
James Tam

Link Lists

In this section of notes you will learn
how to create and manage a dynamic
list.

James Tam

Arrays

Easy to use but suffer from a number of drawbacks:
1) Fixed size
2) Adding/Deleting elements can be awkward

James Tam

Arrays: Fixed Size

The size of the array must be stated when the program is
compiled
The following example won't work:

program notAllowed (input, output);
var

size : integer;
arr : array [1..size] of integer;

begin
write('Enter size of array: ');
readln(size);

end.

The workaround is to allocate more space than you need

James Tam

Arrays: Fixed Size

The size of the array must be stated when the program is
compiled
The following example won't work:

program notAllowed (input, output);
var

size : integer;
arr : array [1..size] of integer;

begin
write('Enter size of array: ');
readln(size);

end.

The workaround is to allocate more space than you need

The size of the array
must be
predetermined!

James Tam

Arrays: Adding Elements In The Middle

123

125

135

155

161

166

167

167

169

177

178

165

James Tam

Arrays: Deleting Elements From The Middle

123

125

135

155

161

166

167

167

169

177

178

James Tam

Alternative To Arrays: Link Lists

More complex coding may be required
Some list management functions are more elegant (and faster)

Data Ptr

Node

Data Ptr Data Ptr

Link List

James Tam

Some Link List Functions

1)Declaring a link list
2)Creating a new list
3)Traversing the list
4)Adding a node to the list
5)Searching the list
6)Deleting a node from the list

Note: These list functions will be illustrated by portions of an example
program. This program is the investors program but implemented as a
link list rather than as array. The complete program can be found in Unix
under: /home/231/examples/link_lists/investors.p

James Tam

Declaring A Link List

Syntax:
type

Name of the list data = Type of the list data;
Name of the list pointer = ^ Node;
Node = Record

data : Name of the list data;
nextPointer : Name of the list pointer;

Name of link list = Name of list pointer;

James Tam

Declaring A Link List (2)

Example:
type

Client = record
firstName : array [1..NAMELENGTH] of char;
lastName : array [1..NAMELENGTH] of char;
income : real;
email : array [1..EMAILLENGTH] of char;

end; (* Declaration of record Client *)

ListData = Client;
ListPointer = ^ Node;
Node = record

data : ListData;
nextPointer : ListPointer;

end; (* Declaration of record Node *)

ClientList = ListPointer;

James Tam

Creating A New List

Algorithm:
The pointer to the beginning of the list is passed into the procedure as
a variable parameter and initialized to NIL signifying that the new list
is empty.

Example:
procedure createNewList (var tamjClientList : ClientList);
begin

tamjClientList := NIL;
end; (* Procedure *)

James Tam

Traversing The List

Algorithm:
Steps
1. Start by initializing a pointer to the beginning of the list.
2. If the pointer is NIL then show message indicating that there

are no nodes to display and stop.
3. Process the node.
4. Move on to the next node by following the node's nextPointer (set

pointer to point to the next node).
5. Repeat 3 – 4 until the end of the list is reached (pointer is NIL).

James Tam

Traversing The List (2)

Example:
procedure displayList (tamjClientList : ClientList);
var

currentNode : ListPointer;
begin

currentNode := tamjClientList;
writeln('CLIENT LIST':20);
if (currentNode = NIL) then
begin

writeln;
writeln('List is empty, no clients to display');
writeln;

end; (* if-then *)

James Tam

Traversing The List (3)

while (currentNode <> NIL) do
begin

writeln('First name: ':20, currentNode^.data.firstName);
writeln('Last Name: ':20, currentNode^.data.lastName);
writeln('Income $':20, currentNode^.data.income:0:2);
writeln('Email: ':20, currentNode^.data.email);
writeln;
currentNode := currentNode^.nextPointer;

end; (* while *)
end; (* displayList *)

James Tam

Adding A Node To The The List

Algorithm:
Steps
1. Assign a pointer to the front of the list.
2. If the pointer is NIL then the list is empty and add the node to the

front of the list and stop.
3. Otherwise traverse the list with two pointers, one pointer (current

pointer) goes to the end of the list, the other stays one node behind it
(previous pointer).

