
Introduction to classes and objects in Java, Part II 1

James Tam

CPSC 233: Introduction to Classes
And Objects, Part II

More on Java methods
Relations between classes

•Association
•Aggregation

Multiplicity
Issues associated with references
The finalize method
The static keyword
Classes and state
Debugging code

James Tam

More On Java Methods

• Method overloading and the signature of a method
• Message passing
• Implementation hiding

Introduction to classes and objects in Java, Part II 2

James Tam

More On Java Methods

• Method overloading and the signature of a method
• Message passing
• Implementation hiding

James Tam

Method Overloading

•Same method name but the type, number or order of the
parameters is different

•Used for methods that implement similar but not identical
tasks.

•Good coding style
•Example:

System.out.println(int)
System.out.println(double)

etc.
For more details on class System see:
http://java.sun.com/j2se/1.4.2/docs/api/java/io/PrintStream.html

Introduction to classes and objects in Java, Part II 3

James Tam

Method Signatures And Method Overloading

Signature consists of:
•The name of the method
•The number and type of parameters (Reminder: Don’t distinguish
methods solely by the order of the parameters).

Usage of method signatures:
•To distinguish overloaded methods (same name but the type, number
or ordering of the parameters is different).

James Tam

More On Java Methods

• Method overloading and the signature of a method
• Message passing
• Implementation hiding

Introduction to classes and objects in Java, Part II 4

James Tam

Message Passing: General Definition

A communication between a sender and a receiver

Same to
you buddy!

James Tam

Message Passing: Object-Oriented Definition

•A request from the source object that’s sent to the destination
object to apply one its operations.

•An object invoking the methods of another object (which
may be the same object or a different object)

e.g.,
class Bar
{

public void aMethod ()
{

Foo f = new Foo ();
f.getNum();

}
}

A message is sent
from an instance of
Bar to an instance of
Foo

Introduction to classes and objects in Java, Part II 5

James Tam

Message Passing And Program Design

Procedural approach
•Start with a function or procedure and pass the composite types to
this method

•i.e., procedure (record)
•e.g.,
CD = record

title : array [1..80] of char;
artist : array [1..80] of char;
price : real;
rating : integer;
category : char;

end;
Collection = array [1..NO] of CD;

: :
Collection tamjCollection;

: :
procedure displayCollection (tamjCollection : Collection);

James Tam

Message Passing And Program Design (2)

Object-Oriented approach:
•Start with an object and then determine which method to invoke
•i.e., object.method ()
•e.g.,
class Foo
{

private int num;
public void setNum (int newValue) { num = newValue; }
public int getNum () { return num; }

}
: :

f.getNum();

Introduction to classes and objects in Java, Part II 6

James Tam

More On Java Methods

• Method overloading and the signature of a method
• Message passing
• Implementation hiding

James Tam

Implementation Hiding

• Allows you to use a program module (e.g., a method)
without knowing how the code in the module was written
(i.e., you don’t care about the implementation).

• For example, a list can be implemented as either an array or
as a linked list.

Introduction to classes and objects in Java, Part II 7

James Tam

Implementation Hiding (2)

123

125

135

155

161

166

167

167

169

177

178

165

List implemented as an array (add element)
[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

James Tam

Implementation Hiding (2)

123

125

135

155

161

166

167

167

169

177

178

List implemented as an array (add element)
[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

array[5] = 165

Introduction to classes and objects in Java, Part II 8

James Tam

Implementation Hiding (3)

List implemented as a linked list (add element)

NIL

James Tam

Implementation Hiding (3)

List implemented as a linked list (add element)

NIL

Introduction to classes and objects in Java, Part II 9

James Tam

Implementation Hiding (3)

List implemented as a linked list (add element)

NIL

James Tam

Implementation Hiding (4)

• Changing the implementation of the list should have a
minimal impact on the rest of the program.

• Changing the implementation of a method is separate from
changing the signature of a method.

• The “add” method is a black box.
• We know how to use it without being effected by the details

of how it works.

???

add (list, newElement)

Introduction to classes and objects in Java, Part II 10

James Tam

Relations Between Classes

1. Association (this section of notes)
2. Aggregation (this section of notes)
3. Inheritance (next section of notes)

James Tam

Associations Between Classes

•Allows for navigation between from one class to another
(you can access the public parts of the class).

