
a CAPpella: Programming by Demonstration
of Context-Aware Applications

Anind K. Dey1, Raffay Hamid2, Chris Beckmann3, Ian Li4, Daniel Hsu3
1Intel Research, Berkeley

Berkeley, CA USA
anind@intel-research.net

2College of Computing
Georgia Tech

Atlanta, GA USA
raffay@cc.gatech.edu

3EECS, UC-Berkeley
Berkeley, CA USA

{beckmann,dhsu@cory}
.cs.berkeley.edu

4University of Washington
Seattle, WA USA

ian.li@u.washington.edu

ABSTRACT
Context-aware applications are applications that implicitly
take their context of use into account by adapting to changes
in a user's activities and environments. No one has more
intimate knowledge about these activities and environments
than end-users themselves. Currently there is no support for
end-users to build context-aware applications for these
dynamic settings. To address this issue, we present a
CAPpella, a programming by demonstration Context-Aware
Prototyping environment intended for end-users. Users
"program" their desired context-aware behavior (situation
and associated action) in situ, without writing any code, by
demonstrating it to a CAPpella and by annotating the
relevant portions of the demonstration. Using a meeting and
medicine-taking scenario, we illustrate how a user can
demonstrate different behaviors to a CAPpella. We describe
a CAPpella's underlying system to explain how it supports
users in building behaviors and present a study of 14 end-
users to illustrate its feasibility and usability.
Categories & Subject Descriptors: H.5.2 [Information
Interfaces and Presentation]: User Interfaces – graphical
user interfaces, prototyping; D.1.7 [Programming
Techniques]: Visual Programming; G.3. [Probability and
Statistics]: time series analysis
General Terms: Human Factors, Design
Keywords: Context-aware computing, programming-by-
demonstration, end-user programming, statistical machine
learning

INTRODUCTION
Twelve years ago, Mark Weiser introduced the idea of
ubiquitous computing or ubicomp, where computing moves
off the desktop and into the environment [26]. An important
component of ubicomp is context-awareness, where
applications can dynamically adapt to changes in the user’s
activities and environments. Common context-aware
applications include tour guides [1] and smart environments

[2,17]. While there has been much research in context-aware
computing, most of it has been focused on building
infrastructures to support programmers in building
applications and on the applications themselves [2,3,4,20,22],
despite the tremendous value in empowering end-users to
build applications.
In this paper, we describe a CAPpella, a system designed to
empower end-users in building these types of applications.
But why focus on end-users? First, end-users have more in-
depth knowledge about their activities environments than any
developer. Second, if only a developer can control system
behavior, the user will be unable to evolve the system when
her environments or activities change. Finally, in a context-
aware application, most system action is based on implicitly
sensed and interpreted information about the user. Therefore,
the potential for designing a system that performs the wrong
action and seriously annoys users is quite high. This calls for
a system that can be placed in the hands of users so they can
build and configure an application to do what they want
when they want it.
Currently, to develop a context-aware application, developers
have two options: They may create what is essentially a rule-
based system composed from individual components and
sensors (the “avoid intelligence” camp [3,4,20]), or they may
build a recognition-based system (the “use intelligence”
camp [2,22]) and focus their efforts on integrating sensed
data to interpret user intent and actions.
Both of these approaches are inaccessible to end-users. The
majority of research has been in the “avoid intelligence”
camp, where toolkits that only support programmers have
been built. These toolkits require large amounts of code to
develop simple context-aware behaviors: sensed situations
with associated actions. Obviously this is not realistic for
most users, as they have tremendous difficulty programming
a VCR or a setback thermostat (a configurable device for
setting temperature for different times of day) [8]. In the “use
intelligence” camp, recognizers are often handcrafted over a
period of days, weeks or even months in an attempt to
optimize recognition performance. It is far beyond the ability
of most programmers, let alone end-users, to specify and tune
the features that go into a recognizer.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CHI 2004, April 24-29, 2004, Vienna, Austria
Copyright 2004 ACM 1-58113-702-8/04/0004…$5.00.

Because of this, only programmers can build context-aware
applications, with end-users having little control over how
these applications behave. Very little emphasis has been

CHI 2004 ׀ Paper 24-29 April ׀ Vienna, Austria

 Volume 6, Number 1

33

placed on empowering end-users to build their own context-
aware applications. Past work has explored support for end-
user control using the rule-based approach [7,11,24]. This is
a valid approach, but is limited to situations where a user can
be reasonably expected to come up with a static, well-
specified rule in a timely fashion that accurately describes the
desired context-aware behavior.

