
Chapter 5

Lens Library

Existing presentation solutions such as full zooming environments, insets and various distortion

approaches, create visual displays that vary considerably, visually and algorithmically. EPS provides

a way of understanding how these seemingly distinct solutions relate to each other. Furthermore,

EPS provides a method of relating them algorithmically, allowing the inclusion of more than one

presentation solution in a single interface.

We explain how each presentation type can be thought of as an EPS lens and then show how

EPS functionality follows. An EPS lens has the following parts (see Figure 5.1):

1. afocusis the selected point or region,

2. afocal heightis the distance from the focus to the base plane,

3. thefocal magnificationis the degree of magnification of the focal region,

4. afocal centreis the centre of the focus and locates the lens on the surface,

5. central alignment vectorsets the angle of the focal translation,

6. afocal edgeis the outline of the selected focal region,

7. adistortion regionis the compensating connection that exists between the focus and the con-

text,

8. afocal connectionis the join between the focal region and the distortion region, and

9. acontext connectionis the join between the region of distortion and the context.

The lens itself includes all of these parts, though some of them may be degenerate. For instance,

with a point focus, the focus, focal centre and focal edge are the same.

The effect of a lens on the presentation is a result of all of these parts. In Section 3.5 we

discussed the interaction between focal magnification and focal height, allowing specific degree of
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Figure 5.1: The components of a lens

magnification to be used as input, and in Section 3.4 we discussed the provision of arbitrary focal

shapes. In this chapter we discuss how varying the drop-off function affects the region of distortion

and the nature of the focal connection and the context connection. Though the first lens developed

with EPS used the Gaussian drop-off function to create the region of distortion, EPS is not tied to

any particular function. In this chapter we step through a variety of drop-off functions discussing

the variations in visual patterns that arise.

Creating a presentation involves finding a balance between the magnification required and some

compensation. This compensation can take the form of loss of context, compression, distortion, or

other visual discontinuities. Different drop-offs create characteristic curvatures and result in differ-

ent presentation patterns. Whether these characteristic patterns have advantages or disadvantages

is probably not absolute but dependent on the information, the task and the preferences of the user.

The purpose of this chapter is not to judge these lenses but to extend the variety of lenses. Because

these lenses can all co-exist in a single presentation environment we think of this as developing a

lens library. We leave the choice of which lens(es) to use up to the user or the developer of an

application. We hope that having a lens library to choose from will allow an application developer

to better match specific information and task needs. The purpose of this exploration is to develop an

understanding of interrelationships between existing presentation methods and to extend the scope

of presentation space, creating a library of lenses that exist within one framework.
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Section 5.1 examines the simple situation in which the slope of the drop-off function is zero.

Section 5.2 and Section 5.3 look at step drop-off functions. Section 5.4 looks at linear drop-off

functions and Section 5.5 at non-linear functions. Section 5.6 compares the distortion effects of pre-

vious methods with EPS. Section 5.7 discusses different functions in combination, and Section 5.8

concludes the chapter.

5.1 Zooming, Panning and Scrolling

This section describes the effect of replacing the Gaussian drop-off function (see Chapter 3.2) with

a function where there iszerodrop-off from the focus. With a zero drop-off function, the heighthp,

for any pointp is the same as the focal heighthf , (hp = hf ). The surface that holds the 2D represen-

tation is kept parallel to the base plane and the view plane. Recall from Section 3.2 that raising the

entire surface parallel to the base plane towards the viewpoint corresponds to zooming, and moving

the surface laterally inx andy corresponds to panning and scrolling respectively (Figure 5.2).

(a) Cross-section diagram of zooming (b) Cross-section diagram of panning

Figure 5.2: Diagrams of zooming and panning

Zooming within EPS can have the functionality of a lens. This includes precise control of mag-

nification, viewer-alignment and folding. Precise control of magnification offers the possibility to

zoom in infinitely with fine control at high magnification. Figure 5.3 illustrates a zooming into a land

usage map of Champaign, Illinois. In this series the magnification ranges from one (Figure 5.3(a))

to one hundred and fifty (Figure 5.3(f)).

