
Introduction to CPSC 233 1

James Tam

CPSC 233: Introduction to
Computers II

Object-oriented
programming Object-oriented

design

And a whole lot ole fun
(you’ll have a …)

James Tam

Administrative Information For James Tam

Contact Information
• Office: ICT 707
• Phone: 210-9455
• Email: tamj@cpsc.ucalgary.ca

Office hours
• Office hours: MW 12:00 – 12:50
• Email: (any time)
• Appointment: phone or call
• Drop by for urgent requests (but no guarantee that I will be in!)

Introduction to CPSC 233 2

James Tam

Feedback

???

Dilbert © United Features Syndicate

James Tam

How You Will Be Evaluated

• Assignments (30%)
―Assignment 1 (Due Wednesday September 22, worth 2% of overall

grade): Writing a simple Java program
―Assignment 2 (Due Wednesday September 29, worth 2% of overall

grade): Introduction to classes
―Assignment 3 (Due Wednesday October 13, worth 5% of overall

grade): Dynamic memory allocation through an array of
references

― Assignment 4 (Due Friday October 29, worth 7% of overall
grade): Writing larger programs with multiple classes

―Assignment 5 (Due Friday November 26, worth 8% of overall
grade): Inheritance and exceptions

―Assignment 6 (Due Wednesday December 8, worth 6% of overall
grade): Designing a simple graphical-user interface, file input and
output

Introduction to CPSC 233 3

James Tam

How You Will Be Evaluated (3)

•Exams (70%)
―Midterm exam (30%): Written in-class on Friday October 29.
―Final exam (40%): Scheduled by the Registrar’s Office sometime

between December 13 – 22.

Note: You must pass both the assignment component (30%) and the exam component
(70%) in order to get a C- or higher in the course.

James Tam

Course Resources

• Course website:
―http://www.cpsc.ucalgary.ca/~tamj/233

• Course textbook:
―Big Java by Cay Horstmann (Wiley)

• Another good website (from the creators of Java):
―http://java.sun.com/j2se/1.4.2/docs/index.html

Introduction to CPSC 233 4

James Tam

How To Use The Course Resources

•They are provided to support and supplement lectures

•Neither the course notes nor the text book are meant as a
substitute for regular attendance to lecture and lab

James Tam

CPSC 231: What Was It Like

A whole lot of work!

Introduction to CPSC 233 5

James Tam

CPSC 233: What To Expect

Even more work!!!

Images and wav file from “The Simpsons” © Fox

James Tam

Pascal-Java Transition

• History behind Java
• Creating, compiling and executing programs
• Basic program structure (smallest program)
• Common mistakes when going from Pascal to Java
• Documentation
• Text based output
• Variables and constants
• Operators
• Some Java libraries
• Text based input
• Decision making
• Loops

Introduction to CPSC 233 6

James Tam

Java: History

•Computers of the past

Picture from “The History of Computing Technology” by Michael R. Williams

James Tam

Java: History (2)

•The invention of the microprocessor revolutionized computers

Introduction to CPSC 233 7

James Tam

Java: History (3)

•It was believed that the next step for microprocessors was to
have them run intelligent consumer electronics

James Tam

Java History (4)

•Sun Microsystems funded an internal research project
“Green” to investigate this opportunity.
―Result: A programming language called “Oak”

Blatant advertisement: James Gosling was a
graduate of the U of C Computer Science
program.

Wav file from “The Simpsons” © Fox, Image from the website of Sun Microsystems

Introduction to CPSC 233 8

James Tam

Java History (5)

―Problem: There was already a programming language called Oak.
―The “Green” team met at a local coffee shop to come up with

another name... Java

James Tam

Java: History (6)

•The concept of intelligent devices didn’t
catch on

•Project Green and work on the Java
language was nearly canceled

Introduction to CPSC 233 9

James Tam

Java: History (7)

•The popularity of the Internet resulted in Sun’s re-focusing
of Java on computers.

•Prior to the advent of Java, web pages allowed you to
download only text and images.