Figure 1: Design process for context-aware behaviors in a
CAPpella. User actions shown with dark shading and system
actions are shown with light shading.

This paper focuses instead on empowering users to build
context-aware applications that depend on intelligence –
making inferences based on sensed information about the
environment. To address the issues introduced above, we
present a CAPpella1, a Context-Aware Prototyping
environment for end-users to build applications without
writing any code. a CAPpella uses a combination of machine
learning and user input to support the building of context-
aware applications through programming by demonstration.
Specifically, a user of a CAPpella demonstrates a context-
aware behavior that includes both a situation and an
associated action (Figure 1). She uses a GUI to indicate what
portions of the demonstration are relevant to the behavior and
trains a CAPpella on this behavior over time by giving
multiple examples. Once trained, she can run a CAPpella,
and it will enact the demonstrated behavior: performing the
demonstrated action whenever it detects the demonstrated
situation.
Programming by demonstration (PBD) is not the only
approach available to empower end-users, however we
believe it offers long-term potential for supporting dynamic
and complex behaviors and we investigate that potential in
this paper. PBD allows end-users to build context-aware
behaviors in a situated manner that would otherwise be too

complex or time consuming to build. a CAPpella requires no
writing of code and supports the building of behaviors that
cannot be neatly articulated as a simple rule.
The key idea behind a CAPpella is that it does not require
end-users to have any expertise in creating recognizers, but
instead creates recognizers for them, leveraging off their
natural abilities to understand their own behaviors and their
ability to express those behaviors. Consider the example of a
meeting. A context-aware behavior could be: when a meeting
occurs, load the most recently used presentation file [25] and
launch a notes-taking application. A meeting can be defined
in a number of different ways, taking into account the
number of people present, their location, the presence of a
conversation, etc. Ask five people to define a meeting and
you will get five different answers. But ask five people to
watch a video of a meeting and, more often than not, all five
will have similar insights about what features comprised the
meeting and when the meeting started and ended: a classic
case of recall vs. recognition. This feature specification is the
essence behind a CAPpella.
The next section surveys previous research in the areas of
context-aware computing, end user programming and
programming by demonstration, providing further motivation
for our work. In the following sections we present an
example scenario and describe how users can use a CAPpella
to build context-aware behaviors. We then describe the user
interface and underlying machine learning system that
supports end-users. We demonstrate the viability of our
approach by using a CAPpella to learn a meeting-based
behavior and a medicine-taking behavior. We also describe
the results of a user study that show a CAPpella is a useful
and usable tool. Our work with a CAPpella is an exploration
that demonstrates the feasibility of a programming by
demonstration approach for building context-aware
behaviors. We conclude this paper with a discussion of the
current limitations of the approach and provide future
directions for this research.

RELATED WORK
Pattern recognition is a very difficult problem and there is a
whole field of research that investigates how to build systems
that can recognize, or classify, patterns of interest [5].
Recognizing human activity is a rapidly growing sub-field
and has become more prominent in the HCI community of
late [10,19,] While most research focuses on techniques for
programmers to build useful recognizers, there are a number
of systems that investigate the idea of putting a human “in the
loop” to build pattern recognizers.

Scott et al. study the utility of having humans “in the loop”
for optimization problems and show that this is a useful
approach as long as users are focused on tasks that humans
excel at, including identifying useful areas of the search
space [23]. Interactive Evolutionary Computation is an
optimization method where users are asked to subjectively
evaluate the output of a machine learning system [14]. The

1 a cappella is a musical term that means without accompaniment.
We named our system a CAPella because it empowers the user to
act without the accompaniment of a programmer.

CHI 2004 ׀ Paper 24-29 April ׀ Vienna, Austria

 Volume 6, Number 1

34

machine learning system optimizes its learning to obtain the
output preferred by the user.

Traditionally, programming by demonstration systems have
focused on supporting visually-based tasks such as filing
email and web browsing [15]. Although our domain is
different, we were motivated by this work and its use of
mixed-initiative and active learning. The mixed-initiative
approach uses agents and graphical widgets to obtain input
from a user, to both help a recognizer improve its recognition
ability and to resolve ambiguity [9,16]. Similarly, active
learning systems make queries to the user or perform
experiments to gather data that are expected to maximize
performance [27]. Active learners demonstrated significant
decreases in the amount of data required to achieve the
equivalent performance of passive learners.

Similarly, in a CAPpella, the user provides data to the
machine learning system, focusing the learning system on her
input. We show that this approach requires small amounts of
time and data to produce reasonable activity recognizers.
Two systems that take a similar approach to ours and have
provided us with tremendous inspiration are the Neural
Network House and Crayons.

