How You Will Be Evaluated

* Assignments (30%)
—Assignment 1 (Due Wednesday September 22, worth 2% of overall
grade): Writing a simple Java program
—Assignment 2 (Due Wednesday September 29, worth 2% of overall
grade): Introduction to classes

—Assignment 3 (Due Wednesday October 13, worth 5% of overall
grade): Dynamic memory allocation through an array of
references

— Assignment 4 (Due Friday October 29, worth 7% of overall
grade): Writing larger programs with multiple classes

—Assignment 5 (Due Friday November 26, worth 8% of overall
grade): Inheritance and exceptions

—Assignment 6 (Due Wednesday December 8, worth 6% of overall
grade): Designing a simple graphical-user interface, file input and
output

James Tam

How You Will Be Evaluated (3)

*Exams (70%)
—Midterm exam (30%): Written in-class on Friday October 29.

—Final exam (40%): Scheduled by the Registrar’s Office sometime
between December 13 — 22.

Note: You must pass both the assignment component (30%) and the exam component
(70%) in order to get a C- or higher in the course.

James Tam

Course Resources

» Course website:
—http://www.cpsc.ucalgary.ca/~tamj/233

» Course textbook:
—Big Java by Cay Horstmann (Wiley)

* Another good website (from the creators of Java):
—http://java.sun.com/j2se/1.4.2/docs/index.html

James Tam

How To Use The Course Resources

*They are provided to support and supplement lectures

*Neither the course notes nor the text book are meant as a
substitute for regular attendance to lecture and lab

BEELER'®Z

James Tam

CPSC 231: What Was It Like

A whole lot of work!

James Tam

CPSC 233: What To Expect

Images and wav file from “The Simpsons” © Fox

James Tam

Pascal-Java Transition

* History behind Java

* Creating, compiling and executing programs
* Basic program structure (smallest program)
* Common mistakes when going from Pascal to Java
* Documentation

* Text based output

* Variables and constants

* Operators

* Some Java libraries

* Text based input

* Decision making

* Loops

James Tam

Java: History

*Computers of the past

Picture from “The History of Computing Technology” by Michael R. Williams James Tam

Java: History (2)

*The invention of the microprocessor revolutionized computers

James Tam

Java: History (3)

[t was believed that the next step for microprocessors was to
have them run intelligent consumer electronics

James Tam

Java History (4)

*Sun Microsystems funded an internal research project
“Green” to investigate this opportunity.
—Result: A programming language called “Oak”

v
\ V

Blatant advertisement: James Gosling was a
graduate of the U of C Computer Science
program.

Wav file from “The Simpsons” © Fox, Image from the website of Sun Microsystems James Tam

Java History (5)

—Problem: There was already a programming language called Oak.

—The “Green” team met at a local coffee shop to come up with
another name... Java

S—

JAVA

James Tam

*The concept of intelligent devices didn’t
catch on

*Project Green and work on the Java

Java: History (6)

language was nearly canceled

James Tam

Java: History (7)

*The popularity of the Internet resulted in Sun’s re-focusing
of Java on computers.

*Prior to the advent of Java, web pages allowed you to
download only text and images.

Server containing a
Your computer at home

web page
running a web browser
S 5 User clicks on a link
m * Images and text get ' m
u T downloaded !
R A

James Tam

Java: History (8)

+ Java enabled web browsers allowed for the downloading of

programs (Applets)
Your computer at home Server containing a
running a web browser web page

User clicks on a link

—— Java Applet downloaded -
i—

Java version of the Game of Life: http://www.bitstorm.org/gameoflife/

Online checkers: http://www.darkfish.com/checkers/index.html

James Tam

Java: Write Once, Run Anywhere

*Consequence of Java’s history:
platform-independence

Mac user running Netscape Web page stored on Unix server

Virtual machine translates byte code to =
native Mac code and the Applet is run Byte code is downloaded |

g F 12
1 Via

F

Windows user running Internet Explorer

Byte code
(part of web

page)