In EPS a full-zoom lens has a focal centre and an alignment vector. If the translation vector is
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(a) Magnification of 1 (for image
credit see Appendix C.1)

(b) Magnification of 2 (c) Magnification of 10

(d) Magnification of 20 (e) Magnification of 50 (f) Magnification of 150

Figure 5.3: Zooming in to fat pixels

used perpendicularly to the base plane (Figure 5.2(a)) then no matter where the focal centre is in the

image, the centre of the image will stay in the centre of the view plane. If the full-zoom lens’ central

alignment vector is viewer-aligned (Figure 5.4(a)) then its current focal centre will retain its position

in the view plane. For instance, if the current focal centre is in the upper left corner it will still be

in the upper left corner when zoomed. The series in Figure 5.5 shows a viewer-aligned zoom. The

arrow in the upper left corner indicates the focal centre before zooming. Viewer-aligned zooming

keeps the region of interest in view without affecting the scaling-only advantages of the simple

zoom. The focal region will always remain in view as it is magnified, keeping the same position
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(a) Viewer aligned zoom (b) Centred zoom

Figure 5.4: Using the central alignment vector to position the zoom

relative to the edges of the display. This provides an elegant solution to choosing an appropriate

translation vector that incorporates motion inx; y andz in an intuitive manner. Alternatively the

translation vector can be set to place the centre of the lens in any chosen location. Figure 5.4(b) is a

diagram with the translation vector set to place the lens centre in the centre of the field of view after

zooming.

Folding a full-zoom lens increases the possible modes of lateral movement (allows for panning

and scrolling). The cursor can operate as though it is ‘sticky’, moving the whole surface directly

when it moves. Moving the cursor can correspond to a roving search lens. Recall from Chapter 4

that during a roving search the base of the lens moves, changing the region of the representation that

is in the lens centre. For instance, if the desired detail were not visible in the current presentation

and one knew that the details were in a particular region, one could use that knowledge to locate

them.

There are advantages to being able to zoom in (magnify) until all details of interest are displayed

to full resolution. There are also advantages to being able to zoom in much further, as has been

demonstrated by the success of Pad++ [10], to fat pixels and beyond. For instance in Pad++, one

can place annotations at a sufficiently enlarged level so that they will not be visible at the intended

resolution. The surface can also be zoomed out (compressed) until the entire representation is visible

in the current display. This provides complete albeit compressed context. The surface can be zoomed

out even further until it is like an icon of itself, or even has disappeared entirely. Again Pad++ [10]

makes use of the variations within this, allowing items to get slowly smaller until they effectively

disappear from sight.
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(a) The focal point has been selected
(for image credit see Appendix C.1)

(b) Magnification of 2.5 (c) Magnification of 5

Figure 5.5: Viewer aligned zooming keeps the focal point in the same relative position

At any level of magnification one can pan or scroll, allowing lateral exploration of the represen-

tation. For large lateral distances relative to available display, keeping track of one’s location in the

representation can be difficult. If the section of interest is visible from the zoomed out position, it is

possible to centre it by shifting laterally and then zooming perpendicularly as before. However, the

section of interest may be so compressed when zoomed out that recognition is difficult or impos-

sible. With Space Scale Diagrams [53] different notions of optimality of zooming paths have been

explored. The authors show that for sufficient lateral distance, the optimal path is to zoom out and

then zoom back in. Their user observations indicate that this may also be a more intuitive navigation

method.

This full-zoom lens capability relates to the zooming capability in Pad++ [10]. The signifi-

cance of this is that in EPS zooming exists within a paradigm that covers many other presentation

variations.

5.2 Step Drop-off Functions

The other extreme from using a zero drop-off from the focus to the context is to use a complete

drop-off, stepping abruptly down from the focus to the context on the base plane. For a step drop-off

function the heighthp of all pointsp not in focal region ishp = db, wheredb is the location of the

base plane.
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Figure 5.6: A diagram of an inset lens indicating the occluded region

A common example of a step drop-off lens is an inset. Aninset is a selected sub-region of the

representation that is magnified in place. In EPS terms an inset is a detached lens with a described

focal region. As it is a detached sub-region of the original surface or surface patch, an inset can

move independently from the rest of the surface. This is a slight departure from conceiving of the

surface as a unit. With insets, magnification is achieved at the cost of local context. Drawing the

projection rays from RVP through the edges of the focus to the base plane indicates the occluded

region (Figure 5.6). Insets maintain partial context in that usually some context is still visible but the

adjacent context is occluded, causing visual separation between the focus and its context. Figure 5.7

shows the effect of insets from RVP. While the issues of occlusion and separation remain significant,

allowing freedom of lateral translation through folding can provide the ability to see the region that

was occluded. However, either a new region will be occluded or the inset and the context will be

completely separate. Folding can be used to re-align foci for ease of visual comparisons between

previously separated sections.

5.2.1 Manhattan Lenses

While insets provide some context, there is always some occlusion or separation that makes the fo-

cus and its context perceptually distinct. AManhattan lensis still a complete step function but the
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Figure 5.7: Insets provide magnification to scale but cause local occlusion (for image credit see
Appendix C.5)

surface is stretched to keep the focal region attached to its context. Figure 5.8 is a cross-section dia-

gram showing the edge of the focus stretched to connect to the surface at the position the focus had

before magnification. When viewed from RVP, this presentation is identical to an inset. Figure 5.7

has the appearance of insets magnified in place. However, when the focal regions are attached to the

surface, folding provides a visual connection (Figure 5.10). Manhattan lenses provide interactive

access to a modified detail-in-context reading. The name Manhattan comes from their appearance.

