# **Making Decisions In Pascal**

In this section of notes you will learn how to have your Pascal programs to execute alternatives

# **Decision-Making In Pascal**

Decisions are questions that are either true or false (Boolean)

Decision making statements

- If-then
- If-then-else
- case of

# If-Then

Decision-making with one condition

#### Format:



Example:

if (age  $\geq 18$ ) then

```
writeln('You are an adult');
```

```
writeln('Tell me more about yourself');
```

1 Operands are referred to as expressions in Leestma and Nyhoff

2 Body of the if-then is referred to as a statement in Leestma and Nyhoff

#### **If-Then (Flowchart)**



# **If-Then (Simple Body)**

Body of if-then consists of a single statement

Format:



Example (for full example look under /home/231/examples/decisions/simpleIfThen.p):

```
if (x = 1) then
writeln('Body of if');
```

```
writeln ('After body');
```

# **If-Then (Compound Body)**

Body of if-then consists of multiple statements

Format:

if (Boolean Expression) then

begin



# **If-Then (Compound Body(2))**

Example (for full example look under /home/231/examples/decisions/compoundIfThen.p):

if (x = 1) then

begin

```
writeln('Body of if 1');
writeln('Body of if 2');
```

end;

writeln('after if');

### **If-Then-Else**

Decision-making with two conditions

One (and only one) condition will be true

Format:



#### **If-Then-Else**

Example:

if (age  $\geq 18$ ) then

```
writeln('You are an adult')
```

else

```
writeln('You are not an adult');
writeln('Tell me more about yourself');
```

#### **If-Then-Else(Flowchart)**



# **If-Then-Else (Simple Body)**

Body of if-then-else consists of a single statement

Format:



# If-Then-Else (Simple Body(2))

Example (for full example look under /home/231/examples/decisions/simpleIfThenElse.p):

```
if (x = 1) then
```

```
writeln('body of if')
```

else

```
writeln('body of else');
```

```
writeln('after if-then-else');
```

# **If-Then-Else (Compound Body)**

Body of if-then-else consists of multiple statements

Format:



# **If-Then (Compound Body(2))**

Example (for full example look under /home/231/examples/decisions/compoundIfThenElse.p):

```
if (x = 1) then
    begin
       writeln('Body of if 1');
       writeln('Body of if 2');
    end
else
    begin
       writeln('Body of else 1');
       writeln('Body of else 2');
   end;
writeln('after if-then-else');
```

# **Allowable Operands For Boolean Expressions**

#### If (<u>operand</u> relational operation <u>operand</u>) then

#### Operands

- integer
- real
- boolean
- char
- const

# **Allowable Operations For Boolean Expressions**

If (operand <u>relational operator</u> operand) then

| Pascal     | Mathematical |                          |
|------------|--------------|--------------------------|
| operator   | equivalent   | Meaning                  |
| <          | <            | Less than                |
| >          | >            | Greater than             |
| =          | =            | Equal to                 |
| <=         | $\leq$       | Less than or equal to    |
| >=         | $\geq$       | Greater than or equal to |
| $\diamond$ | $\neq$       | Not equal to             |

# **Decision-Making With Multiple Expressions**

Typical format:

if (Boolean expression) Boolean operation (Boolean expression)

body

**Boolean expressions** 

Formed from relational operations and their operands e.g., x > 5

# **Decision-Making With Multiple Expressions (2)**

#### Built-in Boolean operations in Pascal

NOT

AND

OR

XOR

(NAND and NOR can be constructed via NOT, AND & OR)

# **Forming Compound Boolean Expressions With <u>NOT</u>**

Format

if NOT (Boolean Expressions)

body;

Example

if NOT (x AND y)

if NOT (x OR y)

For a complete example program look in Unix under /home/231/examples/decisions/compoundNOT.p

# **Forming Compound Boolean Expressions With OR**

Format

if (Boolean Expression) OR (Boolean Expression)

body;

Example

if (gpa > 3.7) OR (years\_job\_experience > 5)

writeln('You're hired');

For a complete example program look in Unix under /home/231/examples/decisions/compoundOR.p

# **Forming Compound Boolean Expressions With** <u>AND</u>

Format

if (Boolean Expression) AND (Boolean Expression)

body;

Example

if (years\_on\_job <= 2) AND (is\_goof\_off = True)

writeln('You're fired');

For a complete example program look in Unix under /home/231/examples/decisions/compoundAND.p

# **Forming Compound Boolean Expressions With XOR**

Format

if (Boolean Expression) XOR (Boolean Expression)

body;

Example

if (takes\_first\_job = True) XOR (takes\_second\_job = True)

is\_employed := true;

