
Classes and objects: Part III 1

James Tam

Advanced Relations

Relationships between classes:
• Inheritance

Access modifiers:
• Public, private, protected

Interfaces: Types Vs. Classes
Abstract classes

James Tam

What Is Inheritance?

Creating new classes that are based on existing classes.

Existing class

Classes and objects: Part III 2

James Tam

What Is Inheritance?

•Creating new classes that are based on existing classes.
•All non-private data and methods are available to the new
class (but the reverse is not true).

•The new class is composed of the information and behaviors
of the existing class (and more).

Existing class

New class

James Tam

Inheritance Terminology

Superclass

Subclass

Generalization

Specialization

Parent class

Child class

Classes and objects: Part III 3

James Tam

When To Employ Inheritance

•If you notice that certain behaviors or data is common
among a group of candidate classes

•The commonalities may be defined by a superclass
•What is unique may be defined by particular subclasses

Generic user

Engineer Management
Technical
support

Dilbert © United Features Syndicate

James Tam

Using Inheritance

Format:
public class <Name of Subclass > extends <Name of Superclass>
{
// Definition of subclass – only what is unique to subclass

}

Example:
public class Dragon extends Monster
{

public void displaySpecial ()
{

System.out.println("Breath weapon: ");
}

}

Classes and objects: Part III 4

James Tam

The Parent Of All Classes

•You’ve already employed inheritance
•Class Object is at the top of the inheritance hierarchy
•Inheritance from class Object is implicit
•All other classes inherit it’s data and methods
•For more information about this class see the url:

http://java.sun.com/j2se/1.4.2/docs/api/java/lang/Object.html

James Tam

Review: Relations Between Classes

• Association (“knows-a”)
• Aggregation (“has-a”)
• Inheritance (“is-a”)

Classes and objects: Part III 5

James Tam

Association “Knows-A”

A association relation can exist between two classes if within one class’
method(s), there exists as a local variable an instance of another class

e.g., A car uses (knows-a) instance of fuel
public class Car
{

public void method ()
{

Fuel gas = new Fuel ();
}

}

Car Fuel
+method () 1 1

James Tam

Association “Knows-As” (2)

A association relation can also exist between two classes if an instance of
one class is an attribute of another class.

e.g., A square uses (knows-a) line
public class Square
{

private Line side;
}

Square Line
- side : Line 1 4

Classes and objects: Part III 6

James Tam

Aggregation “Has-A”

An aggregation relation exists between two classes if one class is an
attribute of another class.

And
The first class is part of the second class (or the second class is an
aggregate of the first class)

e.g., A car has an (has-a) engine
public class Car
{

private Engine e;
}

Car Engine

-e: Engine
1 1

James Tam

Inheritance “Is-A”

An inheritance relation exists between two classes if one class is one type
of another class

e.g., A car is a type of (is-a) vehicle
public class Vehicle
{

:
}

public class Car extends Vehicle
{

:
}

Vehicle

Car

Instances of the
subclass can be used
in place of instances
of the super class

Classes and objects: Part III 7

James Tam

Levels Of Access Permissions

Private “-”
•Can only access the attribute/method in the methods of the class
where the attribute is originally defined.

Protected “#”
•Can access the attribute/method in the methods of the class where the
attribute is originally defined or the subclasses of that class.

Public “+”
•Can access attribute/method anywhere in the program

James Tam

Levels Of Access Permissions

NoYesYesProtected

NoNoYesPrivate

YesYesYesPublic

Not a
subclassSubclass Same class

Access
level

Accessible to

Classes and objects: Part III 8

James Tam

Levels Of Access Permission: An Example

public class P
{

private int num1;
protected int num2;
public int num3;
// Can access num1, num2 & num3 here.

}

public class C extends P
{

// Can’t access num1 here
}

public class Driver
{

// Can’t access num1 here.
}

James Tam

General Rules Of Thumb

• Variable attributes should not have protected access but
instead should be private.