In the profile view they look a little like skyscrapers, albeit, with more than a little influence from

the Tower of Pisa.

Magnification is provided to scale. The region of distortion connecting the focal region to its

context is extreme. The line that forms the edge of the focus is stretched to make the full connection.

This one directional stretch is an extreme distortion, however, its purpose is solely to provide visual

support for cognitive integration. Any actual reading of the representation can still be done on the

scaled only surface sections. It is to be hoped that navigational issues will be even less significant
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Figure 5.8: Cross-section diagram of a Manhattan lens. The surface connects the base plane to the
magnified focal region

(a) Two Manhattan lenses, in place appearing as insets
(for image credit see Appendix C.2)

(b) Folding the Manhattan lenses slightly shows the
magnified regions are located in the map.

Figure 5.9: Using Manhattan lenses to magnify the coast line around Ocean Falls and Vancouver
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Figure 5.10: A folded view of the Manhattan lenses in Figure 5.7

than with simple insets in that visually connected views are possible. As roving search is possible

while a lens is folded, the Manhattan lens can be tipped slightly, showing the connection on one

or two sides and moved in that orientation. Figure 5.9(b) shows the two Manhattan lenses in Fig-

ure 5.9(a) folded slightly to reveal their connection to the rest of the map. They can be moved across

the map in this orientation.

Since magnification is accomplished without effort to maintain context, the focal section can be

magnified to fill the entire available display space. Here the limitations on magnification will depend

on the initial resolution of the representation, the size of the available display space and the amount

of the representation that has been chosen for the focus.
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The advantages of Manhattan lenses are: magnification of focal region is to scale, freedom of re-

positioning is provided, interactive visual connection is available. However, while adjacent context

can be seen in a visually connected manner, not all of it can be seen simultaneously.

5.3 Non-Occluding Step Functions

One difficulty with insets and Manhattan lenses is local occlusion. Using EPS the projection rays

from the RVP through the edge of the raised focus can be used to define the visible regions (Fig-

ure 5.11). Intersecting the projection rays with the base plane defines the edge between the occluded

section and the visible area.

Figure 5.11: The profile view of a non-occluding disjoint step function

Occlusion can be eliminated by avoiding the regions that cannot be seen from the RVP. Once a

selected focus is magnified the rest of the representation is compressed to fit within the non-occluded

regions that remain. In EPS to compress the context, the distance between the context and the RVP is

increased. As the focal regions and the context remain parallel to the view plane both magnification

and compression are to scale. These are step functions in that different regions of the surface are

treated differently.

However, a problem remains in creating a detail-in-context presentation using this approach.

The focus and the context were initially of the same scale and size. As the focus is now larger and

the context is now smaller they will no longer fit (Figure 5.12). Various layout approaches have been

suggested in this regard.
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� An orthogonal stretchas described in Chapter 2 has been used frequently in the literature

(Bifocal Lens [147], Stretch Tools [139], Rubber Sheet (orthogonal method) [138]). The

regions adjacent to the focus are stretched in order to fill the space (Figure 5.12(a)).

� In anorthogonal separation, gaps are allowed to form in the context rather than the additional

distortion of the orthogonal stretch (Figure 5.12(b)). Disparate distortion inx andy is avoided,

but the regions are visually disjoint. Some of the presentation space is used for maintaining

positional organization of the separated regions instead of for presenting information. This

introduces considerable white space. SHRiMP [150] uses this approach.

(a) Orthogonal stretch (b) Orthogonal separation (c) Radial separation

Figure 5.12: Different approaches to the focus to context fit problem

Figure 5.13: Orthogonal variations developed in response to the particular needs of presenting MRI
images [166]

� Severalorthogonal variationmethods have been developed. These methods work similarly to

an orthogonal separation but allow for more variations in the positioning of the context. The
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looser interpretation of orthogonal ordering reduces the white space slightly and often creates

a more complex presentation. There are now several variations of this approach (Zoom fam-

ily [7, 8, 45], MRI Presentations [166, 167]. MRI Presentations developed several variations

to discover an appropriate balance between: keeping all the magnified foci at the same scale,

minimizing the amount of white space, minimizing the variations in scale in the context, and

maintaining orthogonality (Figure 5.13).

� A radial separationdisplaces the context radially (Figure 5.12(c)). While this pattern does

not preserve the orthogonal relationships it does a better job of preserving proximity and does

not cause such pronounced artificial clusterings [150].

