
James Tam

Getting Started With Pascal
Programming

What is the basic structure of a Pascal Program

Variables in Pascal

Performing input and output with Pascal

Useful mathematical functions in Pascal

James Tam

Basic Structure Of Pascal Programs

(*

Header

*)

program name (input, output)

declarations

var

const

begin

end.

James Tam

Variables

Set aside a location in memory

Used to store information (temporary)

Types:
• integer – whole numbers
• real – whole numbers and fractions

- Can't end or start with a decimal
• char – alphabetic, numeric and miscellaneous symbols
• boolean – true or false values

Usage:
• Declaration
• Using values stored

James Tam

Declaring Variables

Sets aside memory

Memory locations addressed through the name

Naming conventions
• Should be meaningful
• Any combination of letters, numbers or underscore (can't begin with a number and

shouldn't begin with an underscore)
• Can't be a reserved word e.g., program, begin, end (see Appendix B)
• Avoid using words with an existing meaning e.g., integer, real, boolean, write,

writeln, read, readln
• Avoid distinguishing variable names only by case
• Okay:

- tax_rate
- firstName

• Not Okay
- 1abc
- x
- test.msg
- good-day

James Tam

Declaring Variables (2)

Typically occurs in the variable declaration ("var") section

i.e.,

var

name of first variable, name of second variable…: type of variables;

e.g.,

var

height, weight: real;

age: integer;

James Tam

Using Values Stored In Variables

Assignment
• Performed via the assignment operator :=
• Usage:

- Destination := Source;1
• Example:

- x := 5;
- x:= y;
- interest := principle * rate;
- Initial := 'j';

• Avoid assigning mixed types
e.g.,
var

num1: integer;
num2: real;

Begin
num1 = 12;
num2 = 12.5;
num2 := num1;

1 The source can be any expression (constant, variable or formula)

num1 := num2;

Not allowed!

James Tam

Named Constants

A memory location that is assigned a value that cannot be
changed

Format:

const

name of first constant = value of first constant;

name of second constant = value of second constant;

etc.

Location

Anywhere after the "program" statement and before the "begin"

James Tam

Purpose of Named Constants

1) Makes the program easier to understand

e.g.,

begin

population_change := (0.1758 – 0.1257) * current_population;

Vs.

const

BIRTHRATE = 0.1758;

DEATHRATE = 0.1257;

begin

population_change := (BIRTHRATE - DEATHRATE) * current_population;

2) Makes the program easier to maintain

Magic Numbers
(avoid!)

James Tam

Output

Displaying information onscreen

Done via the write and writeln statements

Formats (either write or writeln):

write ('text message');
or

writeln('text message');

write(name of variable or constant);
or

writeln (name of variable or constant);

write('message', name of variable, 'message'…);
or

writeln('message', name of variable, 'message'…);

James Tam

Formatting Output

Computer often inserts spaces as it thinks is necessary in order to
display output.

Manually formatting of output:
• write or writeln (data to output: field width for data: no. of decimal places)
• e.g., writeln (num1:6:2);

If the field width doesn’t match the actual size of the field
• Field width too small – extra spaces will be added for numerical variables.
• Field width too large – the data will be right justified (extra spaces will be

put in front of the data).

James Tam

Formatting Output (2)

If the number of decimal places doesn’t match the actual number
of decimal places.
• Set number of decimal places less than the actual number of decimal places

– number will be rounded up.
• Set number of decimal places greater than the actual number of decimal

places – number will be padded with zeros.

James Tam

Formatting Output: Examples

For the complete program and executable look under
/home/231/examples/getting_started/out1.p (out1 for the
compiled version)

num1 := 123;

num2 := 123.456;

writeln('Auto formatted by Pascal ', num1, num2);

writeln('Manual format':13, num1:3, num2:7:3);

writeln('Manual not enough':13, num1:2, num2:6:3);

writeln('Manual too much':16, num1:4, num2:8:4);

James Tam

Input

The computer program getting information from the user

Done via the read and readln statements

Formats:

(single input)
read (name of variable);

or
readln (name of variable);

(multiple inputs)
read (nv1, nv2…);

or
readln (nv2, nv3…);

James Tam

Input: Read Vs. Readln

Both:
• Reads each value inputted and matches it the corresponding variable.

Read
• If the user inputs additional values they will remain

Readln
• Any additional values inputted will be discarded

James Tam

Input: Read Vs. Readln (An example)

For the complete version of this program look in Unix under:
/home/231/examples/getting_started/read1.p (or read1 and read2 for the
compiled version)

e.g., read1.p

write('Input some integers making sure to separate each one with a space ');

write('or a new line: ');

read (num1, num2);

write('Input some integers making sure to separate each one with a space ');

write('or a newline: ');

read(num3, num4);

James Tam

Input: Read Vs. Readln (An example (2))

For the complete version of this program look in Unix under:
/home/231/examples/getting_started/read2.p (or read2 for the compiled
version)

e.g., read2.p

write('Input some integers making sure to separate each one with a space ');

write('or a newline: ');

readln (num1, num2);

write('Input some integers making sure to separate each one with a space ');

write('or a newline: ');

readln(num3, num4);

James Tam

Uses Of Readln

To filter out extraneous input

As an input prompt

e.g.,

writeln('To continue press return');

readln;

James Tam

Some Useful Functions

See also Appendix D in Pascal Programming and Problem
Solving by Leestma S. and Nyhoff L.

Name Description Input type Type of result Example

abs absolute value integer integer abs(-2) = 2
real real abs(-2.2) = 2.2

round rounding real integer round(2.6) = 3

trunc truncation real integer trunc(2.6) = 2

sqr squaring integer integer sqr(2) = 4
real real sqr(1.1) = 1.21

sqrt square root integer real sqrt(4) = 2.00
or

real

James Tam

Summary

What are the fundamental parts of a Pascal program

What are the basic types of variables employed in Pascal and
how are they used

How to output information with the write and writeln statements

Getting information from the user through the read and readln
statements

How are some common mathematical functions performed in
Pascal