• Most methods should be public
• Methods that are used only by the parent and child classes

should be made protected.

Classes and objects: Part III 9

James Tam

Method Overriding

•Different versions of a method can be implemented in
different ways by the parent and child class in an inheritance
hierarchy.

•Methods have the same name and parameter list (identical
signature) but different bodies

• e.g.,
public class Parent public class Child extends Parent
{ {

: : : :
public void method () public void method ()
{ {

System.out.println(“m1”); num = 1;
} }

} }

James Tam

Method Overloading Vs. Method Overriding

Method Overloading
•Multiple method implementations for the same class
•Each method has the same name but the type, number or order of the
parameters is different (signatures are not the same)

•The method that is actually called is determined at program compile
time (early binding).

•i.e., <reference name>.<method name> (parameter list);

Distinguishes
overloaded methods

Classes and objects: Part III 10

James Tam

Method Overloading Vs. Method Overriding (2)

Example of method overloading:
public class Foo
{

public void display () { }
public void display (int i) { }
public void display (char ch) { }

}

Foo f = new Foo ();
f.display();
f.display(10);
f.display(‘c’);

James Tam

Method Overloading Vs. Method Overriding (3)

Method Overriding
•The method is implemented differently between the parent and child
classes

•Each method has the same return value, name and parameter list
(identical signatures)

•The method that is actually called is determined at program run time
(late binding)

•i.e., <reference name>.<method name> (parameter list);

The type of the reference
(implicit parameter “this”)
distinguishes overridden
methods

Classes and objects: Part III 11

James Tam

Method Overloading Vs. Method Overriding (4)

Example of method overriding:
public class Foo
{

public void display () { … }
: :

}
public class FooChild extends Foo
{

public void display () { … }
}

Foo f = new Foo ();
f.display();

FooChild fc = new FooChild ();
fc.display ();

James Tam

Polymorph

The ability to take on different forms

Images from the game Dungeon Master by FTL

Classes and objects: Part III 12

James Tam

Polymorphism In Object-Orientated Theory

• An overridden method that can take on many forms
• The type of an instance (the implicit parameter) determines

at program run-time which method will be executed.
public class Foo
{

public void display () { … }
: :

}
public class FooChild extends Foo
{

public void display () { … }
}

James Tam

A Blast From The Past

Mummy

Scorpion

Dragon

Screamer

Ghost

Knight

Monsters

Weapons

Armour

Falchion

Longbow
Ninjato

Dungeon
Master

:

Classes and objects: Part III 13

James Tam

The Inheritance Hierarchy For The Monsters

Monster

Undead StoneBased Giggler Dragon

James Tam

The Dragon Sub-Hierarchy

Dragon

Red Dragon Blue Dragon Halitosis Dragon

Classes and objects: Part III 14

James Tam

The Dragon Sub-Hierarchy

Dragon

Red Dragon Blue Dragon Halitosis Dragon

James Tam

Class DungeonMaster

Example (The complete example can be found in the directory
/home/233/examples/object_programming/DMExample

class DungeonMaster
{

public static void main (String [] args)
{

BlueDragon electro = new BlueDragon ();
RedDragon pinky = new RedDragon ();
HalitosisDragon stinky = new HalitosisDragon () ;

electro.displaySpecialAbility ();
pinky.displaySpecialAbility ();
stinky.displaySpecialAbility ();

}
}

Classes and objects: Part III 15

James Tam

Class Monster

public class Monster
{

private int protection;
private int damageReceivable;
private int damageInflictable;
private int speed;
private String name;
public Monster ()
{

protection = 0;
damageReceivable = 1;
damageInflictable = 1;
speed = 1;
name = "Monster name: ";

}

James Tam

Class Monster (2)

public int getProtection () {return protection;}
public void setProtection (int newValue) {protection = newValue;}
public int getDamageReceivable () {return damageReceivable;}
public void setDamageReceivable (int newValue) {damageReceivable =

newValue;}
public int getDamageInflictable () {return damageInflictable;}
public void setDamageInflictable (int newValue) {damageInflictable =

newValue;}
public int getSpeed () {return speed;}
public void setSpeed (int newValue) {speed = newValue;}
public String getName () {return name; }
public void setName (String newValue) {name = newValue;}
public void displaySpecialAbility ()
{