Figure 5.14: The profile view of a non-occluding disjoint step function

All these variations provide detail-in-context presentations with scaled-only foci and none of

the context either occluded or removed. Along with the usual trade-off between the amount of

magnification and compression, there is a trade-off between degree of distortion and amount of white

space. There is another trade-off between orthogonal distortions, which maintain orthogonality

and parallelism, and radial distortions, which better preserve proximity (for further discussion see

Chapter 6). There is the possibility of extending the step function further as suggested in Figure 5.14

(also noted in [94]).

These step functions provide detail-in-context presentations from RVP but when viewed from

the side, the foci are visually disjoint (just like insets). One solution is to stretch the surface along

the connecting vector from the foci to the context as in Manhattan lenses (Figure 5.15). This has



128 CHAPTER 5. LENS LIBRARY

Figure 5.15: The profile view of a connected non-occluding step function

not been tried for at least two reasons. First, the stretched connection, as in the Manhattan lenses,

will be seen when folding only. Second, the step function issue of focus-to-context fit exists for this

method as well.

The advantages of these non-occluding step approaches are: focal regions are scaled only, all

variations provide detail-in-context presentation, and there are several spatial organization options.

The disadvantages are: providing a detail-in-context presentation places limits on the degree of mag-

nification, there are several trade-offs between the various options in that compressed only contexts

create white space and cost visual connectivity, and maintaining connectivity creates distortion.

5.4 Linear Drop-off Functions

While the non-occluding step functions discussed above provide detail-in-context views, they suffer

from significant visual discontinuities as regions of scale change abruptly from focus to context. A

smoother visual integration between focal regions and their context can be a desirable attribute [138],

in that it is thought to provide a presentation that is more convincingly unified. It is thought that this

will provide a better visual gestalt [35].

The foci and context can be visually connected by ensuring that the drop-off function is in the

region that can be seen from the RVP. One approach is to use a linear drop-off function that connects
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Figure 5.16: The profile view of a global linear drop-off function

(a) Perspective Wall (b) Document Lens

Figure 5.17: Perspective Wall and Document Lens use orthogonal global linear drop-off functions

the edge of the focal region to the edge of the context (Figure 5.16). This creates aglobal detail-

in-context presentation, in that the distortion is spread throughout the context. In EPS terms both

Perspective Wall [99] and Document Lens [132] use orthogonal global linear drop-off functions

(Figure 5.16). Alternatively the effect of the drop-off function can beconstrained1, keeping some

1Although lenses that did not extend globally were first introduced in 3DPS [20], it was in Non-Linear Views [84] that
the word constrained was first used to describe them
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Figure 5.18: The profile view of a constrained linear drop-off function

of the context undistorted. Figure 5.18 shows the profile of a constrained linear lens with a scaled

focal region and Figure 5.19 shows top views of a constrained linear lens with a point focus. In

Figure 5.19(a) the grid shows the structure of the gradually increasing compression in the distorted

region and the sharp connection to the context and Figure 5.19(b) uses this lens to magnify Prince

George, BC.

In an EPS linear drop-off function the surface heighthp of a pointp, that is a distancedp from

the focal centrefc with a lens radiuslr and a focal heighthf is calculated by:

hp = hf � (1� (dp=lr)) (5.1)

Varying the lens radiuslr affects the limits of the lens and the resulting slope. Figure 5.20 shows side

views of a variety of possible slopes and Figure 5.21 shows the corresponding top views. Keeping

the lens radius constant and varying the focal heighthf changes the magnification (Figure 5.22).

Note how increasing magnification causes increasing compression just before the connection to the

context. Figure 5.23 illustrates limiting the focal height to provide scaled-only focal regions.

These lenses have all the functionality described in Chapters 3 and 4 with a linear drop-off

function. Again choice of which linear slope to use involves trade-offs. Keeping the slope as steep

as possible provides much un-distorted context but a very compressed visual connection. Extending

the linear function to the edges of the surface minimizes the distortion and compression but leaves

less or no untouched context.
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(a) The view from the RVP of a grid showing
the pattern of compression of a linear lens

(b) Prince George, BC magnified with point
focus and constrained linear drop-off

Figure 5.19: The constrained linear drop-off function

Figure 5.20: Linear slope sides views

The linear drop-off function provides both compression necessary to make space for the mag-

nified focus and the distortion necessary to make the visual connection between the focus and the

context. While the different regions of the representation will be connected visually, these connec-

tions tend to be angular and as a result quite noticeable. This can be an advantage in that they define

visually regions of differing scale and distortion. Noticeable visual connections can also be a dis-

advantage in that these are abrupt changes. The distinction between radial and orthogonal patterns

is available by varying the distance metric (see Chapter 4). However, as the compression varies

with the distance from the focal point, maintaining a context that does not cause regions of extreme
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Figure 5.21: Linear slope top views with varying lens radius