Server containing a
web pageYour computer at home

running a web browser

User clicks on a link

Images and text get
downloaded

James Tam

Java: History (8)

• Java enabled web browsers allowed for the downloading of
programs (Applets)

Your computer at home
running a web browser

User clicks on a link

Java Applet downloaded

Java version of the Game of Life: http://www.bitstorm.org/gameoflife/

Online checkers: http://www.darkfish.com/checkers/index.html

Server containing a
web page

Introduction to CPSC 233 10

James Tam

Java: Write Once, Run Anywhere

•Consequence of Java’s history:
platform-independence

Mac user running Netscape

Windows user running Internet Explorer

Web page stored on Unix server

Click on link to Applet

Byte code is downloaded

Virtual machine translates byte code to

native Mac code and the Applet is run

Byte code
(part of web
page)

James Tam

Java: Write Once, Run Anywhere

•Consequence of Java’s history:
platform-independent

Mac user running Netscape

Windows user running Internet Explorer

Web page stored on Unix server

Click on link to Applet
Byte code is downloaded

Virtual machine translates byte code to

native Windows code and the Applet is run

Introduction to CPSC 233 11

James Tam

Java: Write Once, Run Anywhere (2)

• But Java can also create standard (non-web based) programs

Dungeon Master (Java version)

http://www.cs.pitt.edu/~alandale/dmjava/

Don’t play this
game on the CPSC
network!

James Tam

Review: Compiling Pascal Programs

filename.p

Pascal
program

gpc

Pascal
compiler

input a.out

Machine
language
program

output

Introduction to CPSC 233 12

James Tam

Compiling Pascal Programs On Different
Operating Systems

Solaris
compiler

a.out (Solaris)

AmigaDOS
compiler

a.out (AmigaDOS)

Windows
compiler

a.out (Windows)

Pascal
program

James Tam

Java Vs. Java Script

Java (this is what you need to know for this course)
• A complete programming language developed by Sun
• Can be used to develop either web based or stand-alone software
• Many pre-created ode libraries available
• For more complex and powerful programs

Java Script (not covered in this course)
• A small language that’s mostly used for web-based applications
• Good for programming simple special effects for your web page e.g.,

roll-overs
• e.g., http://www.discoverit.co.uk/webdesign/javascript.htm

Introduction to CPSC 233 13

James Tam

Which Java?

•Java 2 SDK (Software Development Kit), Standard Edition
1.4.2. includes:

―JDK (Java development kit) – for developing Java software
―JRE (Java Runtime environment) – only good for running Java

software
-Java Plug-in – a special version of the JRE designed to run through web
browsers

http://java.sun.com/j2se/1.4.2/download.html

James Tam

Which Java?

•Java 2 SDK (Software Development Kit), Standard Edition
1.4.2

―JDK (Java development kit) – for developing Java software
―JRE (Java Runtime environment) – only good for running Java

software
-Java Plug-in – a special version of the JRE designed to run through web
browsers

http://java.sun.com/j2se/1.4.2/download.html

Introduction to CPSC 233 14

James Tam

After Installation: Getting The Compiler And
Interpreter Working (Windows 2000+)

• You need to set the path to the compiler and the class paths
for your code

1. Path – when a program is run (e.g., the Java compiler) it indicates
the folder that the program resides.

2. Class path – when a Java program is being compiled or run it
indicates where to find the code.

Knowledge of paths and classpaths is not necessary for the exam. You only need to do this if you don’t want to
use a remote connection (e.g., ssh) when working from home. Note: We are not responsible if you accidentally
damage your system settings on your operating system while setting the paths and classpaths. On your
Computer Science account all of this has already been preconfigured for you.

James Tam

Setting The Path And Classpath

•Click the start button

Introduction to CPSC 233 15

James Tam

Setting The Path And Classpath

•Select the “Settings” and then the “Control panel” menu

James Tam

Setting The Path And Classpath

•Select the “System” icon

Introduction to CPSC 233 16

James Tam

Setting The Path And Classpath

•Select the “advanced” tab

James Tam

Setting The Path And Classpath

•Click on the “Environment variables” button.

Introduction to CPSC 233 17

James Tam

Setting The Path

•Select the “path” option for the first list (should be labeled as “User
variables for <name of the user that you are logged in as>”).

•Click on the edit button.

James Tam

Setting The Path

•In the dialog box that comes up, select the input field labeled “Variable
value”.

•Go to the end of the text string and enter in the path where you installed
Java. If you installed it in the default location enter
“;C:\j2sdk1.4.2_01\bin”. The semicolon is needed to separate the path of
one installed program from another.

•Take care that you do not delete any existing text or other programs will
not work properly!

•Then click on the “OK” button and you are now finished setting the path
•You’ve now finished setting the path for the java compiler and interpeter

Introduction to CPSC 233 18

James Tam

Setting The Classpath

•Now click the “New” button just under the first list (the same
one that you just selected when setting the path).