•Associations occur between classes when:
•An instance of a class is a attribute of another class
•An instance of a class a local variable in another class’s method

•Also known as a “knows-a” relation
•Association relations allows for messages to be sent

Introduction to classes and objects in Java, Part II 11

James Tam

Associations: Lights Is An Attribute Of Car

public class Car
{

private Lights headLights;
headLights = new Lights ();

:
public startCar () { headLights.turnOn(); }

}

public class Lights
{

private boolean isOn;
public void turnOn () { isOn = true;}

}

James Tam

Associations: Gasoline Is A Local Variable In A
Method Of Class Car

public class Car
{

public startCar ()
{

Gasoline fuel = new Gasoline ();
fuel.burnupForIgnition();

}
}

public class Gasoline
{

public void burnUpForIgnition () { .. }
}

Introduction to classes and objects in Java, Part II 12

James Tam

Directed Associations

Unidirectional
•The association only goes in one direction
•You can only navigate from one class to the other (but not the other
way around).

•e.g., You can go from an instance of Car to Lights but not from
Lights to Car, or you can go from an instance of Car to Gasoline but
not from Gasoline to Car (previous slides)

James Tam

Directed Associations (2)

Bidirectional
•The association goes in both directions
•You can navigate from either class to the other
•e.g.,

public class Student
{

private Lecture [] lectureList = new Lecture [5];
:

}

public class Lecture
{

private Student [] studentList = new Student [250];
:

}

Introduction to classes and objects in Java, Part II 13

James Tam

UML Representation Of Associations

Car Light

Car

Student Lecture

Unidirectional associations

Bidirectional associations

Gasoline

James Tam

Aggregation Relations Between Classes

• A stronger form of association between classes
• Can occur when a class consists of another class

•An instance of a class an attribute of another class
and

•The first class is conceptually a part of the second class

• Also known as a “has-a” relation
e.g.,

public class Company
{

private Department divisions [];
}

Introduction to classes and objects in Java, Part II 14

James Tam

Graphical Representations Of Aggregations

Company Department

James Tam

Multiplicity

•It indicates the number of instances that participate in a
relationship

•Also known as cardinality

Any number of instances possible*

Any number of instances in the inclusive range
from “n” to “m”

n..m

Exactly “n” instancesn

Exactly one instance1

DescriptionMultiplicity

Introduction to classes and objects in Java, Part II 15

James Tam

Association Vs. Aggregation

•Aggregation is a more specific form of association (one class
consists of the other)

•Navigation is not the same as aggregation! (Again: One class
is an attribute field of another class AND the first class is a
part of the second class)

public class BankAccount

{

private Person accountHolder;

:

}

Association
public class Person

{

private Head myHead;

private Heart myHeart;

:

}

Aggregation

James Tam

Issues Associated With References

• Parameter passing
• Assignment of references and deep vs. shallow copies
• Comparisons of references

Introduction to classes and objects in Java, Part II 16

James Tam

Parameter Passing Mechanisms

• Pass by value
• Pass by reference

James Tam

Passing Parameters As Value Parameters
(Pass By Value)

•Changes made to the parameter(s) in the procedure only
changes the copy and not the original parameter(s)

procedureName (p1, p2);

procedureName (p1, p2: parameter type);

begin

end;

Pass a copy Pass a copy

Introduction to classes and objects in Java, Part II 17

James Tam

Passing Parameters As Variable Parameters
(Pass By Reference)

•Change made to the parameter(s) in the procedure refer to
the original parameter(s)

procedureName (p1, p2);

procedureName (var p1, p2: parameter
type);

begin

end;

Pass pointer Pass pointer

James Tam

Passing Simple Types In Java

Built-in (simple) types are always passed by value in Java:
•Boolean, byte, char, short, int, long, double, float

Example:
main ()
{

int num1, num2;
Foo f = new Foo ();
num1 = 1;
num2 = 2;
System.out.println("num1=" + num1 + "\tnum2=" + num2);
f.swap(num1, num2);
System.out.println("num1=" + num1 + "\tnum2=" + num2);

}

Introduction to classes and objects in Java, Part II 18

James Tam

Passing Simple Types In Java (2)

public class Foo
{

public void swap (int num1, int num2)
{

int temp;
temp = num1;
num1 = num2;
num2 = temp;
System.out.println("num1=" + num1 + "\tnum2=" + num2);

}
}

James Tam

Passing References In Java

(Reminder: References are required for variables that are
arrays or objects)
Question:

•If a reference (object or array) is passed as a parameter to a method
do changes made in the method continue on after the method is
finished?

