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Abstract

Since the advent of video display terminals as the primary interface to the computer, how to make
the best use of the available screen space has been a fundamental issue in user interface design.
The necessity for effective solutions to this problem is intensifying as the ability to produce visual
data in greater volumes continues to outstrip the rate at which display technology is developing.
Most research in this area has concentrated on specific applications, exploiting their underlying
information structure to obtain reasonable displays. In this work we take a different approach,
examining the display problem independent of the application.

In particular, we divide the display problem into two components: representation and presenta-
tion. Representation is the act of creating a basic image that corresponds to the information such
as creating a drawing of a graph. Presentation is the act of displaying this image, emphasizing and
organizing areas of interest. For example, a map of Vancouver may be presented with one’s route to
work magnified to reveal street names. Since representation is inherently dependent on the informa-
tion, this part of the problem is not considered. Instead we concentrate on presentation and assume
the existence of a two-dimensional representation.

Our research into the presentation problem has led to the development of a framework that
describes a presentation space in which the adjustments and reorganizations are elastic in the sense
that reverting to previous presentations is facilitated. Within this framework the approach is to map
the representation onto a surface in three dimensions and use perspective projection to create the final
display. Varying the surface provides control for magnification and organization of representation
details. Use of the third dimension provides the possibility of making these presentation adjustments
comprehensible. Our framework encompasses previous techniques and indicates a broad range of
new ones.



Existing presentation methods create displays that vary considerably visually and algorithmi-
cally. Our framework provides a way of relating seemingly distinct methods, facilitating the inclu-
sion of more than one presentation method in a single interface. Furthermore, it supports extrap-
olation between the presentation methods it describes. Of particular interest are the presentation
possibilities that exist in the ranges between distortion presentations and magnified insets, distortion
presentations and a full-zooming environment, and distortion presentations and those that support
the repositioning of separate views.

Our elastic presentation space framework describes existing presentation methods, identifies
new presentation variations, and provides methods for combining them. This removes some of the
current difficulty around making a presentation choice, and allows a designer of new information
visualizations to include a combination of presentation methods that best suit the needs of their

application’s information and tasks.
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“We could view the trees as cracks in the sky, like cracks in glasses. We could adopt that change of
perspective. The space that exists around you could be solid - and you could be only a hollow in the
middle of that solid space”

— Chagyam Trungpa Rinpoch®HARMA ART, 1996
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