

<u>Binary</u>

Base two

Employs two unique symbols (0 and 1)

Largest decimal value that can be represented by 1 binary digit = 1 = base(2) - 1

Decimal value	Binary value	Decimal value	Binary value
0	0000	8	1000
1	0001	9	1001
2	0010	10	1010
3	0011	11	1011
4	0100	12	1100
5	0101	13	1101
6	0110	14	1110
7	0111	15	1111

Why Bother With Binary?

Representing information

- ASCII (American Standard Code for Information Interchange)
- Unicode

It's the language of the computer

James Tam

Representing Information: ASCII

Decimal	Binary	ASCII
0-31	00000000 - 00011111	Invisible (control characters)
32 - 47	00100000 - 00101111	Punctuation, mathematical operations
48 - 57	00110000 - 00111001	Characters 0 - 9
58 - 64	00111010 - 01000000	Comparators and other miscellaneous characters : ; ? @
65 - 90	01000001 - 01011010	Alphabetic (upper case A - Z)
91 – 96	01011011 - 01100000	More miscellaneous characters [\]^_'
97 – 122	01100001 - 01111010	Alphabetic (lower case a - z)
123 – 127	01111011 - 01111111	More miscellaneous characters { } ~ DEL

Representing Information: ASCII (2)

Uses 7 bits to represent characters

Max number of possibilities = $2^7 = 128$ characters that can be represented

e.g., 'A' is 65 in decimal or 01000001in binary. In memory it looks like this:

Representing Information: Unicode

Uses 16 bits (or more) to represent information

Max number of possibilities = $2^{16} = 65536$ characters that can be represented (more if more bits are used)

Decimal value	Octal value	Decimal value	Octal value
0	0	8	10
1	1	9	11
2	2	10	12
3	3	11	13
4	4	12	14
5	5	13	15
6	6	14	16
7	7	15	17

Machine	Octal	PDP -11 assembly
language	value	language
1010111000000	012700	MOV #4, R0
1001010000101	011205	MOV (R2), R5

from Introduction to the PDP-11 and its Assembly Language by Frank T

Hexadecimal (Hex)

Base sixteen

Employs sixteen unique symbols (0 - 9, followed by A - F)

Largest decimal value that can be represented by 1 hex digit = 15

Decimal value	Hexadecimal value	Decimal value	Hexadecimal value
0	0	9	9
1	1	10	A
2	2	11	В
3	3	12	C
4	4	13	D
5	5	14	E
6	6	15	F
7	7	16	10
8	8	17	11

Uses Of Hexadecimal (Assembly Language)

Machine	Hexadecimal	680X0 assembly	
language	value	language	
1010011000001	14C1	MOV.B D1, (A2)+	
110000011100000	60E0	BRA NEXT	

Decimal	Binary	Octal	Hex	Decimal	Binary	Octal	Hex
0	0000	0	0	8	1000	10	8
1	0001	1	1	9	1001	11	9
2	0010	2	2	10	1010	12	A
3	0011	3	3	11	1011	13	В
4	0100	4	4	12	1100	14	C
5	0101	5	5	13	1101	15	D
6	0110	6	6	14	1110	16	E
7	0111	7	7	15 ¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹	1111	17	F

		, 2010)				
Binary (1 bit)	Value	Binary (2 bits)	Value	Binary (3 bits)	Value	
0	0	00	0	000	0	
1	1	01	1	001	1	
0	0	10	2	010	2	
1	1	11	3	011	3	
-		00	0	100	4	
		01	1	101	5	
		01	1	110	6	
		10	2	111	7	
		11	3	000	0	
				001	1	
		•	•	001	1	
				:	:	

Arbitrary Number Bases

Base N

Employs N unique symbols

Largest decimal value that can be represented by 1 digit = Base (N) - 1

Converting Between Different Number Systems

Binary to/from octal

Binary to/from hexadecimal

Octal to/from hexadecimal

Decimal to any base

Any base to decimal

James Tam

Binary To Octal

3 binary digits equals one octal digit (remember 2³=8)

Form groups of three starting at the decimal

•For the integer portion start grouping at the decimal and go left

•For the fractional portion start grouping at the decimal and go right

Octal To Binary

1 octal digit equals = 3 binary digits

Split into groups of three starting at the decimal

•For the integer portion start splitting at the decimal and go left

•For the fractional portion start splitting at the decimal and go right

Binary To Hexadecimal

4 binary digits equals one hexadecimal digit (remember $2^4=16$)

Form groups of four at the decimal

•For the integer portion start grouping at the decimal and go left

•For the fractional portion start grouping at the decimal and go right

e.g.,
$$1000.0100_2 = ???_{16}$$

8 . 4₁₆

Hexadecimal To Binary

1 hex digit equals = 4 binary digits

Split into groups of four starting at the decimal

•For the integer portion start splitting at the decimal and go left

•For the fractional portion start splitting at the decimal and go right

Decimal To Any Base

- 1) Split up the integer and the fractional portions
- 2) For the integer portion, keep dividing by the target base until the quotient is less than the target base
- 3) For the fractional portion, keep multiplying by the target base until either the resulting product equals zero (or you have the desired number of places of precision)

You Should Now Know

•What is meant by a number base

- •How binary, octal and hex based number systems work and what role they play in the computer
- •What is overflow, why does it occur and when does it occur
- •How to convert between non-decimal based number systems and decimal
- •How to perform simple binary math (addition and subtraction)