The Neural Network House is an adaptive system that
controls the utilities (lighting, heating, etc.) in a house,
inferring appropriate behaviors by observing the inhabitants
of the house [17]. In this work, Mozer points out that subtle
statistical behavior patterns can be exploited to control the
adaptive system in the house. If the system turns the lights to
a particular lighting level as an occupant enters the room, the
system learns about the occupant’s preferences through her
behaviors. If she adjusts the lighting, it learns that she prefers
a different lighting level than it chose and adjusts its model of
the user accordingly. While this is an interesting approach, in
order to recognize complex behaviors like a meeting,
additional user input beyond this reinforcement learning is
required to guide the recognition system.
Crayons was another source of inspiration for a CAPpella. It
uses interactive machine learning to allow end users to create
an image classifier [6]. Users provide images to classify and
then annotate the images by coloring them, indicating the
areas an image classifier should look for. Fails and Olsen
showed that users could very quickly create a variety of
image classifiers (e.g., skin and laser pointer detectors) with
Crayons. The image classifiers built can be used in a camera-
based application. Crayons opens up the space of image-
based recognizers to end-users in the same way that a
CAPpella opens up the space of recognizer-based context-
aware applications to end-users.
While there has been work in leveraging user input to
improve machine learning, there is no system that supports
end users in creating recognizers of interesting context-aware
behaviors. In our work, we leverage off of much of the work
discussed here, using a human “in the loop” to reduce the
amount of data and time required to build useful context-
aware behaviors. a CAPpella empowers end-users to create

context-aware behaviors that would otherwise require
considerable programming expertise.
The next section presents an example of how one uses a
CAPpella to build a context-aware behavior and to
demonstrate the usefulness of the tool. We will revisit this
example as we describe the details of a CAPpella.

EXAMPLE APPLICATION
Here, we describe how users interact with a CAPpella to
create such an example behavior, a meeting. One can
imagine a meeting scenario where a user is having a phone
meeting and she wants to turn the lights on and launch an
application to record notes from the meeting. Such a scenario
is quite common and is often repeated in workplace
environments. The user wants her smart environment to
recognize that she is in a meeting, but cannot easily define
the conditions that comprise a meeting. Current systems
support the a priori creation of a static, and therefore likely
brittle, heuristic that when true, indicates a meeting is
occurring. When a meeting is recognized, they perform the
desired actions. Instead, users can now use a CAPpella to
specify context-aware behaviors in situ.

Figure 2: a CAPpella user interface being trained for a meeting.
The user has selected a start and end time and deselected the
location and RFID data streams. The actions shown are turning
the lights on and off, and starting the notes recording program.
When our user is ready to create a context-aware behavior,
she starts a CAPpella’s recording system. This captures data
from all the sensors that are available to the system: video
camera, microphone, radio frequency identification system
(RFID), a switch that indicates whether the phone is in use,
and instrumented actuators to detect actions such as logging
in and logging out of a computer, sending an email, turning
on or off a light, etc. She starts her meeting and performs the
actions she would like her smart environment to perform on
her behalf. When the meeting is over, she stops the recording
system and uses a CAPpella’s user interface to view what
was recorded. The user interface, shown in Figure 2, displays
the data streams that were recorded and allows the user to
play them back.

CHI 2004 ׀ Paper 24-29 April ׀ Vienna, Austria

 Volume 6, Number 1

35

Event detection The user interface is divided into three parts. In the left
frame, there is a video player that allows the user to view the
recorded video and listen to the recorded audio. In the right
frame at the top, the user can view events detected in the
recorded sensor data, and on the bottom, she can view actions
that she took during the recorded session. After viewing the
captured data, she can annotate the data: selecting the
streams of information she considers to be relevant to the
behavior being created and the actions she wants a CAPpella
to perform on her behalf. She sets a start and end time for all
the streams to indicate when the behavior started and when it
ended, as shown in Figure 2.

When the user stops the recording system, the sensors stop
sensing and event detection on the data logs begin. Event
detection is the process of deriving higher-level events from
the raw data produced by the video camera and microphone,
and any other sensor that does not directly produce higher-
level events. For each frame of the captured video, the
number of people in the scene and their x-y location within
the video are detected and added to the event log. For each
sample of captured audio, the volume level and a
determination of whether there is someone talking are output.
Additional detection could be added, but this was sufficient
to investigate our approach. When she is finished pruning the data, she can train a

CAPpella on this data. The user repeats this process a small
number of times over a period of days or weeks and
improves a CAPpella’s ability to recognize this behavior
with the new data. In each subsequent iteration, the user can
first test a CAPpella’s ability to recognize the demonstrated
behavior on the newly annotated data to see how well it
performs, and if necessary, train it on this additional data. If
desired, she can go back and view previously trained data
and re-test the updated recognizer against it. When a
CAPpella has improved enough that it recognizes captured
data correctly on a regular basis, the user tells it to constantly
collect data. It then looks for the “programmed” situation (i.e.
a meeting) in the live data, and when detected, it performs the
specified actions on her behalf.