James Tam

Java: Write Once, Run Anywhere

*Consequence of Java’s history:
platform-independent

Mag user running Netscape Web page stored on Unix server

Click on link to Applet .
Byte code is downloaded * MasterCard

Windows user running Internet Explorer

Virtual machine translates byte code to

native Windows code and the Applet is run

James Tam

Java: Write Once, Run Anywhere (2)

* But Java can also create standard (non-web based) programs

Don’t play this

Dungeon Master (Java version) game on the CPSC
network!

http://www.cs.pitt.edu/~alandale/dmjava/

James Tam

Review: Compiling Pascal Programs

Machine

Pascal language

program Pascal program
compiler

input output
filename.p P i a.out

James Tam

Compiling Pascal Programs On Different
Operating Systems

Solaris _ﬂﬁ
compiler
a.out (Solaris)

| &

Pascal Windows

program \i 0 mpijler

a.out (Windows)

AmigaDOS
compiler

%—»{ a.out (AmigaDOS) ‘

James Tam

Java Vs. Java Script

Java (this is what you need to know for this course)

* A complete programming language developed by Sun

* Can be used to develop either web based or stand-alone software
* Many pre-created ode libraries available

» For more complex and powerful programs

Java Script (not covered in this course)
* A small language that’s mostly used for web-based applications

* Good for programming simple special effects for your web page e.g.,
roll-overs

* e.g., http://www.discoverit.co.uk/webdesign/javascript.htm

James Tam

Which Java?

«Java 2 SDK (Software Development Kit), Standard Edition
1.4.2. includes:
—JDK (Java development kit) — for developing Java software

—JRE (Java Runtime environment) — only good for running Java
software

-Java Plug-in — a special version of the JRE designed to run through web
browsers

http://java.sun.com/j2se/1.4.2/download.html

James Tam

Which Java?

«Java 2 SDK (Software Development Kit), Standard Edition
1.4.2

)@K (Java development kit) — for developing Java softwarg

—JRE (Java Runtime environment) — only good for running Java
software

-Java Plug-in — a special version of the JRE designed to run through web
browsers

http://java.sun.com/j2se/1.4.2/download.html

James Tam

After Installation: Getting The Compiler And
Interpreter Working (Windows 2000+)

* You need to set the path to the compiler and the class paths
for your code

1. Path — when a program is run (e.g., the Java compiler) it indicates
the folder that the program resides.

2. Class path — when a Java program is being compiled or run it
indicates where to find the code.

Knowledge of paths and classpaths is not necessary for the exam. You only need to do this if you don’t want to
use a remote connection (e.g., ssh) when working from home. Note: We are not responsible if you accidentally
damage your system settings on your operating system while setting the paths and classpaths. On your
Computer Science account all of this has already been preconfigured for you.

James Tam

Setting The Path And Classpath

*Click the start button

classes_obj...

A A2 20HE |

James Tam

Setting The Path And Classpath

*Select the “Settings” and then the “Control panel” menu

M Taskbar 6 Sart Meru, .,

Mstart || 1 & = 12 O W Al Microsoft Photobraw - [p... | (54 Cantral @

James Tam

Setting The Path And Classpath

*Select the “System” icon

fubimen |) s Pl :] i
— s -

v T $ W om @
o Accembilly Adifwwre A3iforeo dsheive Susreic
Contral Panel o WEdams Peogies o Lpaies

Ik
Syebeim I.ﬁ] k' g 14
FaNuye; ST i CaisiTwre bl Vodewon [eiplss Fokde Opties. Fosiy
Pk
= Palborm delda n o
wries JI00 g0 }‘L # &, 5 .'_’
- Irdwiest P "
i o
% g v
S = & @ @
Wmss Weashog] Paore sl Poss Optiois Fees
fidig b
QT Pegorsil Srartmmarel Schwdued Soursds axd
Cpters prmp. Tisks [ry
2 .
hipv ke
mwards Nsivork
Frosaliey oo ad arudin e ey eis s eed e P e