Figure 5.22: Constrained linear drop-off functions with the same lens radii and varying magnifica-
tion

compression places more limits on the amount of magnification that can be provided.
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Figure 5.23: Constrained linear drop-off functions with scaled-only focal regions

5.5 Non-Linear Drop-off Functions

While linear drop-off functions provide a visual connection between the focus and its context they

also create sharp visual transitions. Non-linear drop-off functions make it possible to combine focal

magnification with gradual integration into the context. A great variety of mathematical functions

can be used in this manner, each with its own characteristic pattern of distortion. The following

discussion is illustrated with a few of the possible functions: hemisphere (Figure 5.24), cosine

(Figure 5.25), hyperbola (Figure 5.26) and Gaussian (Figure 5.27).

A hemisphere drop-off function (Figure 5.24) has a very gradual initial drop-off that increases

rapidly towards the edge of the lens and meets the context perpendicularly. This causes the context

adjacent to the focus to be almost as magnified as the focus, and results in some occlusion at the

connection of the lens to the context. Minimizing the occlusion severely limits the amount of focal

magnification. The characteristics of hemisphere are: limited focal magnification, good visual inte-

gration from the focus into its immediate surroundings, when constrained there is an abrupt visual
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transition or discontinuity where the lens meets the context, and the edges of the region of distortion

may be occluded or reversed. It has been suggested that the familiarity of the hemisphere may aid

in readability [137].

The cosine function provides a simple drop-off function (Figure 5.25) with slightly more mod-

erate magnification of regions adjacent to the focus and a more gradual connection to the context.

The cosine has moderate focal magnification and good visual integration from the focus into its

immediate surroundings, although less magnification of the regions adjacent to the focus than the

hemisphere. The slope of the curve towards the edges of the distorted region is more gradual than the

hemisphere, spreading the compensating compression more throughout the distorted region. How-

ever, as magnification is increased the compression builds at the connection to the context. If the

cosine is constrained then there is still an abrupt visual transition where the distortion meets the

context.

Figure 5.24: The hemisphere drop-off function

The characteristics of the hyperbolic drop-off function (Figure 5.26) are similar to those of the

cosine drop-off namely: moderate focal magnification, good visual integration from the focus into

its immediate surroundings, and a fairly gradual connection to the context. With a global hyperbola

it would be possible to adjust the asymptotes with respect to the view volume in order to spread

the compression more evenly in the distorted region. However, the compression would still become

extreme at the edges. As the hyperbola is constrained, there is an abrupt visual transition where the

distortion meets the context.

The characteristics of the Gaussian drop-off (Figure 5.27) are discussed in detail in Chapter 4.

The Gaussian with its characteristic bell shape provides a good basis for constrained lenses. It com-

bines the advantages of gentle focal integration with those of gradual integration into the remaining
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Figure 5.25: The cosine drop-off function

Figure 5.26: The hyperbolic drop-off function

Figure 5.27: The Gaussian drop-off function
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Figure 5.28: The profile views of hemispherical functions

context. However, like all of the functions just discussed, it also has an area of maximum com-

pression at the point of inflection. Its characteristics are: great focal magnification, good visual

integration from the focus into its immediate surroundings, good magnification of adjacent context,

and good visual integration from the distorted region into the context. The area of maximum com-

pression is located between the visual integration of the focus and visual integration into the context.

The exact location of the area of maximum compression can be shifted be adjusting the standard de-

viation. Even if the Gaussian is used globally, the edges of the context are more preserved than with

the other curves discussed. If the Gaussian is constrained, there are no abrupt visual transitions.

For all of these drop-off functions, scaling the distancedp locates the edge of the lens, and

adjusting the focal heighthf sets the degree of magnification, providing a range of related lenses

for each drop-off function. For example, Figure 5.28 adjusts the hemisphere by changing the focal

height. The basic characteristics hold throughout this range of lenses, though as the series shows

increasing the focal magnification increases the reversal at the connection to the context.