Visual events
To determine the number of people in a scene and their
location, we built a simplified implementation of a multi-
hypothesis framework – Bramble [13]. Bramble uses a
weighted mixture of Gaussian densities to determine the
likelihood that a part of the scene belongs to the foreground
(i.e. is something that has been added to the scene) or the
background (i.e. is something that existed in the scene before
people entered it). When a CAPpella is installed, a
background model is created (either by the installers, or by
the end-users themselves using a tool we provide.) by
capturing a number of short video clips containing only the
background under a number of different lighting conditions
(to improve robustness). Foreground models are also created
for different numbers of people to improve the visual event
detection system’s ability to detect people and their location
in captured video. When the visual event detection system
examines the user’s captured video data, it uses
CONDENSATION, a particle-filtering framework. This is a
technique that hypothesizes the existence of objects of
interest in multiple locations and uses comparisons of video
frames to the foreground and background model to confirm
these hypotheses [12]. When all the hypotheses have been
checked with respect to the observed image, the number of
people in the scene and their location are estimated on the
basis of the most likely hypothesis. These estimates are then
written to a new timestamped log file. While we provide a
tool to support end-users in creating event detectors for the
number of people and their location, one could imagine using
Crayons to allow them to perform this task more easily.

To summarize, a user first records a behavior – situation and
action – that she wants a CAPpella to learn. She selects
relevant events from the recording and uses them to train.
After a sufficient number of training examples have been
provided, she tells a CAPpella to recognize the situation, and
when it does, it performs the demonstrated actions.

A CAPPELLA DESIGN
Here, we describe the design of a CAPpella and show how it
supports programming of context-aware behaviors by
demonstration. a CAPpella has 4 main components: a
recording system, an event detection, a user interface and a
machine learning system. We discuss them in detail here.

Recording System
In order for a user to demonstrate a context-aware behavior, a
CAPpella must have multimodal sensing capability to
capture both the situation and the action that should be taken.
a CAPpella currently uses an overhead video camera, a
microphone, RFID antennas and tags, and a switch that
detects whether a phone is in use to capture events that occur
during the demonstration of the situation. It uses an
instrumented light switch, an audio alarm and an
instrumented computer (for login, logout, sending email,
loading recently used files and for capturing user notes) to
capture events that occur during the demonstration of the
action. It is easy to add additional sensors to a CAPpella and
we have plans to do so. However, these sensors are sufficient
to investigate the feasibility of our approach. When the user
starts the recording, the sensors begin storing time-stamped
data into separate logs, one for each sensor.

Audio events
To determine whether people are talking in a scene, we
provide a tool that helps a user capture audio clips of ambient
sound and talking. The tool takes these clips and uses a K-
Means clustering analysis [5] to model these conditions. The
captured audio file is compared to the two clusters (talking
and not talking) to determine which of the two clusters or
conditions it is closer to. The results of this comparison are
output to a new timestamped log file.

User interface
a CAPpella’s user interface drew inspiration from
commercial tools that display and let users interact with
multiple streams of information such as Apple iMovieTM and