### **Order Of Operation**

Order Operator

#### 1 NOT

- 2 \* / DIV MOD AND
- 3 + OR
- $4 \qquad \qquad < > = <= >= <>$

### **Why Bracket Boolean Expressions**

**Compound Boolean Expressions** 

e.g., if x > 0 AND y > 0

### **Why Bracket Boolean Expressions**

**Compound Boolean Expressions** 

> 0

e.g., if  $x \neq 0$  AND y

AND has highest priority so the 0 and y becomes operands for this operation

# **Nested Decision Making**

One decision is made inside another

Outer decisions must be true before inner decisions are considered

Format

if (Boolean expression) then



Example (For complete example look in Unix under /home/231/examples/decisions/nesting.p)

if (num1 > 0) then

```
if (num 2 > 0) then
```

writeln('Both numbers are positive');

# **Nested Decision Making: The Dangling Else**

- if (x > 0) then
- if (y > 0) then

writeln('x is greater than zero, y is greater than zero')

else

writeln('x is greater than zero');

### **The Dangling Else Reformatted**

if (x > 0) then

if (y > 0) then

writeln('x and y greater than zero')

else

writeln('x greater than zero');

# **Decision-Making With Multiple Alternatives**

if-then

Checks one condition

if-then-else

Checks for one of two mutually exclusive conditions

Approaches for multiple alternatives

Multiple if's

Multiple else-if's

# **Multiple If's: Non-Exclusive Conditions**

Any, all or none of the conditions may be true

Format:

if (Boolean expression 1) then

body 1;

if (Boolean expression 2) then

body 2;

٠

statements after the conditions;

### **Multiple If's:Flowchart**



# **Multiple If's: Non-Exclusive Conditions (Example)**

if (x > 0) then

```
writeln('X is positive);
```

if (y > 0) then

```
writeln('Y is positive');
```

```
If (z > 0) then
```

```
writeln('Z is postive');
```

# **Multiple If's: Exclusive Conditions**



Example (for full example look in Unix under /home/231/examples/decisions/inefficientDecisionMaking.p)

if (gpa = 4) then letter := 'A'; if (gpa = 3) then letter := 'B'; if (gpa = 2) then letter := 'C'; if (gpa = 1) then letter := 'D'; if (gpa = 0) then letter := 'F';

# **Multiple If, Else-If's: Mutally Exclusive Conditions**

Format:

| if (Boolean expression 1) then      |
|-------------------------------------|
| body 1                              |
| else if (Boolean expression 2) then |
| body 2                              |
| :                                   |
| else                                |

body n;

statements after the conditions;

#### **Multiple If, Else-If's: Flowchart**



### **Multiple If, Else-If's: Mutually Exclusive Conditions** (Example)

Example (for full example look in Unix under /home/231/examples/decisions/ifElseIf.p)

![](_page_35_Figure_2.jpeg)

#### **Case Statements**

An alternative to the if, else-if (only one condition is true)

#### Format (integer):

```
Case (expression) of
     i<sub>1</sub>:
          body;
     i<sub>2</sub>:
          body;
     i<sub>n</sub>:
           body;
     otherwise:
            body;
```

Expression (variable, constant, arithmetic) must evaluate to an integer

# **Case Statements: Integer Example**

Example (look for complete example in Unix under /home/231/examples/decisions/caseOf1.p):

case (gpa) of

4:

begin

```
writeln('You got an A');
end; (* GPA of 4 *)
```

3:

begin

```
writeln('You got a 'B');
end; (* GPA of 3 *)
```

# **Case Statements: Integer Example (2)**

#### 2:

#### begin

```
writeln('You got a C');
end; (* GPA of 2 *)
```

1:

begin

```
writeln('You got a D');
end; (* GPA of 1 *)
```

#### 0:

```
begin
    writeln('You got an F');
end; (* GPA of 0 *)
end; (* case *)
```

#### **Case Statements: Characters**

#### Format (char):

Case (expression) of 'c<sub>1</sub>': body; 'c<sub>2</sub>': body; : 'c<sub>n</sub>' body; otherwise: body;

Expression (variable, constant, arithmetic) must evaluate to a character

# **Case Statements: Character Example**

Example (look for complete example in Unix under /home/231/examples/decisions/caseOf2.p):

case (letter) of

'A':

begin

begin

writeln('GPA = 3'); end; (\* GPA of 3 \*)

# **Case Statements: Character Example (2)**

'C':

begin

```
writeln('GPA = 2');
end; (* GPA of 2 *)
'D':
```

begin

```
writeln('GPA = 1');
end; (* GPA of 1 *)
'F':
```

begin

```
writeln('GPA = 0');
end; (* GPA of 0 *)
end; (* case *)
```

#### **Summary**

How is decision making implemented via Pascal constructs:

- If-then
- If-then-else
- Case-of

What are Boolean expressions and what are valid operators and operands?

How to handle simple vs. multiple statements in the body of a decision-making statement.

What are compound Boolean expressions?

How does nested decision making work?

Exclusive vs. non-exclusive alternatives when making decisions.