James Tam

Setting The Classpath

•For the input field labeled “Variable name” enter in “CLASSPATH”
•For the input field labeled “Variable value” enter in “.” (a period).
•The period indicates that when you run the Java compiler or interpreter that
it should look in the current folder for the code (you can add additional
folders as you desire).

•You’ve now finished setting the classpath.
•Reboot your computer and the settings should take effect for that user.

Introduction to CPSC 233 19

James Tam

Smallest Compilable And Executable
Pascal Program

program smallest;
begin
end.

James Tam

Smallest Compilable And Executable Java Program

class Smallest
{

public static void main (String[] args)
{
}

}

Introduction to CPSC 233 20

James Tam

Creating, Compiling And Running Java Programs
On The Computer Science Network

javac

Java compiler

Java byte code
filename.class

(Unix file)To compile the program, in
Unix type "javac
filename.java"

To run the interpreter, in
Unix type "java filename"

java

Java Interpreter

Type it in with the text editor of your choice

filename.java

(Unix file)

Java program

James Tam

Compiling The Smallest Java Program

class Smallest
{

public static void main (String[] args)
{
}

}

Smallest.java

javac

(Java byte code)
10000100000001000
00100100000001001

: :

Smallest.class

Type “javac
Smallest.java”

Introduction to CPSC 233 21

James Tam

Running The Smallest Java Program

(Java byte code)
10000100000001000
00100100000001001

: :

Smallest.class

java

Type “java Smallest”

James Tam

The Semicolon In Pascal

• Pascal
• Used to separate statements within a block of statements
• This is okay in Pascal:

program test (output);
begin
writeln("one");
writeln("two")

end.

Introduction to CPSC 233 22

James Tam

The Semicolon In Java

• Java
• Follows each statement
• This is not okay in Java:

class BadExample
{

public static void main (String [] args)
{

System.out.println("one");
System.out.println("two")

}
}

James Tam

Braces In Java

• Unlike with Pascal, curly braces are not used for
documentation.

• They are used to enclose a block of code

class Smallest

{

public static void main (String[] args)

{

}

}

program smallest;

begin

end.

Encloses the starting
point of a Pascal
program

Encloses the starting
point of a Java
program

Introduction to CPSC 233 23

James Tam

Documentation / Comments

Pascal
(* Start of documentation
*) End of documentation

Java
•Multi-line documentation

/* Start of documentation
*/ End of documentation

•Documentation for a single line
//Everything until the end of the line is a comment

James Tam

Output In Pascal And Java

Pascal
write('...');
writeln ('...');

Java
System.out.print(“…”);
System.out.println(“…”);

Introduction to CPSC 233 24

James Tam

Java Output

•Format:
System.out.println(<string or variable name one> + <string or variable name
two>..);

•Examples (Assumes a variable called num has been declared.):
System.out.println("Good-night gracie!");
System.out.print(num);
System.out.println("num=" +num);

James Tam

Output : Some Escape Sequences For Formatting

Horizontal tab\t

Carriage return\r

Backslash\\

Double quote\”

New line\n

DescriptionEscape sequence

Introduction to CPSC 233 25

James Tam

Some Built-In Types Of Variables In Java

DescriptionType

A sequence of characters between double
quotes (“”)

String

1 bit true or false valueboolean

16 bit Unicode characterchar

64 bit signed real numberdouble

32 bit signed real numberfloat

64 bit signed integerlong

32 bit signed integerint

16 but signed integershort

8 bit signed integerbyte

James Tam

Java Vs. Pascal Variable Declarations

Pascal
Format:

<variable name> : variable type;

Example
num : integer;

Java
Format:

variable type <variable name>;

Example:
long num1;
double num2 = 2.33;

Introduction to CPSC 233 26

James Tam

Location Of Variable Declarations

class <name of class>
{

public static void main (String[] args)
{

// Local variable declarations occur here

<< Program statements >>
: :

}
}

James Tam

Constants In Pascal Vs. Java

Pascal:
Format:

const
<CONSTANT NAME> = <Value>;

Example:
const

SIZE = 5;

Java
Format:

final <constant type> <CONSTANT NAME> = <value>;

Example:
final int SIZE = 100;

Introduction to CPSC 233 27

James Tam

Location Of Constant Declarations

class <name of class>
{

public static void main (String[] args)
{

// Local constant declarations occur here
// Local variable declarations

< Program statements >>
: :