CHI 2004 ׀ Paper 24-29 April ׀ Vienna, Austria

 Volume 6, Number 1

36

Adobe Premiere®. The user interface was designed
iteratively, starting with a paper prototype and implementing
multiple versions, with evaluations at each stage. The paper
prototypes tested three different representations of logged
data: cell-based, where each cell showed the numerical value
of the sensor; strips-based, where data with the same
numerical value were grouped together; and icon-based,
where icons were used to abstractly represent sensor data and
color, size and density of icons were used to encode
information. We also created variations to test whether users
preferred to view logged data with time represented
horizontally or vertically.
We gave our paper prototypes to three users and asked them
to select the relevant features of a sample demonstration: a
user is talking with a friend in a lab and then leaves the room
for lunch. As the user leaves the room, he turns the light off.
The paper prototypes represented the streams of information
that a sensor-augmented environment could capture: the
number of people and their locations in the scene, phone
ringing, conversation over the phone between the people in
the scene, the user logging in and out of his computer and
turning off the lights as he leaves the room with his friend.
Users were asked to select the relevant features of the scene
using the prototypes.
Overall users preferred the horizontal view of the data to the
vertical view. While the vertical view afforded more natural
horizontal scrolling, most of the data streams were more
easily read horizontally (e.g. audio). The users disliked the
icon-based view because it represented the data too abstractly
and they wanted to know the numerical values. They had
mixed feelings about the strips-based and cell-based views.
Two users preferred the strips-based view because it
provided a cleaner interface and made it easier to locate
transitions in the data. The third user preferred the cell-based
view because it showed the delineation of events more
clearly, which is useful for selecting multiple events.
The two views also engendered different selection behaviors.
One user only chose transitions (i.e. events where data
changed from one value to another), one user only chose
intervals (i.e. not focusing on transitions but selecting events
with the same value), and the third chose both. To support
the selection of both, we combined the views, labeling
transitions and delineating discrete events.
The interface is shown in Figure 2. It consists of two main
panels, an events panel for viewing the captured events and a
player panel for watching and listening to the captured audio
and video. The events panel displays the events and actions
captured and recognized by a CAPpella. Events are displayed
at the top of the panel and actions are displayed at the
bottom. Different types of events and actions are represented
in different ways (Figure 2). Currently a CAPpella renders
six different abstract types of data, based on feedback from
our paper prototype users. Boolean data such as whether the
phone is in use or not is rendered with colors and labels.
Integer data such as the number of people in a scene, and real
number data such as sound level are represented as line

graphs. Multiple point events such as the location of people
in a scene are represented as points on a Cartesian plane.
Unlike the other data types, this data requires horizontal as
well as vertical space to represent it. Because of this, the
resolution at which this data is rendered is less than the other
data types. Multiple string events such as actions are
represented with icons – hovering the mouse over each icon
reveals the string that it represents. We created a specific
representation for RFID events because it did not fit one of
the other categories. They are represented as multiple line
graphs that can have values of on or off.
Users select streams relevant to the demonstrated behavior,
by clicking on the event checkboxes. A zoom slider on the
right side of the panel allows users to inspect and select
events at a finer granularity (e.g. Figure 3).

Figure 3: Zooming on event streams: zoomed out view on top
and zoomed in view on bottom.
We built two versions of this interface. One supports the
selection of any number of sets of events within an event
stream and across event streams (e.g. choose time 1-5 and
10-17 for stream 1 and 2-7, 14-25 and 30-40 for stream 2).
While this interface was adequate for investigating the ability
of a CAPpella to support programming by demonstration of
context-aware behaviors, informal tests with users made it
clear that providing so much flexibility in selecting features
may be too complicated. In our validation section, we will
discuss how we used this interface ourselves to illustrate a
CAPpella’s usefulness. A second and simpler interface we
created that only allowed users to select a single start time
and end time that applied to all selected streams, as was
described in our initial meeting scenario. In our validation
section, we will discuss a user study we performed with this
version.

 Figure 4: Synchronized playhead and time marker.
The player panel shown in Figure 4 allows a user to playback
the captured video, audio and event streams (Fig. 4). The
playhead in the player panel is synchronized with a time
marker in the event panel, helping users to relate detected
events in different streams.

Machine learning system
Once the user is done selecting the events he believes is
relevant to the behavior being demonstrated, he sends this
data to a CAPpella’s machine learning system for testing or

CHI 2004 ׀ Paper 24-29 April ׀ Vienna, Austria

 Volume 6, Number 1

37

training. In the former case, the user indicates the name of the
behavior the data should be tested against and a CAPpella
responds with an indication of whether the behavior was
recognized or not. In the latter case, the user indicates the
name of the behavior to train and a CAPpella updates its
model for this behavior with the new data.
In either case, the data being used is a collection of time
series data. For its machine learning system, a CAPpella uses
a Dynamic Bayesian Network (DBN) framework [18], a
popular inference extraction stochastic framework for
modeling time series data. In particular, we use a DBN
equivalent of Hidden Markov Models (HMMs) [21] to
support activity recognition. While HMMs are essentially a
particular instance of DBNs, they do not offer the scalability
or generality of DBNs. The data the user selects is combined
into a single stream of observations, with an observation at a
given time represented as a tuple containing data from each
of the selected event streams. When disjoint time intervals
are selected for different event streams, null data are entered
for streams not selected, to indicate to the machine learning
system that those event streams are to be ignored during
these time intervals.
The output of a DBN is a probability distribution over its
hidden states (e.g. whether a meeting is taking place or not).
We turn this into a deterministic recognizer by creating two
models from the user’s input, one for the demonstrated
activity (e.g. a meeting is occurring) and one for when the
activity is not taking place (e.g. a meeting is not occurring).
Both models are compared against test data and the model
that produces the higher likelihood wins out. This
comparison occurs continuously using a sliding window of
10 seconds. At every second, the system compares the output
of the two models taking into account the data from the
previous 10 seconds and these comparisons are filtered to
remove noise. The entire process results in a short lag in
producing results, which we try to optimize in future work.
For many machine learning systems, a recognizer must be
hand-created by an expert for each activity that is being
recognized. The key to a CAPpella is that the user does not
need to know about or understand any of the technical details
of the DBNs. All of this can be hidden from the user. Instead,
with a CAPpella, a user can simply select the event streams
and the events within them that she thinks are relevant to the
behavior being trained with the DBNs. The user can create
behavior models, train them and test data against them,
without needing to learn the details of the models and the
DBNs being used.