James Tam

Setting The Path And Classpath

*Select the “advanced” tab

P ——— m
Titvesd | Motrch Wsvbcion | Hasdase | Use Praiies uftg]

wl A e T
; s gt b geead ol pra cTEAn

Fotomnares (.]
Ervmermmnt Vwmbies
bt o wkawsban
Eore crwand Vb
g o] Recomesy

j llll’:ﬂm oo Rl 0 {00l o b B

inda i 0 e canes paa oogier b fop

James Tam

Setting The Path And Classpath

*Click on the “Environment variables” button.

[pramm oot 2ix
Trtvesd | Matnok WavBogion| Wisdaze | Uss Praiies dckared |

WI AR RON e e
E wihwh afiects e et ol Py corgape ?

Pt earsarcs (phan:]
Ermacemen ¥ ek
gy Ereireent vemebias iy g whee o e celen
g o ik wkany

%“_-I
— A

j su:)_ el ytal COmQuiber it) B
oo m.-—_—-—l--ly

Flahg o Fesomey

o] _cowe | o |

James Tam

Setting The Path

*Select the “path” option for the first list (should be labeled as “User
variables for <name of the user that you are logged in as>").

*Click on the edit button.

nvironment Yariables 21|

User variables for tami

Warlable | Vahse -
CLASSPATH C:\Program Files!j2sdk_nbiiZsdkl 4.2
TNCLUDE CH\Program Files\Microseft Visud Studo |,
1avA_HOME CH\Progeam Fles)jzadl_nb|jzadkl .

El

C:\Progeam FAlesiMicroscft Wsua Studo ..
g m Fil L

System variables
Warlable [vale i’
CLASSPATH S CVTEMY davateablpuntings0; C: IBMYD, .
Comspsc CWINNT Y system32 emd. exe
HELP BT Java)eshihelp;
IMNINST bl
MNINS TSR AIMNng_NT |

James Tam

Setting The Path

+In the dialog box that comes up, select the input field labeled “Variable

value”.
*Go to the end of the text string and enter in the path where you installed

Java. If you installed it in the default location enter
“C:\j2sdk1.4.2_01\bin”. The semicolon is needed to separate the path of

one installed program from another.
*Take care that you do not delete any existing text or other programs will

not work properly!
*Then click on the “OK” button and you are now finished setting the path

*You’ve now finished setting the path for the java compiler and interpeter

Yariable Name: |paTH

Variable Value: | irtizsdk1.4.2_011bin

s

7 James Tam

Setting The Classpath

*Now click the “New” button just under the first list (the same
one that you just selected when setting the path).

T — i
e sk For by
vivitie [T} =]
1S HOME P Ml Cack,_rirSudd. 4.2
m oy P! Pt Aol Sracka
PATH) s Pl 22H Crmwss stees
iy T Decurerdy ered Setiragsl lewes Ty J
T Sl fenumrmrts ared Settragel larwes Tan)... =
TR ey w
[[il
CLATRATH A LB Ly e unires 00 IEMY),
o T 5 e e o
LR B Ly st fosln
(VT e
IVNPETSN Cilivang M =
o | o |
James Tam
Setting The Classpath

*For the input field labeled “Variable name” enter in “CLASSPATH”

*For the input field labeled “Variable value” enter in “.” (a period).

*The period indicates that when you run the Java compiler or interpreter that
it should look in the current folder for the code (you can add additional
folders as you desire).

*You’ve now finished setting the classpath.
*Reboot your computer and the settings should take effect for that user.

20

Varisble Name: | CLASSPATH

oK ,-TE I Cancel

Yariable Yalue; | .

James Tam

Smallest Compilable And Executable
Pascal Program

program smallest;
begin
end.