}
}

James Tam

Java Keywords

whilevolatilevoidtrytransient

throwsthrowthissynchronizedswitchsuperstatic

shortreturnpublicprotectedprivatepackagenew

nativelonginterfaceintinstanceofimportimplements

ifgotoforfloatfinallyfinalextends

elsedoubledodefaultcontinueconstclass

charcatchcasebytebreakbooleanabstract

Introduction to CPSC 233 28

James Tam

Variable Naming Conventions In Java

• Compiler requirements
―Can’t be a keyword nor can the names of the special constants true,

false or null be used
―Can be any combination of letters, numbers, underscore or dollar

sign (first character must be a letter or underscore)

• Common stylistic conventions
―The name should describe the purpose of the variable
―Avoid using the dollar sign
―With single word variable names, all characters are lower case

-e.g., double grades;
―Multiple words are separated by capitalizing the first letter of each

word except for the first word
-e.g., String firstName = “James”;

James Tam

Constant Naming Conventions In Java

• Compiler requirements
―Can’t be a keyword nor can the names of special constants true,

false or null be used
―Can be any combination of letters, numbers, underscore or dollar

sign (first character must be a letter or underscore)

• Common stylistic conventions
―The name should describe the purpose of the constant
―Avoid using the dollar sign
―All characters are capitalized

-e.g., float SIZE = 100;
―Multiple words are separated with an underscore between each

word.
-e ,g, float CORPORATE_TAX_RATE = 0.46;

Introduction to CPSC 233 29

James Tam

Common Java Operators / Operator Precedence

Right to leftPost-increment
Post-decrement

expression++
expression--

1

Right to leftPre-increment
Pre-decrement
Unary plus
Unary minus
Logical negation
Bitwise complement
Cast

++expression
--expression
+
-
!
~
(type)

2

Precedence
level

AssociativityDescriptionOperator

James Tam

Common Java Operators / Operator Precedence

Left to rightAddition or String
concatenation
Subtraction

+

-

4

Left to rightLeft bitwise shift
Right bitwise shift

<<
>>

5

Left to rightMultiplication
Division
Remainder/modulus

*
/
%

3

Precedence
level

AssociativityDescriptionOperator

Introduction to CPSC 233 30

James Tam

Common Java Operators / Operator Precedence

Left to rightBitwise AND&8

Left to rightBitwise exclusive OR^9

Left to rightEqual to
Not equal to

= =
!=

7

Left to rightLess than
Less than, equal to
Greater than
Greater than, equal to

<
<=
>
>=

6

Precedence
level

AssociativityDescriptionOperator

James Tam

Common Java Operators / Operator Precedence

Left to rightLogical OR||12

Left to rightLogical AND&&11

Left to rightBitwise OR|10

Precedence
level

AssociativityDescriptionOperator

Introduction to CPSC 233 31

James Tam

Common Java Operators / Operator Precedence

Right to leftAssignment
Add, assignment
Subtract, assignment
Multiply, assignment
Division, assignment
Remainder, assignment
Bitwise AND, assignment
Bitwise XOR, assignment
Bitwise OR, assignment
Left shift, assignment
Right shift, assignment

=
+=
-=
*=
/=
%=
&=
^=
|=
<<=
>>=

13

Precedence
level

AssociativityDescriptionOperator

James Tam

Post/Pre Operators

class Example1
{

public static void main (String [] args)
{

int num = 5;
System.out.println(num);
num++;
System.out.println(num);
++num;
System.out.println(num);
System.out.println(++num);
System.out.println(num++);

}
}

Introduction to CPSC 233 32

James Tam

Post/Pre Operators (2)

class Example1A
{

public static void main (String [] args)
{

int num1, num2;
num1 = 5;
num2 = ++num1 * num1++;
System.out.println("num1=" + num1);
System.out.println("num2=" + num2);

}
}

James Tam

Unary And Casting Operators

class Example2
{

public static void main (String [] args)
{

int num = 5;
float fl;
System.out.println(num);
num = num * -num;
System.out.println(num);
fl = num;
System.out.println(num + " " + fl);
num = (int) fl;
System.out.println(num + " " + fl);

}
}

Introduction to CPSC 233 33

James Tam

Some Useful Java Libraries1

The original library for developing GUI’s (graphical user
interfaces)

java.awt

Input and outputjava.io

: ::

The core part of the Java language e.g., Math functions,
basic console (screen) output.