System.out.println("No special ability");
}

Classes and objects: Part III 16

James Tam

Class Monster (3)

public String toString ()
{

String s = new String ();
s = s + "Protection: " + protection + "\n";
s = s + "Damage receivable: " + damageReceivable + "\n";
s = s + "Damage inflictable: " + damageInflictable + "\n";
s = s + "Speed: " + speed + "\n";
s = s + "Name: " + name + "\n";
return s;

}
} // End of definition for class Monster.

James Tam

Class Dragon

public class Dragon extends Monster
{

public void displaySpecialAbility ()
{

System.out.print("Breath weapon: ");
}

}

Classes and objects: Part III 17

James Tam

Class BlueDragon

public class BlueDragon extends Dragon
{

public void displaySpecialAbility ()
{

super.displaySpecialAbility ();
System.out.println("Lightening");

}
}

James Tam

Class HalitosisDragon

public class HalitosisDragon extends Dragon
{

public void displaySpecialAbility ()
{

super.displaySpecialAbility();
System.out.println("Stinky");

}
}

Classes and objects: Part III 18

James Tam

Class RedDragon

public class RedDragon extends Dragon
{

public void displaySpecialAbility ()
{

super.displaySpecialAbility();
System.out.println("Fire");

}
}

James Tam

Updated Scoping Rules

When referring to an identifier in the method of a class
1. Look in the local memory space for that method
2. Look in the definition of the class
3. Look in the definition of the classes’ parent

Classes and objects: Part III 19

James Tam

Updated Scoping Rules (2)

public class P
{

}
public class C extends P
{

public void method ()
{

}
}

<<< First >>>

<<< Second >>>

<<< Third >>>

James Tam

Accessing The Unique Attributes
And Methods Of The Parent

• All protected or public attributes and methods of the parent
class can be accessed directly in the child class
e.g.
public class P
{

protected int num;
}

public class C extends P
{

public void method ()
{

this.num = 1;
// OR
num = 2;

}
}

Classes and objects: Part III 20

James Tam

Accessing The Non-Unique Attributes
And Methods Of The Parent

• An attribute or method exists in both the parent and child
class (has the same name in both)

• The method or attribute has public or protected access
• Must prefix the attribute or method with “super” to

distinguish it from the child class.
• Format:

•super.methodName ()
•super.attributeName ()

• Note: If you don’t preface the method attribute with the keyword “super”
then the by default the attribute or method of the child class will be
accessed.

James Tam

Accessing The Non-Unique Attributes And Methods
Of The Parent: An Example

e.g.
public class P
{

protected int num;
protected void method ()
{

:
}

}

Classes and objects: Part III 21

James Tam

Accessing The Non-Unique Attributes And Methods
Of The Parent: An Example (2)

public class C extends P
{

protected int num;
public void method ()
{

num = 2;
super.num = 3;
super.method();

}

James Tam

Casting And Inheritance

• Remember: You can substitute instances of a subclass for
instances of a superclass.

Monster

Dragon

BlueDragon

You can substitute a
Dragon for a
Monster

You can substitute a
BlueDragon for a
Dragon

Classes and objects: Part III 22

James Tam

Casting And Inheritance (2)

• Remember: You cannot substitute instances of a superclass
for instances of a subclass

Monster

Dragon

BlueDragon

You cannot
substitute a
Monster for a
Dragon

You cannot
substitute a
Dragon for a
BlueDragonx

James Tam

Casting And Inheritance: A Previous Example

public class Monster
{

private int protection;
private int damageReceivable;
private int damageInflictable;
private int speed;
private String name;