For comparison the basic characteristics are tabulated in Table 5.1 and the top views of the

distortion patterns are presented (Figure 5.30) below their drop-off functions (Figure 5.29). The
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Linear Hemisphere Cosine Hyperbola Gauss

focal magnification good minimal fair fair great

adjacent focal magnification minimal great good good moderate

focal integration sharp good good good good

location of max compressioncontext- context- context- context- mid-

connection connection connection connection distortion

context integration abrupt poor abrupt abrupt good

Table 5.1: Comparing drop-off functions

(a) Linear drop-
off function

(b) Hemisphere
drop-off function

(c) Cosine drop-
off function

(d) Hyperbolic
drop-off function

(e) Gaussian drop-
off function

Figure 5.29: Graphs of the drop-off functions

(a) Linear drop-
off function

(b) Hemisphere
drop-off function

(c) Cosine drop-
off function

(d) Hyperbolic
drop-off function

(e) Gaussian
drop-off function

Figure 5.30: For comparison, top views of the different lenses

linear drop-off function of Section 5.4 in included as it results in non-linear magnification due to

perspective projection. The general characteristics of non-linear drop-off functions are a magnifi-

cation/compression trade-off and a trade-off between the spread of the distortion and the degree of
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compression.

Any mathematical function can be used, however as we develop an understanding of the re-

lationship between curvature and presentation pattern we may be able to make more appropriate

choices to suit a particular representation or task. In the literature a lot of attention has been paid

to the importance of local context and the nature of the focal connection. Other factors such as

the nature of the compression, the location of maximum compression, and the nature of the context

connection may also be important in different situations.

5.6 Comparing EPS Lenses with Other Methods

There are many methods for adjusting the presentation of two-dimensional representations to pro-

vide detail-in-context presentations (see Chapter 2). There is a broad distinction between 2D-based

transformations and transformations that make use of 3D to create 2D presentations. Most meth-

ods [80, 84, 108, 137, 138] are 2D-based in that they make use of transformation functions that

are applied in the two-dimensional plane of the representation. A few methods [20, 99, 132] are

3D based in that they manipulate the two-dimensional representation in three-dimensions and then

apply perspective projection. EPS is a 3D based method that includes the presentation variations

offered by the other 3D based methods.

The 2D based methods create a new presentation by spatially adjusting a given two-dimensional

presentation to create another two-dimensional presentation. A 2D transformation functionT2D(dp)

wheredp is a distance in thex; y plane between a pointp and the focal centrefc, performs the

adjustments. The resulting magnification patternM2D(dp), is the derivative ofT2D(dp).

EPS as a 3D based method is quite different algorithmically. The plane or surface that holds the

two-dimensional representation is manipulated in three dimensions, then viewed through perspec-

tive projection. This separates the transformation functionTEPS into two distinct steps; a surface

manipulation function and perspective projection.

First we show that the EPS approach can produce 2D results. Then we compare two typical

2D-to-2D transformation methods: Sarkar and Brown’s Graphical Fisheye [137], and Keahey and

Robertson’s Non-Linear Views [84] with two EPS lenses: the linear drop-off lens and the Gaussian

lens of 3DPS [20]. This comparison shows that the variations in resulting presentations are like the

variations between lenses with different drop-off functions. Then we discuss the advantages of using

EPS.
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(a) The top view of a two focal grid (b) The 3D form of this grid

Figure 5.31: The transformed grid

5.6.1 Using EPS to Obtain 2D Results

EPS can be used to generate 2D-to-2D transformation functions. Recall from Section 3.5 that given

a magnification factor we can obtain the focal heighthf and from the focal height and the drop-off

function we can calculate the surface manipulation. For a pointp that is a distancedp from the focus

and a standard deviation� of a Gaussian drop-off function, the surface heighthp is given by:

hp = hf � exp
�

(dp)
2

� (5.2)

From the manipulated surface location of a pointp (xi; yi; hp) and the distancedb from the RVP to

the base plane we can obtain the apparentxm andym location on the base plane:

xm = dp �
xi

(db � hp)
and ym = yi �

db

(db � hp)
(5.3)
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(a) The grid in 2D (b) The representation applied to the grid in 2D (aerial
photograph, R. Long, IMC SFU)

Figure 5.32: The applying the surface to the 2D transformed grid

Since fromdb and the RVP we know thez location of the base plane we can place the point on the

base planezb at (xm; ym; zb).

This gives two equivalent presentations within EPS. One is the view from RVP of the 3D manip-

ulated surface and the other is a transformed 2D presentation. Figure 5.31(a) shows a manipulated

grid with two focal regions. Figure 5.31(b) shows this grid from the side, revealing its 3D form.

However, this grid can be transformed to 2D using Equation 5.3 (Figure 5.32(a)) as can the surface

(Figure 5.32(b)). Figure 5.33 shows the transformed presentation. For implementation the surface

normals can be preserved to maintain the shading in 2D. When viewed from RVP the 2D or 3D

images appear equivalent.