James Tam

Smallest Compilable And Executable Java Program

class Smallest

{

public static void main (String[] args)

{
b

James Tam

Creating, Compiling And Running Java Programs
On The Computer Science Network

Java program //Type it in with the text editor of your choice

e
7

filename.java -
¥

(Unix file)
\J ava compiler
- a : I Java byte code

_- filename.class

-~

To corﬁpile the program, in (Unix file)

Unix type "javac
filename.java™
Java Interpreter
/*Wz

James Tam

To run the interpreter, in -
Unix type “java filename"

Compiling The Smallest Java Program

Smallest.java

class Smallest) Type “javac
{ /" Smallest.java”
public static void main (String[] args) ,
{ /
1
} /
I//
javac
\Smallest.class
(Java byte code)
10000100000001000

00100100000001001

James Tam

Running The Smallest Java Program

Smallest.class
(Java byte code)

10000100000001000
00100100000001001

7
Type “java Smallest”

James Tam

The Semicolon In Pascal

* Pascal

+ Used to separate statements within a block of statements

* This is okay in Pascal:
program test (output);
begin

writeln("one");
writeln("two")
end.

James Tam

The Semicolon In Java

e Java
* Follows each statement

* This is not okay in Java:
class BadExample

{
public static void main (String [] args)
{
System.out.println("one");
System.out.println("two")
}
}

James Tam

Braces In Java

* Unlike with Pascal, curly braces are not used for
documentation.

* They are used to enclose a block of code

program smallest;

begin Encloses the starting
point of a Pascal

end. program

class Smallest

{

public static void main (String[] args)

{ Encloses the starting
point of a Java
} program

James Tam

Documentation / Comments

Pascal
(* Start of documentation
*) End of documentation

Java
*Multi-line documentation
/* Start of documentation
*/ End of documentation
*Documentation for a single line
//Everything until the end of the line is a comment

James Tam

Output In Pascal And Java

Pascal
write('...");
writeln (...");

Java
System.out.print(“...”);
System.out.println(*...”);

James Tam

Java Output

*Format:
System.out.println(<string or variable name one> + <string or variable name
two>..);

*Examples (Assumes a variable called num has been declared.):
System.out.println("Good-night gracie!");
System.out.print(num);

System.out.println("num=" +num);

James Tam

Output : Some Escape Sequences For Formatting

Escape sequence | Description

\t Horizontal tab
\r Carriage return
\n New line

\? Double quote

\\ Backslash

James Tam

Some Built-In Types Of Variables In Java

Type Description

byte 8 bit signed integer

short 16 but signed integer

int 32 bit signed integer

long 64 bit signed integer

float 32 bit signed real number

double 64 bit signed real number

char 16 bit Unicode character

boolean 1 bit true or false value

String A sequence of characters between double
quotes ()

James Tam

Java Vs. Pascal Variable Declarations

Pascal

Format:
<variable name> : variable type;

Example
num : integer;

Java

Format:
variable type <variable name>;

Example:
long numl;
double num2 = 2.33;

James Tam

Location Of Variable Declarations

class <name of class>

{

public static void main (String[] args)
{

// Local variable declarations occur here

<< Program statements >>

James Tam

Constants In Pascal Vs. Java

Pascal:
Format:

const
<CONSTANT NAME> = <Value>;

Example:
const
SIZE= 5;

Java
Format:
final <constant type> <CONSTANT NAME> = <value>;

Example:
final int SIZE = 100;

James Tam

Location Of Constant Declarations

class <name of class>

{
public static void main (String[] args)
{
// Local constant declarations occur here
// Local variable declarations
< Program statements >>
h
h
James Tam
Java Keywords
abstract boolean break byte case catch char
class const continue default do double else
extends final finally float for goto if
implements import instanceof int interface long native
new package private protected public return short
static super switch synchronized this throw throws
transient try void volatile while

James Tam

Variable Naming Conventions In Java

» Compiler requirements

—~Can’t be a keyword nor can the names of the special constants true,
false or null be used