Hint: If a reference is passed as a parameter into a method then a
copy of the reference is what is being manipulated in the method.

Introduction to classes and objects in Java, Part II 19

James Tam

An Example Of Passing References In Java:
UML Diagram

Example (The complete example can be found in the directory
/home/233/examples/advancedOO/firstExample

Driver

Foo

Swap

-num :int

+getNum()

+setNum()

+noSwap()

+realSwap()

James Tam

An Example Of Passing References In Java:
The Driver Class

class Driver
{

public static void main (String [] args)
{

Foo f1, f2;
Swap s1;
f1 = new Foo ();
f2 = new Foo ();
s1 = new Swap ();
f1.setNum(1);
f2.setNum(2);

Introduction to classes and objects in Java, Part II 20

James Tam

An Example Of Passing References In Java:
The Driver Class (2)

System.out.println("Before swap:\t f1=" + f1.getNum() +"\tf2=" +
f2.getNum());

s1.noSwap (f1, f2);
System.out.println("After noSwap\t f1=" + f1.getNum() +"\tf2=" +

f2.getNum());
s1.realSwap (f1, f2);
System.out.println("After realSwap\t f1=" + f1.getNum() +"\tf2=" +

f2.getNum());
}

}

James Tam

An Example Of Passing References In Java:
Class Foo

public class Foo
{

private int num;
public void setNum (int newNum)
{

num = newNum;
}
public int getNum ()

{
return num;

}
}

Introduction to classes and objects in Java, Part II 21

James Tam

An Example Of Passing References In Java:
Class Swap

public class Swap
{

public void noSwap (Foo f1, Foo f2)
{

Foo temp;
temp = f1;
f1 = f2;
f2 = temp;
System.out.println("In noSwap\t f1=" + f1.getNum () + "\tf2=" +

f2.getNum());
}

James Tam

An Example Of Passing References In Java:
Class Swap (2)

public void realSwap (Foo f1, Foo f2)
{

Foo temp = new Foo ();
temp.setNum(f1.getNum());
f1.setNum(f2.getNum());
f2.setNum(temp.getNum());
System.out.println("In realSwap\t f1=" + f1.getNum () + "\tf2=" +

f2.getNum());
}

} // End of class Swap

Introduction to classes and objects in Java, Part II 22

James Tam

Passing (References) To Arrays As Method
Parameters

• Because the copy of an address is passed into the method, passing arrays
as a parameter works the same way as passing a reference to a class as a
parameter.
e.g.,
char [] list = new char[4];
reference.changeOne(list);

: : :
public void changeOne (char [] list)
{

char [] temp = new char[4];
list = temp;

}

James Tam

Passing (References) To Arrays As Method
Parameters (2)

e.g.,
char [] list = new char[4];
reference.changeTwo(list);

: : :

public void changeTwo (char [] list)
{

list[0] = '*';
list[3] = '*';

}

Introduction to classes and objects in Java, Part II 23

James Tam

Passing By Reference For Simple Types

•It cannot be done directly in Java
•You must use a wrapper!

James Tam

Wrapper Class

• A class definition built around a simple type
e.g.,
public class IntegerWrapper
{

private int num;
public int getNum () { return num; }
public void setNum (int newNum) { num = newNum; }

}

Introduction to classes and objects in Java, Part II 24

James Tam

Issues Associated With References

• Parameter passing
• Assignment of references and deep vs. shallow copies
• Comparisons of references

James Tam

Assignment Operator: Works On The Reference

Foo f1, f2;
f1 = new Foo ();
f2 = new Foo ();
f1.setNum(1);
f2.setNum(2);
System.out.println("f1=" + f1.getNum() + "\tf2=" + f2.getNum());
f1 = f2;
f1.setNum(10);
f2.setNum(20);
System.out.println("f1=" + f1.getNum() + "\tf2=" + f2.getNum());