This two step process can be combined into a single step by substitutinghp in Equation 5.3 with

the Equation 5.2. This gives 2D-to-2D transformation function that is based on EPS’s Gaussian

drop-off:

TEPS:Gaus = xi � (db=(db � (hf � exp
�

(dp)
2

� )) (5.4)

and a corresponding magnification function:

MEPS:Gaus =
db

db � hf � exp
�(x

2

�
)
� 2 �

x
2
dbhf exp

�(x
2

�
)

(db � hf � exp
�(x

2

�
))2 � �

(5.5)
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Figure 5.33: Example of a multi-scale view. The three-dimensional surface manipulation that orga-
nizes the presentation has been projected back into the base plane with equation 5.3. The foci zoom
in on downtown Vancouver and the academic quadrangle of the SFU campus.

For the valuesdb = 2, hf = 1 and� = 0:1, Figure 5.34(a) shows the graph of the Gaussian

drop-off function, Figure 5.34(b) shows the EPS derived Gaussian transformation function, and

Figure 5.34(c) shows the resulting magnification function.

Replacing the Gaussian drop-off function with any other drop-off function can generate 2D-to-

2D transformation functions. This can be useful in that these types of presentations can be created

without implementing a full 3D environment.

5.6.2 Comparing Results

We compare an EPS linear drop-off and an EPS Gaussian drop-off with two typical 2D-to-2D trans-

formation functions, Sarkar and Brown’s Graphical Fisheye [137] (SB:fisheye) and Keahey and

Robertson’s Non-Linear Views [84](KR:nonlinear).
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(a) Gaussian drop-off function (b) TEPS:Gaus (c)MEPS:Gaus

Figure 5.34: The Gaussian drop-off function and the related Gaussian 2D-to-2D functions

Sarkar and Brown’s Graphical Fisheye is:

T2D:SB:fisheye(x) =
(m+ 1) � x

((m � x) + 1)
(5.6)

In this fisheye approach adjustingm changes the magnification. Keahey and Robertson’s transfor-

mation function is:

TKR:nonlinear(x) = tanh(m � x) (5.7)

where adjustingm also changes the magnification.

The EPS linear drop-off function is:

hp = hf �

�
1�

dp

lr

�
(5.8)

where varyinghf adjusts the magnification, varyinglr adjusts the lens radius, anddp corresponds

to the distance from the focus. For comparisondp is set tox andhf andlr are set to1. Combining

surface manipulation of the drop-off function (Equation 5.8) and perspective projection function

(Equation 5.3) creates a 2D-to-2D EPS transformation function:

TEPS:linear(x) = x � (db=(db � (1� x))) (5.9)

The 2D-to-2D Gaussian transformation function is shown in Equation 5.4. The graphs of these four

transformation functions are shown in Figure 5.35. They have all been set to have the same initial

magnification factor for ease of comparison. Note thatTSB:fisheye andTEPS:linear are coincident.
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1
2

3

Figure 5.35: The graph of the transformation functions: (1)TKR:nonlinear, (2) TSB:fisheye and
TEPS:linear, and (3)TEPS:gaus

Sarkar and Brown’s magnification function is:

MSB:fisheye(x) =
(m+ 1)

((m � x) + 1)
+ (m � x)

(m+ 1)

((m � x) + 1)2
(5.10)

Keahey and Robertson’s magnification function is:

MKB:nonlinear(x) = m � (1� tanh(m � x)2) (5.11)

The EPS linear magnification function is:

MEPS:linear(x) =

�
db

(db � 1 + x)

�
�

�
dbx

(db � 1 + x)2

�
(5.12)

The EPS Gaussian magnification function is given in Equation 5.5.

Figure 5.36 shows the graphs of these magnification functions all set to have a a magnification

factor of 2. The magnification functions of SB:fisheye and EPS:linear are the same, as are their

transformation functions.

Similar visual results can be achieved in either 2D-to-2D or EPS approaches. However, there are

several advantages with EPS. As noted in Section 3.5, given a desired degree of magnification, it is
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Figure 5.36: The graph of the magnification functions; (1)MEPS:gaus, (2) MSB:fisheye and
MEPS:linear, (3)MEPS:cosine, and (4)TKR:nonlinear

difficult in the 2D-to-2D paradigm to obtain an appropriate transformation function. This has been

extensively discussed in [85, 94]. Keahey and Robertson [85] developed an approximate transfor-

mation. They start with a grid and a set of desired magnification amounts. The grid is then adjusted

iteratively, ensuring no grid points overlap until the difference between the magnification provided

by the adjusted grid and the desired magnification is sufficiently small. In contrast, in EPS using a

specified degree of focal magnification as input is simple and precise (Section 3.5).

Furthermore, finding a reverse mapping in a 2D-to-2D method is difficult [138]. In EPS with

the surface positionhp one can obtain the original location from the transformed location (see Sec-

tion 3.5). If EPS is used to generate a 2D-to-2D method and this method is used as a one step method

bypassing obtaininghp, then the difficulty of reversal also arises. Blending (see Section 3.7) compli-

cates the situation and has not been investigated. However, as the drop-off functions are associated

with a lens, reversing the changes in the focal magnification also reverses the effect of the distortion.