: : :
public int getProtection () {return protection;}

: : :
}

Classes and objects: Part III 23

James Tam

Casting And Inheritance: An Previous
Example

public class Dragon extends Monster
{

public void displaySpecialAbility ()
{

System.out.print("Breath weapon: ");
}

public void fly ()
{

System.out.println("Flying");
}

}

James Tam

Casting And Inheritance: An Previous
Example

public class BlueDragon extends Dragon
{

public void displaySpecialAbility ()
{

super.displaySpecialAbility ();
System.out.println("Lightening");

}

public void absorbElectricity ()
{

System.out.println("Absorbing electricity.");
}

}

Classes and objects: Part III 24

James Tam

Substituting Sub And Super Classes

• You can substitute an instance of a sub class for an instance
of a super class.

BlueDragon electro = new BlueDragon ();
Monster aMonster = new Monster ();

System.out.println(aMonster.getProtection());
System.out.println(electro.getProtection());

Dragon

BlueDragon

Monster
+getProtection ()

James Tam

Substituting Sub And Super Classes

• You cannot substitute an instance of a super class for an
instance of a sub class.

BlueDragon electro = new BlueDragon ();
Monster aMonster = new Monster ();

electro.absorbElectricity ();
aMonster.absorbElectricity ();

Monster

Dragon

BlueDragon

+absorbElectricity()

Classes and objects: Part III 25

James Tam

Casting And Inheritance

BlueDragon electro = new BlueDragon ();
Monster aMonster;

aMonster = electro;
aMonster.fly();
aMonster.absorbElectricity();

aMonster = new Monster ();
electro = aMonster;

electro = (BlueDragon) aMonster;
electro.fly();
electro.absorbElectricity();

x
x

x

x
x
x

Monster

BlueDragon

+absorbElectricity()

Dragon
+fly()

James Tam

Casting And Inheritance (2)

• Only use the cast operator if you are sure of the type.

BlueDragon electro = new BlueDragon ();
Monster aMonster;
aMonster = electro;

if (aMonster instanceof BlueDragon)
{

System.out.println("AMonster is a reference to an instance of a
BlueDragon");

electro = (BlueDragon) aMonster;
electro.fly();
electro.absorbElectricity();

}

Classes and objects: Part III 26

James Tam

Casting And Inheritance (3)

• Only use the cast operator if you are sure of the type.

BlueDragon electro = new BlueDragon ();
Monster aMonster;
aMonster = electro;

if (aMonster instanceof BlueDragon)
{

System.out.println("AMonster is actually a reference to an instance of
a BlueDragon");

((BlueDragon) aMonster).fly();
((BlueDragon) aMonster).absorbElectricity();

}

James Tam

Shadowing

•Local variables in a method or parameters to a method have
the same name as instance fields

•Attributes of the subclass have the same name as attributes
of the superclass

Classes and objects: Part III 27

James Tam

Attributes Of The Subclass Have The Same
Name As The SuperClasses’ Attributes

public class Foo
{

private int num;
public Foo () { num = 1; }
public int getNum () { return num; }
public void setNum (int newValue) {num = newValue; }

}

public class Bar extends Foo
{

public Bar ()
{

num = 10;
}

}

James Tam

Attributes Of The Subclass Have The Same
Name As The SuperClasses’ Attributes

public class Foo
{

private int num;
public Foo () { num = 1; }
public int getNum () { return num; }
public void setNum (int newValue) {num = newValue; }

}

public class Bar extends Foo
{

public Bar ()
{

num = 10;
}

}

Insufficient access
permissions: Program
won’t compile

Classes and objects: Part III 28

James Tam

Attributes Of The Subclass Have The Same
Name As The SuperClasses’ Attributes (2)

public class Foo
{

private int num;
public Foo () { num = 1; }
public int getNum () { return num; }
public void setNum (int newValue) {num = newValue; }

}

public class Bar extends Foo
{

private int num;
public Bar ()
{

num = 1;
}

}

James Tam

Attributes Of The Subclass Have The Same
Name As The SuperClasses’ Attributes (2)

public class Foo
{

private int num;
public Foo () { num = 1; }
public int getNum () { return num; }
public void setNum (int newValue) {num = newValue; }

}

public class Bar extends Foo
{

private int num;
public Bar ()
{

num = 1;
}

}

NO!

