
Link Lists in Pascal 1

James TamLinked Lists in Pascal

Linked Lists

In this section of notes you will learn
how to create and manage a dynamic
list.

James TamLinked Lists in Pascal

Arrays

Easy to use but suffer from a number of drawbacks:
1) Fixed size
2) Adding/Deleting elements can be awkward

Link Lists in Pascal 2

James TamLinked Lists in Pascal

Arrays: Fixed Size

The size of the array cannot be dynamically changed once the
memory has been allocated
The following example won't work:

program notAllowed (input, output);
var

size : integer;
arr : array [1..size] of integer;

begin
write('Enter size of array: ');
readln(size);

end.

The workaround is to allocate more space than you need

James TamLinked Lists in Pascal

Arrays: Fixed Size

The size of the array cannot be dynamically changed once the
memory has been allocated
The following example won't work:

program notAllowed (input, output);
var

size : integer;
arr : array [1..size] of integer;

begin
write('Enter size of array: ');
readln(size);

end.

The workaround is to allocate more space than you need

The size of the array
must be
predetermined!

Link Lists in Pascal 3

James TamLinked Lists in Pascal

Arrays: Adding Elements In The Middle

123

125

135

155

161

166

167

167

169

177

178

165

James TamLinked Lists in Pascal

Arrays: Deleting Elements From The Middle

123

125

135

155

161

166

167

167

169

177

178

Link Lists in Pascal 4

James TamLinked Lists in Pascal

What’s Needed

•An composite type that stores data but can allow for
the quick addition and removal of elements

Freight “data”

Connector

James TamLinked Lists in Pascal

Alternative To Arrays: Linked Lists

• More complex coding may be required
• Some list management functions are more elegant (and faster)

Data Ptr

Node

Data Ptr Data Ptr

Linked
List

Head

Link Lists in Pascal 5

James TamLinked Lists in Pascal

Common List Functions

1) Declaring the list
2) Creating a new list
3) Traversing the list
4) Adding a node to the list
5) Searching the list
6) Deleting a node from the list

Note: These list functions will be illustrated by portions of an example
program. This program is the investors program from the section on
sorting but implemented as a linked list rather than as array. The complete
program can be found in Unix under:
/home/231/examples/linked_lists/investors.p

James TamLinked Lists in Pascal

Declaring A Linked List

Format:
type

Node = record
data : Name of the list data;
nextPointer : Name of the list pointer;

end;

Name of the list pointer = ^ Node;

Link Lists in Pascal 6

James TamLinked Lists in Pascal

Declaring A Linked List (2)

Example:
type

Client = record
firstName : array [1..NAME_LENGTH] of char;
lastName : array [1..NAME_LENGTH] of char;
income : real;
email : array [1..EMAIL_LENGTH] of char;

end; (* Declaration of record Client *)

NodePointer = ^ Node;
Node = record

data : Client;
nextPointer : NodePointer;

end; (* Declaration of record Node *)

James TamLinked Lists in Pascal

Declaring A Linked List (2)

Example:
type

Client = record
firstName : array [1..NAME_LENGTH] of char;
lastName : array [1..NAME_LENGTH] of char;
income : real;
email : array [1..EMAIL_LENGTH] of char;

end; (* Declaration of record Client *)

NodePointer = ^ Node;
Node = record

data : Client;
nextPointer : NodePointer;

end; (* Declaration of record Node *)

Declaring the
node’s data
field

Declaring the
type of node

Link Lists in Pascal 7

James TamLinked Lists in Pascal

Creating A New List

Description:
The pointer to the beginning of the list is passed into the procedure as a variable
parameter and initialized to NIL signifying that the new list is empty.

Example:
procedure createNewList (var tamjClientList : NodePointer);
begin

tamjClientList := NIL;
end;

James TamLinked Lists in Pascal

Reading The Client Information From A File

procedure readClientInformation (var tamjClientList : NodePointer;
var investorData : text);

var
newNode : NodePointer;
newClient : Client;

begin;
writeln;
reset(investorData, 'investorList');
writeln('Opening file "investorList" for reading');

Link Lists in Pascal 8

James TamLinked Lists in Pascal

Reading The Client Information From A File (2)

while NOT EOF (investorData) do
begin

new(newNode);
with newClient do
begin

readln(investorData, firstName);
readln(investorData, lastName);
readln(investorData, income);
readln(investorData, email);
readln(investorData);

end; (* End with-do: Read in information for a single client *)
newNode^.data := newClient;
addToList (tamjClientList, newNode);

end; (* End while-do: Read in all client information *)
close(investorData);

end; (* End of procedure readClientInformation *)

James TamLinked Lists in Pascal

Traversing The List

Description:
Steps (traversing the list to display the data of each node onscreen)
1. Start by initializing a pointer to point to the beginning of the list.
2. If the pointer is NIL then display a message onscreen indicating

that there are no nodes to display and stop otherwise proceed to
next step.