Introduction to classes and objects in Java, Part II 25

James Tam

Shallow Copy Vs. Deep Copies

Shallow copy
•Copy the address in one reference into another reference
•Both references point to the same dynamically allocated memory
location

•e.g.,
Foo f1, f2;
f1 = new Foo ();
f2 = new Foo ();
f1 = f2;

James Tam

Shallow Vs. Deep Copies (2)

Deep copy
•Copy the contents of the memory location pointed to by the reference
•The references still point to separate locations in memory.
•e.g.,
f1 = new Foo ();
f2 = new Foo ();
f1.setNum(1);
f2.setNum(f1.getNum());
System.out.println("f1=" + f1.getNum() + "\tf2=" + f2.getNum());
f1.setNum(10);
f2.setNum(20);
System.out.println("f1=" + f1.getNum() + "\tf2=" + f2.getNum());

Introduction to classes and objects in Java, Part II 26

James Tam

Issues Associated With References

• Parameter passing
• Assignment of references and deep vs. shallow copies
• Comparisons of references

James Tam

Comparison Of The References

f1 = new Foo ();
f2 = new Foo ();
f1.setNum(1);
f2.setNum(f1.getNum());
if (f1 == f2)
System.out.println("References point to same location");

else
System.out.println("References point to different locations");

Introduction to classes and objects in Java, Part II 27

James Tam

Comparison Of The Data

f1 = new Foo2 ();
f2 = new Foo2 ();
f1.setNum(1);
f2.setNum(f1.getNum());
if (f1.getNum() == f2.getNum())
System.out.println(“Same data");

else
System.out.println(“Different data");

James Tam

Self Reference: This Reference

•From every (non-static) method of an object there exists a
reference to the object (called the “this” reference)
e.g.,
Foo f1 = new Foo ();
Foo f2 = new Foo ();
f1.setNum(10);

public class Foo
{

private int num;
public void setNum (int num)
{

num = num;
}

: :
}

Introduction to classes and objects in Java, Part II 28

James Tam

Self Reference: This Reference

•From most every method of an object there exists a pointer
to the object (“this”)
e.g.,
Foo f1 = new Foo ();

Foo f2 = new Foo ();
f1.setNum(10);

public class Foo
{

private int num;
public void setNum (int num)
{

this.num = num;
}
: :

}

James Tam

Uses Of “This” When Checking For Equality:
UML Diagram

Example (The complete example can be found in the directory
/home/233/examples/advancedOO/secondExample

Driver

Foo
-num:int

+Foo()

+Foo(newValue:int)

+getNum():int

+setNum(newValue:int):void

+equals(compareTo: Foo):
boolean

Introduction to classes and objects in Java, Part II 29

James Tam

Checking For Equality: The Driver Class

class Driver
{

public static void main (String [] args)
{

Foo f1 = new Foo(1);
Foo f2 = new Foo(2);
if (f1.equals(f2))

System.out.println("Data of f1 and f2 the same.");
else

System.out.println("Data of f1 and f2 are not the same.");
}

}

James Tam

Uses Of “This”: Checking For Equality (2)

public class Foo
{

private int num;

public Foo ()
{

num = 0;
}

public Foo (int newValue)
{

num = newValue;
}

public void setNum (int newValue)
{

num = newValue;
}

Introduction to classes and objects in Java, Part II 30

James Tam

Uses Of “This”: Checking For Equality (3)

public int getNum ()
{

return num;
}

public boolean equals (Foo compareTo)
{

if (num == compareTo.num)
return true;

else
return false;

}
}

James Tam

Uses Of “This”: Checking For Equality (3)

public int getNum ()
{

return num;
}

public boolean equals (Foo compareTo)
{

if (this.num == compareTo.num)
return true;

else
return false;

}
}

Introduction to classes and objects in Java, Part II 31

James Tam

Explicit Vs. Implicit Parameters

Explicit parameters
•Are the parameters enclosed within the brackets of a method call.
•e.g.,

Foo f = new Foo ();
int no = 10;
f.setNum(no);

Implicit parameters
•Do not need to be explicitly passed into a method in order to be used
•The “this” reference is an explicit parameter

James Tam

The Finalize Method

Example sequence:
public class Foo
{

int num;
public Foo () { num = 1; }
public Foo (int newValue) { num = newValue; }