Classes and objects: Part III 29

James Tam

The Result Of Attribute Shadowing

public class Bar extends Foo
{

private int num;
public Bar ()
{

num = 10;
}
public int getSecondNum () { return num; }

}
class Driver
{

public static void main (String [] arv)
{

Bar b = new Bar ();
System.out.println(b.getNum());
System.out.println(b.getSecondNum());

}
}

James Tam

Another Scoping Example

class ScopingExample
{

public static void main (String [] args)
{

P p1 = new P ();
C c1 = new C ();
GC gc = new GC ();
gc.method1();
gc.method2();
gc.method3();
gc.method();

}
}

Classes and objects: Part III 30

James Tam

Another Scoping Example (2)

public class GC extends C
{

private int num1;
public GC ()
{

num1 = 1;
}
public void method1 ()
{

System.out.println("GC's method 1");
super.method1();

}
public void method2 ()
{

System.out.println("GC's method 2");
super.method2();

}

James Tam

Another Scoping Example (3)

public void method3 ()
{

int num0 = 0;
System.out.println("num0=" + num0);
System.out.println("num1=" + num1);
System.out.println("num2=" + num2);
System.out.println("num3=" + num3);
System.out.println("ch=" + ch);

}

public void method ()
{

super.method1();
}

} // End of class GC

Classes and objects: Part III 31

James Tam

Another Scoping Example (4)

public class C extends P
{

protected int num2;
protected char ch1;
public C ()
{

ch = 'C';
num2 = 2;

}
public void method1 ()
{

System.out.println("C's method 1");
}
public void method2 ()
{

System.out.println("C's method 2");
super.method2();

}
} // End of class C

James Tam

Another Scoping Example (5)

public class P
{

protected int num3;
protected char ch;
public P ()
{

ch = 'P';
num3 = 3;

}
public void method1 ()
{

System.out.println("P's method 1");
}
public void method2 ()
{

System.out.println("P's method 2");
}

} // End of class P

Classes and objects: Part III 32

James Tam

Changing Permissions Of
Overridden Methods

•The overridden method must have equal or stronger (less
restrictive) access permissions in the child class.

Parent
#method()

Child
+method()

Parent
#method()

Child
-method()

James Tam

The Final Modifier (Inheritance)

Methods preceded by the final modifier cannot be overridden
e.g., public final void displayTwo ()

Classes preceded by the final modifier cannot be extended
•e.g., final public class ParentFoo

Classes and objects: Part III 33

James Tam

Why Employ Inheritance

• To allow for code reuse
• It may result in more robust code

Existing class

New class

James Tam

Java Interfaces (Type)

• Similar to a class
• Provides a design guide rather than implementation details
• Specifies what methods should be implemented but not how
• Cannot be instantiated

<< interface >>

Interface name
method specification

Class name
method implementation

Realization / Implements

Classes and objects: Part III 34

James Tam

Java Interfaces (Type): Lollipop Notation

• Similar to a class
• Provides a design guide rather than implementation details
• Specifies what methods should be implemented but not how
• Cannot be instantiated

Class name
method implementation

Interface
name

James Tam

Interfaces: Format

Format for defining an interface
public interface <name of interface>
{

constants
methods to be implemented by the class that realizes this interface

}

Format for realizing / implementing the interface
public class <name of class> implements <name of interface>
{

attributes
methods actually implemented by this class

}

Classes and objects: Part III 35

James Tam

Interfaces: A Checkers Example

Basic board

Regular rules

Variant rules

James Tam

Interface Board

public interface Board
{

public static final int SIZE = 8;
public void displayBoard ();
public void initializeBoard ();
public void movePiece ();
boolean moveValid (int xSource, int ySource, int xDestination,

int yDestination);
: : :