3. Process the node (e.g., display the data onscreen)
4. Move on to the next node by following the node's nextPointer (set

the pointer to point to the next node).
5. Check if the pointer is NIL.

a) If the pointer is NIL then stop
b) If the pointer is not NIL then go to step #3.

Link Lists in Pascal 9

James TamLinked Lists in Pascal

Traversing The List (2)

Example:
procedure displayList (tamjClientList : NodePointer);
var

currentNode : NodePointer;
begin

currentNode := tamjClientList;
writeln('CLIENT LIST':20);

if (currentNode = NIL) then
begin

writeln;
writeln('List is empty, no clients to display');
writeln;

end;

James TamLinked Lists in Pascal

Traversing The List (3)

while (currentNode <> NIL) do
begin

writeln('First name: ':20, currentNode^.data.firstName);
writeln('Last Name: ':20, currentNode^.data.lastName);
writeln('Income $':20, currentNode^.data.income:0:2);
writeln('Email: ':20, currentNode^.data.email);
writeln;
currentNode := currentNode^.nextPointer;

end; (* End while-do: traversing the list *)
end; (* Procedure displayList *)

Link Lists in Pascal 10

James TamLinked Lists in Pascal

Traversing The List (4)

James TamLinked Lists in Pascal

Traversing The List (5)

Link Lists in Pascal 11

James TamLinked Lists in Pascal

Adding A Node To The End Of The List

Description:
Variables
1. There are two pointers to the list:

a) Current pointer – traverses the list from beginning to end
b) Previous to first pointer – points to the node that

occurs just prior to the first successful match.

James TamLinked Lists in Pascal

Adding A Node To The End Of The List (2)

Steps:
1. Assign current pointer to the front of the list.
2. If the current pointer is NIL then the list is empty and add the node to

the front of the list and stop.
3. Otherwise traverse the list with two pointers, one pointer (current

pointer) goes past the end of the list (to the NIL value), the other
stays one node behind it (previous pointer).

4. Attach the new node to the last node in the list (the one reached by
the previous pointer).

5. The next pointer of the new node becomes NIL (indicating that this
is the end of the list).

Link Lists in Pascal 12

James TamLinked Lists in Pascal

Adding A Node To The List (3)

Example:
procedure addToList (var tamjClientList : NodePointer;

newNode : NodePointer);
var

currentNode : NodePointer;
previousNode : NodePointer;

begin
if (tamjClientList = NIL) then
begin

tamjClientList := newNode;
newNode^.nextPointer := NIL;

end

James TamLinked Lists in Pascal

Adding A Node To The List (4)

else
begin

currentNode := tamjClientList;
while (currentNode <> NIL) do
begin

previousNode := currentNode;
currentNode := currentNode^.nextPointer;

end; (* End while-do: searched whole list *)
previousNode^.nextPointer := newNode;
newNode^.nextPointer := NIL;

end; (* End else: case where list is not empty *)
end; (* End of procedure addToList *)

Link Lists in Pascal 13

James TamLinked Lists in Pascal

Adding A Node To The List (5)

James TamLinked Lists in Pascal

Adding A Node To The List (6)

Link Lists in Pascal 14

James TamLinked Lists in Pascal

Searching The List

Description:
The procedure is run in order to find a node or nodes that has a field
which matches some desired value. Either the node or nodes will be
found in the list or else the procedure will have searched every node in the
list and have found no matches. A flag will be set to true or false
indicating whether the search was successful or a failure.

Main variables:
1. There are two pointers to the list:

a. Current pointer – traverses the list from beginning to end.
b. Previous to first pointer – points to the node that occurs just prior

to the first successful match.
Note: The second pointer is not used when the user only wants to
search the list. It is needed when the person wishes to erase a node
from the list. Since the erase procedure calls the search procedure, it
needs a pointer to the node prior to the one to be deleted.

2. A Boolean that indicates the status of the search.

James TamLinked Lists in Pascal

Searching The List (2)

Steps:
1. Current pointer starts at the beginning of the list. Since the search has

not yet begin, previous is set to NIL and the flag is set to false.
2. A check is performed to determine if the node is a match. If this is

the case and the flag is still false (indicating that we haven't found a
previous node that was a successful match) set the flag to true (since a
match was just found). Since the search function requires a list of all
matches (and not just the first instance) don't stop searching the list.

3. The previous pointer to will be set to point to the current node if the
flag was false prior to the match (i.e., this is the first instance found).
The previous pointer will not change if the flag was already set to true
(the previous pointer will still track the node just prior to the node
which first meets the search criteria).