VALIDATION: CASE STUDIES
In the previous section, we described all the components of a
CAPpella. In this section, we demonstrate through two case
studies and a user study that a CAPpella can support users in
programming context-aware behaviors by demonstration.
The case studies illustrate how we, as designers of the
system, can use a CAPpella to recognize two common
situations, meetings and medicine taking, and perform
demonstrated actions on behalf of the user. The user study

shows how end-users are able to create and train effective
models of a meeting using a CAPpella.

Case Study 1: Meeting Scenario
To investigate a CAPpella’s programming by demonstration
approach, we tested it on the meeting scenario described in
our example application. Using a CAPpella’s recorder
system, we collected 90 samples of data: 30 of which
contained 2 people having a meeting, 15 of which contained
2 people who were not having a meeting, 30 of which
contained 1 person having a meeting (on the telephone) and
15 of which contained 1 person not having a meeting. Each
video was between 1.5 and 5 minutes long. The videos were
partially scripted as we asked the subjects in the videos to act
out a meeting. The videos contained sufficient variety:
different people in different locations within the scene,
moving through the scene at different times, varying levels of
audio and variety in the phone being used. There is additional
variability added by the event detection system. We
randomly chose 15 of the 2-person meeting samples and,
using the a CAPpella interface, selected data we considered
relevant to a meeting situation. For this study, we used the
initial, more complex interface, which allowed us to select
different time series of data from different data streams. We
used this data to create and train models using a CAPpella.
We trained 15 different models, the first based off the first
training sample, the second based off the first and second
training samples, and so on. We repeated this in creating a
new set of models for the 1-person meeting samples. We did
this to determine the number of demonstrations needed to
create a robust model with a CAPpella: approximately 6
(Figure 5). Training a model with a new demonstration took
approximately 8 seconds with our data samples.

Figure 5: Learning curves for the meeting scenario models.

 1P M 1P NM 2P M 2P NM
1P M 93.3% 6.6% 0% 0%
1P NM 13.3% 86.6% 0% 0%
2P M 0% 0% 80.0% 20%
2P NM 0% 6.6% 6.6% 86.6%

Table 1. Confusion matrix of actual classification of test data for
the meeting scenario models: P=person, M=meeting, NM=non-

meeting.
We then tested our (stable) models against our test set: 15 2-
person (2-P) meetings, 15 2-P non-meetings, 15 1-person (1-
P) meetings, and 15 1-P non-meetings. The confusion matrix
showing our results is in Table 1. A correct classification

CHI 2004 ׀ Paper 24-29 April ׀ Vienna, Austria

 Volume 6, Number 1

38

occurs when the model correctly indicates that a meeting is
occurring in the time interval specified by the user. The 1-P
meeting recognizer recognized 1-P meetings in 93.3% of the
test cases, and performed slightly worse in detecting 1-P non-
meetings. The 2-P meeting recognizer recognized 2-P
meetings in 80% of the test cases, performing slightly better
in 2-P non-meeting cases.