This provides the ability to return to previous configurations.

Separating the transformation function into two distinct steps (surface manipulation and per-

spective projection) simplifies the mathematics. The magnification factor, the height of the surface,
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and the apparent transformation have a simple mathematical relationship based on similar triangles.

Changing between two- and three-dimensional presentations is achieved by applying Equation 5.3.

Note that if our method only supplied us with the transformed coordinatesxm andym, as with other

2D transformations, the same situation would result. The magnification factor would be equivalently

difficult to retrieve. However, ash (or thez coordinate) of each point is known, the relationships

remain as described above.

Figure 5.37: Step pyramid

5.7 Drop-off Functions in Combination

Individual drop-off functions have characteristics patterns of magnification and compression. How-

ever, there is no reason to use any one drop-off function exclusively. In fact, there are many ways in

which they can be usefully combined.

Piecewise Combinations.Many of the lenses discussed in Section 5.4 combined a region of zero

drop-off around the focus with a linear drop-off function in the region of distortion. Without this

zero drop-off region point foci would literally be points. Combining linear functions with additional

regions of zero-drop-off can create step pyramid presentations (Figure 5.37 and Figure 5.14). Two
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Figure 5.38: A variety of lenses resulting from a Gaussian basis function modified by a half sine
function

methods of combining zero drop-off with non-linear drop-offs are discussed in Sections 3.4 and 3.5

as either limiting the function to some maximum height to provide a scaled-only focal region or

creating an arbitrary polygon focal region which is entirely projected to the given focal height (also

creating a scaled-only focal region). It is possible to create connected piecewise linear functions

with different characteristics in different regions.

Additive Combinations. All drop-off functions discussed have at least one less than desirable

feature. Rather than look for a new function that might eliminate this feature it is possible to use

separate basis and auxiliary curves. The auxiliary curve can be used to modify the problems in the

basis curve. For instance, in the discussion in Section 4.1 it was mentioned that the Gaussian’s bell

shape causes a waist of maximum compression approximately midway between the focus and its

context. A half sine function can be subtracted from the Gaussian to straighten out this dip (see

Section 4.1). In this manner it is possible to obtain smooth integration of the Gaussian, ensuring

that the compression pattern is not locally constricted. Figure 5.38 shows several curves that are the
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Figure 5.39: Lenses in combination

result of adjusting the Gaussian and sine functions.

Distinct Lens Combinations. Using constrained distortions opens up the possibility of using dif-

ferent drop-off functions for different lenses. For instance, one lens could use a step function and

another a modified Gaussian and still another a truncated hyperbola (Figures 5.39 and 5.40).

5.8 Discussion

Much of this discussion has focused on the type of visual continuity a presentation pattern pro-

vides. There has been a general tendency to label as preferable the more visually integrated pat-

terns [85, 137, 138]. However, in a visually integrated distortion, focal areas blend into context.

While this provides perception of the image as a single event it can lead to interpretation questions

about whether there are any areas that are scaled only, and if so where such areas start and end.

Simple visual continuity provides this information more readily.
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Figure 5.40: Lenses in combination

focal

connection

context

connection

slope

Table 5.2: Profiles of possible drop-off variations at visually critical points

One may think that small variations in distortion pattern like those between the hyperbola and the

cosine are probably not visually signification. However, there may be both critical issues and critical

zones in a lens’ distortion pattern. The critical issues concern the degree of magnification possible
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Table 5.3: Choosing the type of visual integration at the focal connection and at the context connec-
tion affects the lens’ pattern of compression

before the compression becomes too extreme, whether any occlusion is tolerable, and the location of

maximum compression. Critical zones include the focal connection, the region of distortion, and the

context connection. Table 5.2 indicates the range of drop-off possibilities for these critical zones.

A full lens library would offer this range of choice. Since any decreasing mathematical function

can be used in this regard, being able to interpret resulting visual patterns from the curve’s profile

may allow for more appropriate choices between curves for a particular information representation

or task. Table 5.3 shows some of the lens possibilities.

While the resulting presentation patterns of other examples from the literature can be explained

through EPS, most of them make use of two-dimensional adjustment for their presentation. As

discussed in Chapter 2 many cannot provide all the functionality discussed in Chapter 3.2, and

none have the functionality of distortion control and folding discussed in Chapter 4. One advantage

of EPS is that changing the drop-off function used merely changes the resulting distortion pattern

without affecting the functionality. Therefore while the discussion has largely looked at the patterns

created by a single lens for ease of comparison, all EPS lenses discussed have full functionality

presented in Chapters 3 and 4.