4. Move on to the next node (by setting the current pointer to the current
node's next pointer).

5. Continue step 2 – 4 until the end of the list is reached (current node is
NIL).

Link Lists in Pascal 15

James TamLinked Lists in Pascal

Searching The List (3)

Example:
procedure search (tamjClientList : NodePointer;

desiredName : NameArray;
var isFound : boolean;
var previousFirst : NodePointer);

var
currentNode : NodePointer;

begin
currentNode := tamjClientList;
previousFirst := NIL;
isFound := False;

James TamLinked Lists in Pascal

Searching The List (4)

while (currentNode <> NIL) do
begin

if (desiredName = currentNode^.data.lastName) then
begin

writeln('Found contact':20);
writeln('First name :':20, currentNode^.data.firstName);
writeln('Last name :':20, currentNode^.data.lastName);
writeln('Income $':20, currentNode^.data.income:0:2);
writeln('Email :':20, currentNode^.data.email);
writeln;
if (isFound = False) then

isFound := True;
end; (* End if-then: checking for match *)

Link Lists in Pascal 16

James TamLinked Lists in Pascal

Searching The List (5)

if (isFound = False) then
previousFirst := currentNode;

currentNode := currentNode^.nextPointer;
end; (* End while: Traversed the whole list *)
if (isFound = False) then
writeln('Contact not found in list');

end; (* End of procedure search *)

James TamLinked Lists in Pascal

Searching The List (6)

Link Lists in Pascal 17

James TamLinked Lists in Pascal

Searching The List (7)

James TamLinked Lists in Pascal

Searching The List (8)

Link Lists in Pascal 18

James TamLinked Lists in Pascal

Deleting A Node From The List

Description:

Main variables:
1. A flag that indicates the status of the search. If the search was

successful then it was true that the item was found (flag will be set to
true). If the search was a failure then it was false that item was found
(flag will be set to false).

2. A pointer that points to the node just prior to the one to be deleted. If
the flag was set to true then the pointer contains the address of the
previous node. If the pointer is NIL then the node to be deleted is the
first node (nothing is previous to this node so there is no address). If
the the pointer is not NIL then it contains the address of the node to
be deleted.

3. A temporary pointer that points to the node to be deleted. It is needed
so that the program can retain a reference to this node and free up the
memory allocated for it.

James TamLinked Lists in Pascal

Deleting A Node From The List (2)

Steps
1. Search the list (by calling the search procedure) to determine if there

exists a node that matches the necessary criteria for deletion.
2. Check the flag to determine if the search was successful or not. If the

flag is false then there is no matching node in the list. End procedure:
There is no matching node to delete.

3. Check to see if the node to be deleted is the first node in the list or not
by checking if the previous pointer is NIL.

4. If the node to be deleted is the first node then have a temporary
pointer point to the first element and make the front of the list the
second element.

5. If the node to be deleted is not the first node then have a temporary
pointer point to the node to be deleted. Set the next pointer (of the
node previous to the one to be deleted) point to the node after the
node to be deleted (bypassing this node)

6. For steps 4 & 5 free up the memory allocated by the node to be
deleted by dereferencing the temporary pointer.

Link Lists in Pascal 19

James TamLinked Lists in Pascal

Deleting A Node From The List (3)

Example:
procedure erase (var tamjClientList : NodePointer);
var

desiredName : NameArray;
previousFirst : NodePointer;
temp : NodePointer;
isFound : boolean;

begin
write('Enter last name of client to delete: ');
readln(desiredName);
search (tamjClientList, desiredName, isFound, previousFirst);

James TamLinked Lists in Pascal

Deleting A Node From The List (4)

if (isFound = True) then
begin

writeln('Deleting first instance of ', desiredName);
if (previousFirst = NIL) then
begin

temp := tamjClientList;
tamjClientList := tamjClientList^.nextPointer;

end (* End if-then: deleting first node in list *)
else
begin

temp := previousFirst^.nextPointer;
previousFirst^.nextPointer := temp^.nextPointer;

end; (* End else: deleting a node other than the first node in the list *)
dispose(temp);

end; (* End if-then: finished deleting node from list *)
end; (* End of procedure erase *)

Link Lists in Pascal 20

James TamLinked Lists in Pascal

Deleting A Node From The List (5)

James TamLinked Lists in Pascal

Deleting A Node From The List (6)

Link Lists in Pascal 21

James TamLinked Lists in Pascal

Deleting A Node From The List (7)

James TamLinked Lists in Pascal

You Should Now Know

•What is a linked list
•What are the advantages of using a linked list over using an
array

•What is the disadvantage of using a linked list over using an
array

•Common list operations
•Declaring a list
•Creating a new list and initializing the list with data
•Traversing the list (e.g., to display the contents of the nodes)
•Adding new nodes to the list
•Searching the list
•Deleting an existing node from the list