Case Study 2: Medicine Taking Scenario
We tested a CAPpella on a second scenario, to show that it
can be used with different scenarios without requiring a
developer to build entirely new machine learning
frameworks. In this scenario, we built a model of a user
taking medicine with 5 demonstrations. If the user takes their
medicine, the activity is logged into their medical journal. If
they do not take their medicine by a certain time, an audio
alarm goes off reminding them to take it. In this scenario, we
used the same sensor modalities as in the previous scenario.
RFID tags were attached to both the user and the medicine,
with an RFID reader attached to the medicine cabinet. It was
assumed that if the user picked up the medicine bottle, they
took their medicine. In an ideal case, a weight sensor would
be used to detect a change in bottle weight. The audio alarm
and journal logging are PC applications, instrumented to
collect interaction data.
Once again we captured a number of data samples, some
with the user entering the scene and taking or not taking their
medicine. While the number of people in the scene was
important (i.e. at least one person), the RFID events were
used to determine that the right user was in the scene and that
it was she who picked up the medicine bottle. This is a
behavior that could be built with a simple if-then rule,
however we use this scenario to illustrate that a CAPpella
can be used for a range of complex behaviors, without
requiring any change to the underlying system. Because the
situation is straightforward, a CAPpella is able to detect
whether the user has taken his medicine with than 98%
accuracy and records it to a log each time. If the user does
not take his medicine, a CAPpella sets off an audio alarm.
Summary of Case Studies
These results show the validity of the a CAPpella approach.
With a small number of demonstrations, we could build
models that performed quite well, detecting between 80%
and 93.3% of meetings taking place and close to 100% of
medicine-taking situations. In the test mode, when these
behaviors are recognized, a CAPpella controls actuators in
the environment to perform actions demonstrated by the user:
turning on the lights, launching the note recording program
and setting off alarms and logging records.

VALIDATION: USER STUDY
To further validate a CAPpella’s ability to support end-users
in creating context-aware behaviors by demonstration, we
conducted a user study with 14 participants. In particular, we
studied how effectively users were able to create models of
meeting behavior in a CAPpella.
Our participants were not computer scientists, but had a
variety of backgrounds including actors, special education

teachers and students, with ages ranging from 18 to 60. We
spent 5 minutes with each user in a tutorial on using the a
CAPpella interface and describing their task. We randomly
chose three 2-person meeting data samples and three 1-
person data samples from the samples collected for the initial
case study. We gave these to our users in random orders and
asked each one to select the event streams relevant to a
meeting and to select the time when the meeting began and
when the meeting ended. There was no feedback provided to
the user about their choices either between samples or after
all samples were used.
This user study was not intended to test a CAPpella as a
complete system. Instead, it was focused on testing end
user’s ability to use the interface on previously captured data
to create effective models. To simplify the task and to
investigate the differences between the models created with
the two different interfaces, we used the constrained interface
for this user study. This interface only allows users to select
relevant event streams and a single start and end time. The
more complex interface allows users to select relevant event
streams and any number of sets of events within an event
stream and across streams.
With the data from each user, we created a series of models
to determine how effective users could be in creating models
with the a CAPpella interface. We then tested the 60 video
clips (15 clips each of 1-P meeting, 1-P non-meeting, 2-P
meeting, 2-P non-meeting) on these models. Averaging
across all 14 users, the 1-P meeting models created
accurately detected 1-P meetings and 1-P non-meetings in
67.2% of the trials (std. dev. of 2.7%). Individual users’
models ranged from 59.5% to 73.3% accuracy. The 2-P
meeting models had a 55.5% success rate (std. dev. of 5.2%).
Individual users’ models ranged from 50.0% to 78.6%
accuracy.
Despite the low results in the 2-person condition, the user
study shows that a CAPpella is effective in allowing users to
create models. In each of the 1-person and 2-person cases,
only 3 training sets were used to create models. As we saw in
our initial case study, approximately 5-6 training sets are
required for a reasonable model. In the 1-person condition,
the results were quite high and were improving as the number
of training sets increased (correlation coefficient > 0.4), as
expected. In the 2-person condition, the results were much
poorer, but were still improving with the number of training
sets (correlation coefficient > 0.4). Another explanation for
the poorer overall data, when compared with our case study,
includes the fact that the data they were viewing was not their
own but was of people and locations they had never seen
before, potentially causing them to be more random in the
features they selected for meeting-relevance. In addition, it is
possible that selecting only a start time and an end time and
the appropriate event streams produces less reliable results.
The a CAPpella user interface appeared to have a shallow
learning curve. Users did not require much assistance in
using the interface during the study and their speed increased
as they annotated more demonstrations. While they

CHI 2004 ׀ Paper 24-29 April ׀ Vienna, Austria

 Volume 6, Number 1

39

suggested improvements to the interface (e.g. making the
selection of start and end times easier), overall, users reported
that the system was easy to use.