4. Attach the new node to the last node in the list (the one reached by
the previous pointer).

5. The next pointer of the new node becomes NIL (indicating that this
is the end of the list).

James Tam

Adding A Node To The List (2)

Example:
procedure addToList (var tamjClientList: ClientList;

newNode : ListPointer);
var

currentNode : ListPointer;
previousNode : ListPointer;

begin

(* Empty list add new node to front *)
if (tamjClientList = NIL) then
begin

tamjClientList := newNode;
newNode^.nextPointer := NIL;

end

James Tam

Adding A Node To The List (3)

else
begin

currentNode := tamjClientList;
while (currentNode <> NIL) do
begin

previousNode := currentNode;
currentNode := currentNode^.nextPointer;

end; (* while *)
previousNode^.nextPointer := newNode;
newNode^.nextPointer := NIL;

end; (* else *)
end; (* Procedure *)

James Tam

Searching The List

Algorithm:
The procedure is run in order to find a node(s) that has a field which
matches some desire value. Either the node or nodes will be found in the list or
else the procedure will have searched every node in the list and have found no
matches. A flag will be set to true or false indicating the success or failure of the
search.
Variables
1. There are two pointers to the list:

a. Current pointer – traverses the list from beginning to end
b. Previous to first pointer – points to the node that occurs just prior to the

first successful match.
Note: The second pointer does not directly come into play when the user only
wants to search the list. They are essential when the person wishes to erase a
node from the list. Since the erase procedure calls the search procedure, it is
is passed in but it's value is not used when the person just wishes to perform
a search without performing a deletion.

2. A boolean that indicates the status of the search.

James Tam

Searching The List (2)

Steps
1. Current pointer starts at the beginning of the list. Since the search has

not yet begin, previous is set to NIL and the flag is set to false.
2. A check is performed to determine if the node is a match. If this is

the case and the flag is still false (indicating that we haven't found a
previous node that was a successful match) set the flag to true (since a
match was found). Since the search function requires a list of all
matches (and not just the first instance) don't stop searching the list.

3. If the flag is set to false then set the previous pointer to point to the
current node. If the flag is set to true then don't change the value of
flag (the previous pointer tracks the node just prior to the node which
first meets the search criteria).

4. Move on to the next node (by setting the current pointer to the current
node's next pointer).

5. Continue step 2 – 4 until the end of the list is reached (current node is
NIL).

James Tam

Searching The List (3)

Example:
procedure search (tamjClientList : ClientList;

desiredName : NameArray;
var isFound : boolean;

var previousFirst : ListPointer);
var

currentNode : ListPointer;
begin

currentNode := tamjClientList;
previousFirst := NIL;
isFound := False;

James Tam

Searching The List (4)

while (currentNode <> NIL) do
begin

if (desiredName = currentNode^.data.lastName) then
begin

writeln('Found contact':20);
writeln('First name :':20, currentNode^.data.firstName);
writeln('Last name :':20, currentNode^.data.lastName);
writeln('Income $':20, currentNode^.data.income:0:2);
writeln('Email :':20, currentNode^.data.email);
writeln;
if (isFound = False) then

isFound := True;
end; (* if-then *)

James Tam

Searching The List (5)

if (isFound = False) then
previousFirst := currentNode;

currentNode := currentNode^.nextPointer;
end; (* while *)

if (isFound = False) then
writeln('Contact not found in list');

end; (* search *)

James Tam

Deleting A Node From The List

Algorithm:
Steps
1. Search the list (by calling the search procedure) to determine if there exists a

node that matches the necessary criteria for deletion.
2. Check the flag to determine if the search was successful or not. If the flag is

false then there is no matching node in the list. Stop. There is no matching
node to delete.

3. Check to see if the node to be deleted is the first node in the list or not by
determining if the previous node is NIL.

4. If the node to be deleted is the first node then have a temporary pointer point
to the first element and make the front of the list the second element.

5. If the node to be deleted is not the first node then have a temporary pointer
point to the node to be deleted. Set the next pointer of the previous node
point to the node after the node to be deleted (bypassing this node)

6. For steps 4 & 5 free up the memory allocated by the node to be deleted.

James Tam

Deleting A Node From The List (2)

Example:
procedure erase (var tamjClientList : ClientList);
var

desiredName : NameArray;
previousFirst : ListPointer;
temp : ListPointer;
isFound : boolean;

begin
write('Enter last name of client to delete: ');
readln(desiredName);
search (tamjClientList, desiredName, isFound, previousFirst);
if (isFound = True) then
begin

writeln('Deleting first instance of ', desiredName);
if (previousFirst = NIL) then

James Tam

Deleting A Node From The List (3)

begin
writeln('Deleting first instance of ', desiredName);
if (previousFirst = NIL) then
begin

temp := tamjClientList;
tamjClientList := tamjClientList^.nextPointer;

end (* if-then *)
else
begin

temp := previousFirst^.nextPointer;
previousFirst^.nextPointer := temp^.nextPointer;

end; (* else *)
dispose(temp);

end; (* if-then *)
end; (* Procedure *)

James Tam

Summary
You should now know how to perform some common link
list operations:

1) Declaration of a link list
2) Creation of a new list
3) Traversal of the list
4) Adding a new node to the list
5) Deleting an existing node from the list
6) Searching the list for a node that meets some criteria