java.lang

Extra utilities e.g., Random number generators,
automatically resizable arrays

java.util

PurposeLibrary

1 Note: The use of the code in any of these libraries (except java.lang) requires the use of an import
statement at the top of the file:

Format: import <library name>

Example: import java.util.*;

James Tam

Advanced Output (Optional)

• You can employ the predefined code in TIO
(http://www.cse.ucsc.edu/~charlie/java/tio/)

• To use:
―(In Unix):

-Create link from the directory where your Java code resides to the
following directory /home/233/tio

-Do this by typing the following in that directory:
ln -s /home/233/tio

• (At the start of the Java program include the following
statement):
import tio.*;

Introduction to CPSC 233 34

James Tam

Advanced Output (2)

EffectStatement

Left or right
justify field

Console.out.setJustify(Console.out.LEFT);
Console.out.setJustify(Console.out.RIGHT);

Sets the number
of places of
precision

Console.out.setDigits(<integer value>);

Sets the width of
a field

Console.out.setWidth(<integer value>);

Prints contents of
field and a new
line

Console.out.printfln((<variable or string1 > + <variable or
string 2> …);

Prints contents of
field

Console.out.printf(<variable or string1 > + <variable or
string 2> …);
MUST EVENTUALLY BE FOLLOWED BY A PRINTFLN!

James Tam

Advanced Output: An Example

import tio.*;
class Output1
{

public static void main (String [] args)
{

int num = 123;
double db = 123.45;
Console.out.setJustify(Console.out.LEFT);
Console.out.setWidth(6);
Console.out.setDigits(1);
Console.out.printf("Start line");
Console.out.printf(num);
Console.out.printf(db);
Console.out.printf("End of line");
Console.out.printfln("");

}
}

Introduction to CPSC 233 35

James Tam

Text-Based Java Input

• You can employ the predefined code in TIO
• (http://www.cse.ucsc.edu/~charlie/java/tio/)

• To use:
• (In Unix):

―Create link from the directory where your Java code resides to the
following directory /home/233/tio

―Do this by typing the following in that directory:
ln -s /home/233/tio

• (At the start of the Java program include the following
statement):
import tio.*;

James Tam

Text-Based Java Input (2)

5

4

3

2

1 Reads in a character
Returns an integer

Console.in.readChar()

Reads some characters
Returns a double

Console.in.readDouble()

Reads some characters
Returns a float

Console.in.readFloat()

Reads some characters
Returns a long

Console.in.readLong()

Reads some characters
Returns an integer

Console.in.readInt()

Introduction to CPSC 233 36

James Tam

Text-Based Java Input (3)

Reads in a line
Returns a String

Console.in.readLine()7

Reads in a word
Returns a String

Console.in.readWord()6

James Tam

Text-Based Java Input (4)

•Caution! The input routines (2 – 6) accept a series of
characters that end with white space but the white space is
still left on the input stream. Leading white space is
removed.

•Work-around: Follow each of these input statements with a
readLine() as needed.

Introduction to CPSC 233 37

James Tam

Text-Based Java Input: An Example

import tio.*;
class Input1
{

public static void main (String [] args)
{

int in;
float fl;
String st;

System.out.print("Type in an integer: ");
in = Console.in.readInt();
System.out.print("Type in a float: ");
fl = Console.in.readFloat();

System.out.print("Type in a sentence: ");
st = Console.in.readLine();

}

Problem at
this point

James Tam

Text-Based Java Input: An Example

import tio.*;
class Input1
{

public static void main (String [] args)
{

int in;
float fl;
String st;

System.out.print("Type in an integer: ");
in = Console.in.readInt();
System.out.print("Type in a float: ");
fl = Console.in.readFloat();
st = Console.in.readLine();

System.out.print("Type in a sentence: ");
st = Console.in.readLine();

}

Work-around

Introduction to CPSC 233 38

James Tam

Decision Making In Java

• Pascal
―If-then
―If-then, else
―If-then, else-if
―Case-of

• Java
―If
―If, else
―If, else-if
―Switch

James Tam

Decision Making: If

Format:
if (Boolean Expression)

Body

Example:
if (x != y)

System.out.println(“X and Y are not equal”);

if ((x > 0) && (y > 0))
{

System.out.println("X and Y are positive");
}

Introduction to CPSC 233 39

James Tam

Decision Making: If, Else

Format:
if (Boolean expression)

Body of if
else

Body of else

Example:
if (x < 0)