—Can be any combination of letters, numbers, underscore or dollar
sign (first character must be a letter or underscore)

» Common stylistic conventions
—The name should describe the purpose of the variable
—Avoid using the dollar sign
—With single word variable names, all characters are lower case
-e.g., double grades;

—Multiple words are separated by capitalizing the first letter of each
word except for the first word
-e.g., String firstName = “James”;

James Tam

Constant Naming Conventions In Java

* Compiler requirements

—Can’t be a keyword nor can the names of special constants true,
false or null be used

—~Can be any combination of letters, numbers, underscore or dollar
sign (first character must be a letter or underscore)

* Common stylistic conventions
—The name should describe the purpose of the constant
—Auvoid using the dollar sign
—All characters are capitalized
-e.g., float SIZE = 100;

—Multiple words are separated with an underscore between each
word.

-e,g, float CORPORATE TAX RATE = 0.46;

James Tam

Common Java Operators / Operator Precedence

Precedence | Operator | Description Associativity
level
1 expression++ | Post-increment Right to left
expression-- | Post-decrement
2 ++expression | Pre-increment Right to left
--expression | Pre-decrement
+ Unary plus
- Unary minus
! Logical negation
~ Bitwise complement
(type) Cast

James Tam

Common Java Operators / Operator Precedence

Precedence | Operator | Description Associativity
level
3 * Multiplication Left to right
/ Division
% Remainder/modulus
4 + Addition or String Left to right
concatenation
- Subtraction
5 << Left bitwise shift Left to right
>> Right bitwise shift

James Tam

Common Java Operators / Operator Precedence

Precedence | Operator | Description Associativity
level
6 < Less than Left to right
<= Less than, equal to
> Greater than
>= Greater than, equal to
7 == Equal to Left to right
1= Not equal to
8 & Bitwise AND Left to right
9 A Bitwise exclusive OR Left to right

James Tam

Common Java Operators / Operator Precedence

Precedence | Operator | Description Associativity
level

10 | Bitwise OR Left to right

11 && Logical AND Left to right

12 | Logical OR Left to right

James Tam

Common Java Operators / Operator Precedence

Precedence | Operator | Description Associativity
level
13 = Assignment Right to left

Add, assignment
Subtract, assignment
Multiply, assignment
Division, assignment
Remainder, assignment
Bitwise AND, assignment
Bitwise XOR, assignment
Bitwise OR, assignment
Left shift, assignment
Right shift, assignment

James Tam

class Examplel

{

Post/Pre Operators

public static void main (String [] args)

{

int num = 5;
System.out.println(num);

num-++;

System.out.println(num);

++num;

System.out.println(num);

System.out.println(++num);
System.out.println(num-+-+);

James Tam

Post/Pre Operators (2)

class Examplel A
{
public static void main (String [] args)
{
int numl, num2;
numl = 5;
num?2 = ++numl * numl++;
System.out.println("num1=" + numl);
System.out.println("num2=" + num?2);

James Tam

Unary And Casting Operators

class Example2
{
public static void main (String [] args)
{
int num = 5;
float f1;
System.out.println(num);
num = num * -num;
System.out.println(num);
fl = num;
System.out.println(num + " " + fl);
num = (int) fl;
System.out.println(num + " " + fl);

James Tam

Some Useful Java Libraries!

Library Purpose

java.lang The core part of the Java language e.g., Math functions,
basic console (screen) output.

java.util Extra utilities e.g., Random number generators,
automatically resizable arrays

java.io Input and output

java.awt The original library for developing GUI’s (graphical user

interfaces)

Note: The use of the code in any of these libraries (except java.lang) requires the use of an import
statement at the top of the file:

Format: import <library name>

Example: import java.util.*;

James Tam

Advanced Output (Optional)

* You can employ the predefined code in TIO
(http://www.cse.ucsc.edu/~charlie/java/tio/)

* To use:

—(In Unix):

-Create link from the directory where your Java code resides to the
following directory /home/233/tio

