

The experimental method

- a) Begin with a lucid, testable hypothesis
- Example 1:
- " there is no difference in the number of cavities in children and teenagers using crest and no-teeth toothpaste"

The experimental method a) Begin with a lucid, testable hypothesis • Example 2: " there is no difference in user performance (time and error rate) when selecting a single item from a pop-up or a pull down menu, regardless of the subject's previous expertise in using a mouse or using the different menu types" View File Edit Insert File ٠ New Edit ⊏> New Open Open View ⇔ Close Close Insert ⊏ Save Save Saul Greenberg

Saul Greenberg

Saul Greenberg

Saul Greenberg

The experimental method...

c) Carefully choose the dependent variables that will be measured

Dependent variables

• variables dependent on the subject's behaviour / reaction to the independent variable

in menu experiment

- time to select an item
- selection errors made

in toothpaste experiment

- number of cavities
- frequency of brushing

Two-tailed unpaired T-test

- N: number of data points in the one sample
- ΣX : sum of all data points in one sample
- $\overline{\mathbf{X}}$: mean of data points in sample
- $\Sigma(X^2)$: sum of squares of data points in sample
- s²: unbiased estimate of population variation
- t: t ratio
- df = degrees of freedom = N1 + N2 2

Formulas

Level of significance for two-tailed test						
<u>df</u>	<u>.05</u>	<u>.01</u>	<u>df</u>	<u>.05</u>	<u>.01</u>	
1	12.706	63.657	16	2.120	2.921	
2	4.303	9.925	18	2.101	2.878	
3	3.182	5.841	20	2.086	2.845	
4	2.776	4.604	22	2.074	2.819	
5	2.571	4.032	24	2.064	2.797	
6	2.447	3.707				
7	2.365	3.499				
8	2.306	3.355				
9	2.262	3.250				
10	2.228	3.169				
11	2.201	3.106				
12	2.179	3.055				
13	2.160	3.012				
14	2.145	2.977				
15	2.131	2.947				
					Saul Greenb	

Other Tests: Analysis of Variance (Anova)

Compares the relationships between many factors

Provides more informed results considers the interactions between factors

Examples

- beginners type at the same speed on all keyboards,
- touch-typist type fastest on the qwerty

touch typist type fusiest on the quert	Qwerty	Alphabetic	Dvorak	
cannot touch type	S1-S10	S11-S20	S21-S30	
can touch type	S31-S40	S41-S50	S51-S60	
			Saul C	Greenberg

You know now

Controlled experiments can provide clear convincing result on specific issues

Creating testable hypotheses are critical to good experimental design

Experimental design requires a great deal of planning

Statistics inform us about

- mathematical attributes about our data sets
- how data sets relate to each other
- the probability that our claims are correct

There are many statistical methods that can be applied to different experimental designs

- T-tests
- Correlation and regression
- Single factor Anova
- Anova

Saul Greenberg