: : :
}

: :
Foo f1 = new Foo ();

f1

num 1

Introduction to classes and objects in Java, Part II 32

James Tam

The Finalize Method

Example sequence:
public class Foo
{

int num;
public Foo () { num = 1; }
public Foo (int newValue) { num = newValue; }

: : :
}

: :
Foo f1 = new Foo ();
f1 = new Foo (10);

f1

num 1

num 10

James Tam

The Finalize Method

Example sequence:
public class Foo
{

int num;
public Foo () { num = 1; }
public Foo (int newValue) { num = newValue; }

: : :
}

: :
Foo f1 = new Foo ();
f1 = new Foo (10);

f1

num 1

num 10

When???

Introduction to classes and objects in Java, Part II 33

James Tam

The Finalize Method

Example sequence:
public class Foo
{

int num;
public Foo () { num = 1; }
public Foo (int newValue) { num = newValue; }

: : :
}

: :
Foo f1 = new Foo ();
f1 = new Foo (10);

f1

num 1

num 10

f1.finalize()

James Tam

The Finalize Method

Example sequence:
public class Foo
{

int num;
public Foo () { num = 1; }
public Foo (int newValue) { num = newValue; }

: : :
}

: :
Foo f1 = new Foo ();
f1 = new Foo (10);

f1

num 1

num 10

f1.finalize()

Introduction to classes and objects in Java, Part II 34

James Tam

Synopsis Of The Finalize Method

• The Java interpreter tracks what memory has been
dynamically allocated.

• It also tracks when memory is no longer referenced.
• When system isn’t busy, the Automatic Garbage Collector

is invoked.
• If an object has a finalize method then it is invoked:

•The finalize is a method written by the programmer to free up non-
memory resources e.g., closing and deleting temporary files created
by the program, network connections.

•This method takes no arguments and returns no values.
•Dynamic memory is NOT freed up by this method.

• After the finalize method finishes execution, the dynamic
memory is freed up by the Automatic Garbage Collector.

James Tam

A Previous Example Revisited: Class Sheep

public class Sheep
{

private String name;

public Sheep ()
{

System.out.println("Creating \"No name\" sheep");
name = "No name";

}
public Sheep (String newName)
{

System.out.println("Creating the sheep called " + n);
name = newName;

}
public String getName () { return name;}

public void changeName (String newName) { name = newName; }
}

Introduction to classes and objects in Java, Part II 35

James Tam

We Now Have Several Sheep

I’m Bill! I’m Nellie!

I’m Jim!

James Tam

Question: Who Tracks The Size Of The Herd?

Bill: Me! Nellie: Me!

Jim: Me!

Introduction to classes and objects in Java, Part II 36

James Tam

Answer: None Of The Above!

•Information about all instances of a class should not be
tracked by an individual object

•So far we have used instance fields
•Each instance of an object contains it’s own set of instance
fields which can contain information unique to the instance

public class Sheep
{

private String name;
: : :

}

name: Jim name: Nelliename: Bill

James Tam

The Need For Static (Class Fields)

Static fields: One instance of the field exists for the class (not
for the instances of the class)

name: Bill
object

name: Jim
object

name: Nellie
object

Class Sheep
flockSize

Introduction to classes and objects in Java, Part II 37

James Tam

Static (Class) Methods

•Are associated with the class as a whole and not individual
instances of the class

•Typically implemented for classes that are never instantiated
e.g., Math

•May also be used act on the class fields

James Tam

Static Data And Methods: UML Diagram

Example (The complete example can be found in the directory
/home/233/examples/advancedOO/thirdExample

Driver

Sheep

-flockSize:int

-name: String

+Sheep()

+Sheep(newName:String)

+getFlockSize(): int

+getName (): String

+changeName(newName: String):
void

+finalize(): void

Introduction to classes and objects in Java, Part II 38

James Tam

Static Data And Methods: The Driver Class

class Driver
{

public static void main (String [] args)
{

System.out.println();
System.out.println("You start out with " + Sheep.getFlockSize() + " sheep");
System.out.println("Creating flock...");
Sheep nellie = new Sheep ("Nellie");
Sheep bill = new Sheep("Bill");
Sheep jim = new Sheep();

James Tam

Static Data And Methods: The Driver Class (2)