System.out.println(“X is negative”);
else

System.out.println(“X is non-negative”);

James Tam

If, Else-If

Format:
if (Boolean expression)

Body of if
else if (Boolean expression)

Body of first else-if
: : :

else if (Boolean expression)
Body of last else-if

else
Body of else

Introduction to CPSC 233 40

James Tam

If, Else-If (2)

Example:
if (gpa == 4)
{

System.out.println("A");
}
else if (gpa == 3)
{

System.out.println("B");
}
else if (gpa == 2)
{

System.out.println("C");
}

James Tam

If, Else-If (2)

else if (gpa == 1)
{

System.out.println("D");
}
else
{

System.out.println("Invalid gpa");
}

Introduction to CPSC 233 41

James Tam

Alternative To Multiple Else-If’s: Switch

Format:

switch (variable name)
{

case <integer value>:
Body
break;

case <integer value>:
Body
break;

:
default:
Body

}
1 The type of variable in the brackets can be a byte, char, short, int or long

James Tam

Alternative To Multiple Else-If’s: Switch (2)

Format:
switch (variable name)
{

case ‘<character value>’:
Body
break;

case ‘<character value>’:
Body
break;

:
default:
Body

}

1 The type of variablein the brackets can be a byte, char, short, int or long

Introduction to CPSC 233 42

James Tam

Loops

Pascal Pre-test loops
•For-do
•While-do

Java Pre-test loops
•For
•While

Pascal Post-test loops
•Repeat-until

Java Post-test loops
•Do-while

James Tam

While Loops

Format:
while (Expression)

Body

Example:
int i = 1;
while (i <= 1000000)
{

System.out.println(“How much do I love thee?”);
System.out.println(“Let me count the ways: “, + i);
i = i + 1;

}

Introduction to CPSC 233 43

James Tam

For Loops

Format:
for (initialization; Boolean expression; update control)

Body

Example:
for (i = 1; i <= 1000000; i++)
{

System.out.println(“How much do I love thee?”);
System.out.println(“Let me count the ways: ” + i);

}

James Tam

Do-While Loops

Format:
do

Body
while (Boolean expression);

Example:
char ch = 'A';
do
{

System.out.println(ch);
ch++;

}
while (ch != 'K');

Introduction to CPSC 233 44

James Tam

Do-While Loops

Format:
do

Body
while (Boolean expression);

Example:
char ch = 'A';
do
{

System.out.println(ch);
ch++;

}*
while (ch != 'K');

Unlike Pascal the loop
body executes while
the expression is true

James Tam

Loop

{

<< Statements in body >>

:

break;

<< Statements in body >>

:

}

Ending Loops Early: Break

•When this statement is reached the loop ends. (You “break
out of” the loop).

☻

<< Statements after loop >>

Introduction to CPSC 233 45

James Tam

Ending Loops Early: An Example

import tio.*;
class BreakExample
{

public static void main (String [] args)
{

int number, sum;
sum = 0;

James Tam

Ending Loops Early: An Example (2)

while (true)
{

System.out.print("\tPositive number (negative to quit): ");
number = Console.in.readInt();
Console.in.readLine();
if (number >= 0)

sum += number;
else

break;
}
System.out.println("Sum is..." + sum);

}
}

Introduction to CPSC 233 46

James Tam

Loop

{

<< Statements in body >>

:

continue;

<< Statements in body >>

:

}

Skipping An Iteration Of A Loop: Continue

•When this statement is reached control returns to the
beginning of the loop. (You swing back up to the top of the
loop).

☻

James Tam

Skipping An Iteration of A Loop: Continue

for (i = 1; i <= 10; i++)
{

if (i % 2 == 0)
{

continue;
}
System.out.println("i=" + i);

}

Introduction to CPSC 233 47

James Tam

Statements That Results In Abnormal Execution Of
Loops Should Be Used Sparingly

• They make the program harder to trace
class Test
{

public static void main (String [] args)
{

for (int i = 1; i < 10; i++)
{

if (i == 5)
break;

System.out.print(i);
}

}
}

• Typically a break is only used for exiting nested loops
cleanly

James Tam

You Should Now Know

• How Java was developed and the impact of it's roots on the
development of this language

• The basic structure required in creating a simple Java
program as well as how to compile and run programs

• Methods of documenting a Java program
• How to perform text based input and output in Java
• The declaration of constants and variables
• What are the common Java operators and how they work
• The structure and syntax of decision making and looping

constructs