-Do this by typing the following in that directory:
In -s /home/233/tio

* (At the start of the Java program include the following

statement):
import tio.*;

James Tam

Advanced Output (2)

Statement Effect
Console.out.printf(<variable or stringl > + <variable or Prints contents of
string 2> ...); field
MUST EVENTUALLY BE FOLLOWED BY A PRINTFLN!
Console.out.printfin((<variable or stringl >+ <variable or | Prints contents of
string 2> ...); field and a new
line
Console.out.setWidth(<integer value>), Sets the width of
a field
Console.out.setDigits(<integer value>); Sets the number
of places of
precision
Console.out.setJustify(Console.out. LEFT); Left or right
Console.out.setJustify(Console.out. RIGHT); Justify field

James Tam

Advanced Output: An Example

import tio.*;
class Outputl
{
public static void main (String [] args)
{
int num = 123;
double db = 123.45;
Console.out.setJustify(Console.out. LEFT);
Console.out.setWidth(6);
Console.out.setDigits(1);
Console.out.printf("Start line");
Console.out.printf(num);
Console.out.printf(db);
Console.out.printf("End of line");
Console.out.printfln("");

James Tam

Text-Based Java Input

* You can employ the predefined code in TIO
* (http://www.cse.ucsc.edu/~charlie/java/tio/)

* To use:
* (In Unix):

—Create link from the directory where your Java code resides to the

following directory /home/233/tio

—Do this by typing the following in that directory:

In -s /home/233/tio

* (At the start of the Java program include the following

statement):
import tio.*;

James Tam

Text-Based Java Input (2)

1 Console.in.readChar()

Reads in a character
Returns an integer

2 Console.in.readInt()

Reads some characters
Returns an integer

3 Console.in.readLong()

Reads some characters
Returns a long

4 Console.in.readFloat()

Reads some characters
Returns a float

5 Console.in.readDouble()

Reads some characters
Returns a double

James Tam

Text-Based Java Input (3)

6 | Console.in.readWord() | Reads in a word

Returns a String

7 | Console.in.readLine() | Reads in a line

Returns a String

James Tam

Text-Based Java Input (4)

*Caution! The input routines (2 — 6) accept a series of
characters that end with white space but the white space is

still left on the input stream. Leading white space is
removed.

*Work-around: Follow each of these input statements with a
readLine() as needed.

James Tam

Text-Based Java Input: An Example

import tio.*;
class Inputl
{
public static void main (String [] args)
{ . .
int 1n;
float fl;
String st;

System.out.print("Type in an integer: ");

in = Console.in.readInt();

System.out.print("Type in a float: "); Problem at
fl = Console.in.readFloat(); this point

System.out.print("Type in a sent)
st = Console.in.readLine();

James Tam

Text-Based Java Input: An Example

import tio.*;
class Inputl
{
public static void main (String [] args)
{ . .
nt 1n;
float fl;
String st;

System.out.print("Type in an integer: ");
in = Console.in.readInt();
System.out.print("Type in a float: ");

fl = Console.in.readFloat();

st = Console.in.readLine();

Work-around

System.out.print("Type in a sentence: ");
st = Console.in.readLine();

James Tam

Decision Making In Java

* Pascal

—If-then
—If-then, else
—If-then, else-if
—Case-of

* Java

—If

—If, else
—If, else-if
—Switch

James Tam

Decision Making: If

Format:

if (Boolean Expression)
Body

Example:

if(x!=y)
System.out.println(“X and Y are not equal”);

if (x>0) && (y > 0))
{

System.out.printin("X and Y are positive");

}

James Tam

Decision Making: If, Else

Format:
if (Boolean expression)
Body of if
else
Body of else

Example:
if (x <0)
System.out.println(“X is negative”);
else
System.out.println(“X is non-negative”);