System.out.print("You now have " + Sheep.getFlockSize() + " sheep:");
jim.changeName("Jim");
System.out.print("\t"+ nellie.getName());
System.out.print(", "+ bill.getName());
System.out.println(", "+ jim.getName());
System.out.println();

}
} // End of Driver class

Introduction to classes and objects in Java, Part II 39

James Tam

Static Data And Methods: The Sheep Class

public class Sheep
{

private static int flockSize;
private String name;

public Sheep ()
{

flockSize++;
System.out.println("Creating \"No name\" sheep");
name = "No name";

}

public Sheep (String newName)
{

flockSize++;
System.out.println("Creating the sheep called " + newName);
name = newName;

}

James Tam

Static Data And Methods: The Sheep Class (2)

public static int getFlockSize () { return flockSize; }

public String getName () { return name; }

public void changeName (String newName) { name = newName; }

public void finalize ()
{

System.out.print("Automatic garbage collector about to be called for ");
System.out.println(this.name);
flockSize--;

}
} // End of definition for class Sheep

Introduction to classes and objects in Java, Part II 40

James Tam

Static Vs. Final

•Static: Means there’s one instance of the field for the class (not
individual instances for each instance of the class)

•Final: Means that the field cannot change (it is a constant)

public class Foo
{
public static final int num1= 1;
private static int num2;
public final int num3 = 1;
private int num4;

: :
}

/* Why bother? */

/* Rare */

James Tam

Rules Of Thumb: Instance Vs. Class Fields

•If a attribute field can differ between instances of a class:
•The field probably should be an instance field

•If the attribute field relates to the class or to all instances of
the class

•The field probably should be a static field of the class

Introduction to classes and objects in Java, Part II 41

James Tam

Rule Of Thumb: Instance Vs. Class Methods

• If a method should be invoked regardless of the number of
instances that exist then it probably should be a static
method

• Otherwise the method should likely be an instance method.

James Tam

An Example Class With A Static Implementation

public class Math
{

// Public constants
public static final double E = 2.71…
public static final double PI = 3.14…

// Public methods
public static int abs (int a);
public static long abs (long a);

: :
}
For more information about this class go to:
http://java.sun.com/j2se/1.4.2/docs/api/java/lang/Math.html

Introduction to classes and objects in Java, Part II 42

James Tam

Should A Class Be Entirely Static?

• Generally should be avoided if possible
• Usually purely static classes (cannot be instantiated) have

only methods and no data (maybe some constants)

James Tam

A Common Error With Static Methods

Recall: The “this” reference is an implicit parameter that is
automatically passed into a method.
e.g.,
Foo f = new Foo ();
f.setNum(10);

Explicit parameter

Implicit parameter
“this”

Introduction to classes and objects in Java, Part II 43

James Tam

A Common Error With Static Methods

Static methods have no “this” reference as an implicit
parameter.

class Driver
{

private int num;
public static void main (String [] args)
{

num = 10;
}

}

Compilation error:

Driver3.java:6: non-static
variable num cannot be
referenced from a static
context

num = 10;

^

error

James Tam

Classes And State

•The state of an object is determined by the values of it’s
attributes.

•The states of objects can be modeled by State diagrams
•Not all attributes are modeled, attributes that typically are
modeled in the state of an object include:

•Attributes that can only take on a limited range of values e.g.,
boolean

•Attributes that have restrictions regarding the values that it may take
on. e.g., programmer defined ranges for a long may only include 1, 2,
3 or 4.

Introduction to classes and objects in Java, Part II 44

James Tam

Example Class: Adventurer

public class Adventurer
{

private boolean okay;
private boolean poisoned;
private boolean confused;
private boolean dead;

:
}

James Tam

Class Adventurer: The Set Of States

Poisoned

Dead

Okay

Injected with poison

After (10 minutes)

Hit by confusion
spellReceive

cure

Resurrected

Receive antidote

Confused

Introduction to classes and objects in Java, Part II 45

James Tam

Class Adventurer: State Diagram

Okay

Poisoned

Confused
Dead

Injected with
poison

After (10 minutes)

Receive cure

Receive
antidote

Hit by
confusion spell

Resurrected

James Tam

Determining The State Of Objects

•Determining the value of the attributes of a object (state) can
be a useful debugging tool.