}

Classes and objects: Part III 36

James Tam

Class RegularBoard

public class RegularBoard implements Board
{

public void displayBoard ()
{

:
}

public void initializeBoard ()
{

:
}

James Tam

Class RegularBoard (2)

public void movePiece ()
{

// Get (x, y) coordinates for the source and destination
if (moveValid (xS, yS, xD, yD) == true)

// Actually move the piece
else

// Don’t move piece and display error message
}

public boolean moveValid (int xSource, int ySource, int xDestination,
int yDestination)

{
if (moving forward diagonally)

return true;
else

return false;
}

} // End of class RegularBoard

Classes and objects: Part III 37

James Tam

Class VariantBoard

public class VariantBoard implements Board
{

public void displayBoard ()
{

:
}

public void initializeBoard ()
{

:
}

James Tam

Class VariantBoard (2)

public void movePiece ()
{

// Get (x, y) coordinates for the source and destination
if (moveValid (xS, yS, xD, yD) == true)

// Actually move the piece
else

// Don’t move piece and display error message
}

public boolean moveValid (int xSource, int ySource, int xDestination,
int yDestination)

{
if (moving straight-forward or straight side-ways)

return true;
else

return false;
}

} // End of class VariantBoard

Classes and objects: Part III 38

James Tam

Interfaces: Recapping The Example

Interface Board
•No state (data) or behavior (body of the method is empty)
•Specifies the behaviors that a board should exhibit e.g., clear screen
•This is done by listing the methods that must be implemented by
classes that implement the interface.

Class RegularBoard and VariantBoard
•Can have state and methods
•They must implement all the methods specified by interface Board
(but can also implement other methods too)

James Tam

Implementing Multiple Interfaces

Class

Interface1 Interface2 Interface3

Classes and objects: Part III 39

James Tam

Implementing Multiple Interfaces

Format:
public class <class name> implements <interface name 1>,

<interface name 2>, <interface name 3>…
{

}

James Tam

Multiple Implementations Vs. Multiple Inheritance

•A class can implement all the methods multiple interfaces
•Classes in Java cannot extend more than one class
•This is not possible in Java but is possible in other languages
such as C++:

class <class name 1> extends <class
name 2>, <class name 3>…

{

}

Classes and objects: Part III 40

James Tam

Multiple Implementations Vs.
Multiple Inheritance (2)

• A class can implement all the methods of multiple interfaces
• Classes in Java cannot extend more than one class
• This is not possible in Java but is possible in other

languages such as C++:

Parent class 1 Parent class 2 Parent class 3

Child class

James Tam

Abstract Classes

•Classes that cannot be instantiated
•A hybrid between regular classes and interfaces
•Some methods may be implemented while others are only
specified

•Used when the parent class cannot define a complete default
implementation (implementation must be specified by the
child class).

Format:
public abstract class <class name>
{

<public/private/protected> abstract method ();
}

Classes and objects: Part III 41

James Tam

Abstract Classes (2)

Example1:
public abstract class BankAccount

{
protected float balance;
public void displayBalance ()
{

System.out.println("Balance $" + balance);
}
public abstract void deductFees () ;

}

1) From “Big Java” by C. Horstmann pp. 449 – 500.

James Tam

You Should Now Know

• How the inheritance relationship works
•When to employ inheritance and when to employ other types of
relations

•What are the benefits of employing inheritance
• How to create and use an inheritance relation in Java
•How casting works within an inheritance hierarchy
•What is the effect of the keyword "final" on inheritance relationships
•Issues related to methods and attributes when employing inheritance

• What is method overloading?
•How does it differ from method overriding
•What is polymorphism

Classes and objects: Part III 42

James Tam

You Should Now Know (2)

•What are interfaces/types
•How do types differ from classes
•How to implement and use interfaces in Java

•What are abstract classes in Java and how do they differ
from non-abstract classes and interfaces.

•How to read/write UML notations for inheritance and
interfaces.

