
James Tam

Arrays

In this section of notes you will be introduced to
a homogeneous composite type, one-
dimensional arrays

James Tam

Simple Types (Atomic)

1) Integer

2) Real

3) Char

4) Boolean

James Tam

Composite Types (Aggregate)

1) Homogeneous
• arrays

2) Heterogeneous
• records

James Tam

Why Bother With Composite Types?

For a compilable example look in Unix under:
/home/231/examples/arrays/classList1.p

const

CLASSSIZE = 5;

var

stu1, stu2, stu3, stu4, stu5: real;

total, average : real;

begin

write('Enter grade for student number 1: ');

readln(stu1);

James Tam

Why Bother With Composite Types (2) ?

write('Enter grade for student number 2: ');

readln(stu2);

write('Enter grade for student number 3: ');

readln(stu3);

write('Enter grade for student number 4: ');

readln(stu4);

write('Enter grade for student number 5: ');

readln(stu5);

total := stu1 + stu2 + stu3 + stu4 + stu5;

average := total / CLASSSIZE;

writeln('The average grade is ', average:6:2, '%');

James Tam

With Bother With Composite Types (3)

(* Printing the grades for the class. *)

Writeln('Student: ', 1, stu1);

Writeln('Student: ', 2, stu2);

Writeln('Student: ', 3, stu3);

Writeln('Student: ', 4, stu4);

Writeln('Student: ', 5, stu5);

James Tam

With Bother With Composite Types (3)

(* Printing the grades for the class. *)

Writeln('Student: ', 1, stu1);

Writeln('Student: ', 2, stu2);

Writeln('Student: ', 3, stu3);

Writeln('Student: ', 4, stu4);

Writeln('Student: ', 5, stu5);

NO!

James Tam

Revised Version Using An Array

For compilable example look in Unix under:
/home/231/examples/arrays/classList2.p

const

CLASSSIZE = 5;

var

classGrades : array [1..CLASSSIZE] of real;

i : integer;

total, average : real;

begin

total := 0;

James Tam

Class Example Using An Array (2)
for i := 1 to CLASSSIZE do

begin

write('Enter grade for student no. ', i, ': ');

readln (classGrades[i]);

total := total + classGrades[i];

end;

average := total / CLASSSIZE;

writeln;

writeln('The average grade is ', average:6:2, '%');

for i := 1 to CLASSSIZE do

writeln('Grade for student no. ', i, ' is ', classGrades[i]:6:2, '%');

James Tam

Declaring Arrays

Syntax:

Name: array [low index..high index] of element type;

Example:

classGrades : array [1..CLASSSIZE] of real;

classGrades [1]
[2]
[3]
[4]
[5]

James Tam

Accessing Data In The Array

First need to indicate which array is being accessed
• Done via the name of the array

If are accessing a single element, you need to indicate which element that you
wish to access.
• Done via the array index

Syntax:
(Whole array) (One element)

name name [index]

Examples (assignment via the assignment operator):
(Whole array)

firstArray := secondArray;

(One element)

classGrades [1] := 100;

James Tam

Accessing Data In The Array (2)

Examples (assignment via read or readln):

(Single element)

readln(classGrades[1])

(Whole array – all elements)

for i: = 1 to CLASSIZE do

begin

write('Input grade for student No. ', i, ': ');

readln(classGrades[i]);

end;

James Tam

Accessing Data In The Array (3)

Examples (displaying information):

(Single element)

writeln(classGrades[1]);

(Whole array – all elements)

for i := 1 to CLASSSIZE do

writeln('Grade for student No. ', i, ' ', classGrades[i]);

James Tam

Common1 Array Operations

Declaration
• Done previously in this set of notes (slide No. 8, line of code No. 4)

Initialization / Assignment of all elements
• Done previously in this set of notes (slide No. 9, lines of code No. 1 – 4).

Extracting Elements
• Single element – done previously in this set of notes (slides No. 11 & 13)
• All elements – done previously in this set of notes (slide No. 9, line of code No. 11,

slides No. 11 & 13)

In order copy between two arrays
• Using the assignment operator – done previously in this set of notes (slide No. 11)
• Manual copy – coming up

Reverse order copy between two arrays
• Manual copy – coming up

1) Common but by no means complete

James Tam

In-Order Copy Between Arrays

Method 1: Using the assignment operator
• e.g., array1 := array2;

Method 2: Manual copy
• Use loops and copy from one array to another element-by-element

Example of manual copy (full example can be found in Unix under
/home/231/examples/inorderArrayCopy.p)

const

SIZE = 5;

MAXVALUE = 11;

var

array1 : array [1..SIZE] of integer;

array2 : array [1..SIZE] of integer;

i : integer;

James Tam

In-Order Copy Between Arrays (2)
begin

for i:= 1 to SIZE do

array1[i] := trunc (RANDOM * MAXVALUE);

for i:= 1 to SIZE do

array2[i] := array1[i];

writeln;

for i:= 1 to SIZE do

writeln('array1: ', array1[i]:2, ' array2: ', array2[i]:2);

James Tam

Reverse Order Copy Between Arrays

const

SIZE = 5;

MAXVALUE = 11;

var

array1 : array [1..SIZE] of integer;

array2 : array [1..SIZE] of integer;

i : integer;

begin

for i:= 1 to SIZE do

array1[i] := trunc (RANDOM * MAXVALUE);

James Tam

Reverse Order Copy Between Arrays (2)

for i:= 1 to SIZE do

begin

array2[SIZE-i+1] := array1[i];

end;

writeln;

for i:= 1 to SIZE do

writeln('array1: ', array1[i]:2, ' array2: ', array2[i]:2);

writeln;

James Tam

Summary

What is the difference between simple types (atomic) and
composite types (aggregate)?

Why is the benefit of using homogeneous composite types
(arrays)?

How are some common operations performed with arrays in
Pascal?
• Declaration
• Initialization and assignment
• Extracting elements
• In order copy of elements
• Reverse order copy of elements