Introduction to classes and objects in Java, Part II 46

James Tam

An Example Of Determining Object’s State:
UML Diagram

Example (The complete example can be found in the directory
/home/233/examples/advancedOO/fourthExample

BookCollection
-currentSize; int

-collection: Book []

+addBook ()

+displayCollection()

// Numerous accessors

// & mutators

Book
-title: String

-author: String

-rating: int

// Numerous accessors

// & mutators

Driver
main ()

1 *

James Tam

An Example Of Determining Object’s State:
The Driver Class

class Driver
{

public static void main (String [] args)
{

BookCollection tamjCollection = new BookCollection ();
tamjCollection.displayCollection();

}
}

Introduction to classes and objects in Java, Part II 47

James Tam

An Example Of Determining Object’s State:
The BookCollection Class

public class BookCollection
{

public final static int MAX_SIZE = 4;
private int currentSize;
private Book [] collection;

public BookCollection ()
{

int i;
currentSize = 0;
collection = new Book [MAX_SIZE];
for (i = 0; i < MAX_SIZE; i++)
{

addBook();
}

}

James Tam

An Example Of Determining Object’s State:
The BookCollection Class (2)

public int getCurrentSize () { return currentSize; }

public void setCurrentSize (int newSize) { currentSize = newSize; }

public void addBook ()
{

if ((currentSize+1) < MAX_SIZE)
{

Book b = new Book ();
b.setAllFields();
collection[currentSize] = b;
currentSize++;

}
}

Introduction to classes and objects in Java, Part II 48

James Tam

An Example Of Determining Object’s State:
The BookCollection Class (3)

public void displayCollection ()
{

int i, no;
System.out.println("\nDISPLAYING COLLECTION");
no = 1;
for (i = 0; i < currentSize; i++)
{

System.out.println("\tBook #"+no);
System.out.println("\tTitle: " + collection[i].getTitle());
System.out.println("\tAuthor: " + collection[i].getAuthor());
System.out.println("\tRating: " + collection[i].getRating());
System.out.println();
no++;

}
}

} // End of the BookCollection class

James Tam

An Example Of Determining Object’s State:
The Book Class

public class Book
{

private String title;
private String author;
private int rating;
public Book ()
{

title = "No title given";
author = "No author listed";
rating = -1;

}
public Book (String newTitle, String newAuthor, int newRating)
{

title = newTitle;
author = newAuthor;
rating = newRating;

}

Introduction to classes and objects in Java, Part II 49

James Tam

An Example Of Determining Object’s State:
The Book Class (2)

public String getTitle ()
{

return title;
}

public void setTitle (String newTitle)
{

title = newTitle;
}

public String getAuthor ()
{

return author;
}

public void setAuthor (String newAuthor)
{

author = newAuthor;
}

James Tam

An Example Of Determining Object’s State:
The Book Class (3)

public int getRating ()
{

return rating;
}

public void setRating (int newRating)
{

if ((newRating >= 1) && (newRating <= 5))
rating = newRating;

else
System.out.println("The rating must be a value between 1 and 5

(inclusive");
}

Introduction to classes and objects in Java, Part II 50

James Tam

An Example Of Determining Object’s State:
The Book Class (4)

public void setAllFields ()
{

System.out.print("Enter the title of the book: ");
title = Console.in.readLine();
System.out.print("Enter the author of the book: ");
author = Console.in.readLine();
do
{

System.out.print("How would you rate the book (1 = worst, 5 = best): ");
rating = Console.in.readInt();
if ((rating < 1) || (rating > 5))

System.out.println("Rating must be a value between 1 and 5");
} while ((rating < 1) || (rating > 5));
Console.in.readLine();
System.out.println();

}
} // End of class Book

James Tam

An Revised Example Of Determining Object’s State:
UML Diagram

Example (The complete example can be found in the directory
/home/233/examples/advancedOO/fifthExample

BookCollection
-currentSize; int

-collection: Book []

+addBook ()

+ displayCollection()

// Numerous accesors

// & mutators

Book
-title: String

-author: String

-rating: int

+toString ()

// Numerous accesors

// & mutators

Driver
main ()