James Tam

If, Else-If

Format:
if (Boolean expression)
Body of if
else if (Boolean expression)
Body of first else-if

else if (Boolean expression)
Body of last else-if

else
Body of else

James Tam

If, Else-If (2)

Example:
if (gpa ==4)
{
System.out.println("A");
}
else if (gpa == 3)
{
System.out.println("B");
H
else if (gpa ==2)
{
System.out.println("C");
H

James Tam

If, Else-If (2)

else if (gpa==1)
{

System.out.println("D");

}

else

{
System.out.println("Invalid gpa");

}

James Tam

Alternative To Multiple Else-If’s: Switch

Format:

switch (variable name)

{

case <integer value>:
Body
break;

case <integer value>:
Body
break;

default:
Body

}

1 The type of variable in the brackets can be a byte, char, short, int or long

James Tam

Alternative To Multiple Else-If’s: Switch (2)

Format:
switch (variable name)

{

case ‘<character value>’:
Body
break;

case ‘<character value>’:
Body
break;

default:
Body

}

1 The type of variablein the brackets can be a byte, char, short, int or long

James Tam

Loops

Pascal Pre-test loops
*For-do
*While-do

Java Pre-test loops

*For
*While

Pascal Post-test loops
*Repeat-until

Java Post-test loops
*Do-while

James Tam

While Loops

Format:
while (Expression)
Body

Example:
inti=1;
while (i <= 1000000)
{

System.out.println(“How much do I love thee?”);
System.out.println(“Let me count the ways: “, + 1);

i=i+1;

James Tam

For Loops

Format:
for (initialization; Boolean expression; update control)
Body

Example:
for (i=1;1<=1000000; i++)
{

System.out.println(“How much do I love thee?”);
System.out.println(“Let me count the ways: ” + 1);

James Tam

Do-While Loops

Format:

do
Body
while (Boolean expression);

Example:
char ch ="A";
do
{
System.out.println(ch);
ch++;

H
while (ch !1="K");

James Tam

Do-While Loops

Format:
do

Body Unlike Pascal the loop

. . body executes while
while (Boolean expression); the expression is true

Example:
char ch ="A";
do
{

System.out.println(ch);
ch++;

} *
while (ch 1="K');

James Tam

Ending Loops Early: Break

*When this statement is reached the loop ends. (You “break
out of” the loop).

Loop
{

<< Statements in body >>

break; ®

<< Statements in body >>
}

| << Statements after loop >> |<7

James Tam

Ending Loops Early: An Example

import tio.*;
class BreakExample

{

public static void main (String [] args)

int number, sum;

sum = 0;

James Tam

Ending Loops Early: An Example (2)

while (true)
{
System.out.print("\tPositive number (negative to quit): ");
number = Console.in.readInt();
Console.in.readLine();
if (number >= 0)
sum += number;
else
break;
}

System.out.println("Sum is..." + sum);

James Tam

Skipping An Iteration Of A Loop: Continue

*When this statement is reached control returns to the

beginning of the loop. (You swing back up to the top of the

loop).

Loop
{

<< Statements in body >>

continue; @

<< Statements in body >>

James Tam

Skipping An Iteration of A Loop: Continue

for (1= 1;1i<=10; i++)
{

if(1%2==0)

{

continue;

}

System.out.println("i=" + 1);

}

James Tam

Statements That Results In Abnormal Execution Of
Loops Should Be Used Sparingly

* They make the program harder to trace

class Test

f
1

public static void main (String [] args)
{
for (inti=1;1<10; it++)
{
if(i==95)
break;
System.out.print(i);
¥
}
}

* Typically a break is only used for exiting nested loops
cleanly

James Tam

You Should Now Know

* How Java was developed and the impact of it's roots on the
development of this language

* The basic structure required in creating a simple Java
program as well as how to compile and run programs

* Methods of documenting a Java program

* How to perform text based input and output in Java

* The declaration of constants and variables

* What are the common Java operators and how they work

* The structure and syntax of decision making and looping
constructs

James Tam