1 *

Introduction to classes and objects in Java, Part II 51

James Tam

A Revised Example Of Determining Object’s State:
The Driver Class

class Driver
{

public static void main (String [] args)
{

BookCollection tamjCollection = new BookCollection ();
tamjCollection.displayCollection();

}
}

James Tam

A Revised Example Of Determining Object’s State:
The BookCollection Class

public class BookCollection
{

public final static int MAX_SIZE = 4;
private int currentSize;
private Book [] collection;

public BookCollection ()
{

int i;
currentSize = 0;
collection = new Book [MAX_SIZE];
for (i = 0; i < MAX_SIZE; i++)
{

addBook();
}

}

Introduction to classes and objects in Java, Part II 52

James Tam

A Revised Example Of Determining Object’s State:
The BookCollection Class (2)

public int getCurrentSize ()
{

return currentSize;
}

public void setCurrentSize (int newSize)
{

currentSize = newSize;
}

public void addBook ()
{

Book b = new Book ();
b.setAllFields();
collection[currentSize] = b;
currentSize++;

}

James Tam

A Revised Example Of Determining Object’s State:
The BookCollection Class (3)

public void displayCollection ()
{

int i, no;
System.out.println("\nDISPLAYING COLLECTION");
no = 1;
for (i = 0; i < MAX_SIZE; i++)
{

System.out.println("\tBook #"+no);
System.out.println(collection[i]);
System.out.println();
no++;

}
}

} // End of class BookCollection

Introduction to classes and objects in Java, Part II 53

James Tam

A Revised Example Of Determining Object’s State:
The Book Class

public class Book
{

private String title;
private String author;
private int rating;

public Book ()
{

title = "No title given";
author = "No author listed";
rating = -1;

}

public Book (String newTitle, String newAuthor, int newRating)
{

title = newTitle;
author = newAuthor;
rating = newRating;

}

James Tam

A Revised Example Of Determining Object’s State:
The Book Class (2)

public String getTitle ()
{

return title;
}

public void setTitle (String newTitle)
{

title = newTitle;
}

public String getAuthor ()
{

return author;
}

public String getTitle ()
{

return title;
}

Introduction to classes and objects in Java, Part II 54

James Tam

A Revised Example Of Determining Object’s State:
The Book Class (3)

public void setTitle (String newTitle)
{

title = newTitle;
}

public String getAuthor ()
{

return author;
}

public void setRating (int newRating)
{

if ((newRating >= 1) && (newRating <= 5))
rating = newRating;

else
System.out.println("The rating must be a value between 1 and 5

(inclusive");
}

James Tam

A Revised Example Of Determining Object’s State:
The Book Class (4)

public void setAllFields ()
{

System.out.print("Enter the title of the book: ");
title = Console.in.readLine();
System.out.print("Enter the author of the book: ");
author = Console.in.readLine();
do
{

System.out.print("How would you rate the book (1 = worst, 5 = best): ");
rating = Console.in.readInt();
if ((rating < 1) || (rating > 5))

System.out.println("Rating must be a value between 1 and 5");
} while ((rating < 1) || (rating > 5));
Console.in.readLine();
System.out.println();

}

Introduction to classes and objects in Java, Part II 55

James Tam

A Revised Example Of Determining Object’s State:
The Book Class (5)

public String toString ()
{

String temp = new String ();
temp = temp + "\tTitle: " + title + "\n";
temp = temp + "\tAuthor: " + author + "\n";
temp = temp + "\tRating: " + rating + "\n";
return temp;

}
} // End of class Book

James Tam

You Should Now Know

• New terminology and concepts relevant to methods:
message passing, method signatures, overloading of
methods

• What is implementation hiding and what is the benefit of
employing it

• Two types of relationships that can exist between classes:
associations and aggregation

• Some specific issues and problems associated with Java
references

•The parameter passing mechanism that is employed for different
types in Java

•How does the assignment and comparison of references work in Java
•What is the "this" reference: how does it work and when is used

Introduction to classes and objects in Java, Part II 56

James Tam

You Should Now Know (2)

• More advanced concepts in the Java garbage collection
process: the finalize method and how it fits into the garbage
collection of references

• What is the difference between static and instance methods,
and static and instance attributes and when to should each
one be employed

• Classes and states:
•What is meant by the state of an instance of a class
•Debugging programs by examining the state of instances