CONCLUSIONS AND FUTURE WORK
In this paper, we presented a CAPpella, a Context-Aware
Prototyping environment. a CAPpella supports end-users in
programming by demonstration recognition-based context-
aware behaviors. It opens up the space of context-aware
computing to end-users, allowing them to build in situ
dynamic behaviors that would otherwise be too complex or
time-consuming to produce in a rule-based system. Users do
not need any expertise in creating recognizers. Instead, a
CAPpella takes care of the details of creating the recognizer,
using input from the user to determine what it should
recognize. It allows users to demonstrate interesting
behaviors a small number of times and learns from these
demonstrations. A user performs a demonstration of a
situation and associated action(s) and annotates the captured
events, helping a CAPpella learn. When a CAPpella
recognizes the demonstrated situation, it performs the
demonstrated actions.
We validated the feasibility of our approach in a CAPpella in
two ways. First, we used it to build 2 common behaviors, for
a meeting and a medicine-taking scenario. We then tested a
CAPpella’s ability to support end-users in creating models
with a small number of demonstrations, with 14 end-users
creating models for the meeting scenario. This study showed
that users both liked the system and were able to successfully
create models with it. While creating more interesting multi-
person models is more difficult than single-person models, a
CAPpella’s approach is promising.
a CAPpella is an investigation into supporting programming
by demonstration of context-aware behaviors. While we were
successful in this investigation, we see room for
improvements and further exploration. We plan to use a
CAPpella to build a wide variety of scenarios and to perform
a more thorough evaluation with end users. We would also
like to experiment with allowing users to specify more
information (e.g. temporal ordering of events and actions) in
creating behavior models. We would also like to investigate
the scalability of a CAPpella, in supporting multiple
recognizers simultaneously and in supporting multiple users
in multiple locations with more sensors. The data used in this
system is of much higher dimensionality than for traditional
desktop uses of PBD. This requires more examples and more
data be provided to our machine learning system. We are
interested in improving our algorithms to reduce the number
of examples required to model desired behaviors. Finally, we
are interested in using the recognizers built in a CAPpella as
part of the event detection system, This will allow users to
build behaviors on top of already trained recognizers.

ACKNOWLEDGEMENTS
This work was funded in part by the National Science Foundation under
grant IIS-0205644 and Intel Corporation. We would like to thank John

Canny, Michael Jordan and Stuart Russell for their feedback and
assistance on the machine learning aspects of this work.

REFERENCES
1. Abowd, G.D. et al. Cyberguide: A mobile context-aware tour guide.

ACM Wireless Networks 3(5), 1997, 421-433.
2. Coen, M. The future of human-computer interaction or how I

learned to stop worrying and love my intelligent room. IEEE
Intelligent Systems 14(2), 1999, 8-10.

3. Cooltown homepage. http://cooltown.hp.com
4. Dey, A.K. et al. A conceptual framework and a toolkit for

supporting the rapid prototyping of context-aware applications. HCI
Journal 16(2-4), 2001, 97-166.

5. Duda, R., Hart, P. and Stork, D. Pattern Classification, 2nd Edition.
John Wiley & Sons Press. 2001, 526 -530.

6. Fails, J.A. and Olsen, D.R. A design tool for camera-based
interaction. Proc. CHI 2003, 449-456.

7. Gajos, K. et al. End user empowerment in human centered pervasive
computing. Proc. Pervasive 2002, 134-140.

8. Gregorek, T. The energy revolution. Electronic House 6, 1991, 10-
15.

9. Horvitz, E. Principles of mixed-initiative user interfaces. Proc. CHI
’99. 159-166.

10. Hudson, S.E. et al. Predicting human interruptibility with sensors: A
Wizard of Oz feasibility study. Proc. CHI 2003, 257-264.

11. Humble, J., et al. ‘Playing with your bits’: user-composition of
ubiquitous domestic environments. Proc. UBICOMP 2003, to
appear.

12. Isard, M. and Blake, A. CONDENSATION – conditional density
propagation for visual tracking. International Journal of Computer
Vision 29(1), 1998, 5-28.

13. Isard, M. and MacCormick, J. BraMBLe: A Bayesian Multiple-Blob
Tracker. PRESENCE 8(4), 1999, 367-391.

14. Kochar, S. and Friedell, M. User control in cooperative computer-
aided design. Proc. UIST ’90, 143-151.

15. Lieberman, H. Your wish is my command: Programming by
example. Morgan Kaufman. 2001.

16. Mankoff, J. et al. Interaction techniques for ambiguity resolution in
recognition-based interfaces. Proc. UIST 2000, 11-20.

17. Mozer, M.C. The neural network house: An environment that adapts
to its inhabitants. Proc. AAAI Spring Symposium on Intelligent
Environments 1988, 110-114.

18. Murphy, K. Dynamic Bayesian Networks: Representation, Inference
and Learning. PhD Thesis, UC Berkeley. 2002.

19. Oliver, N. et al. Layered representations for human activity
recognition.. Proc. International Conference on Multimodal
Interfaces 2002.

20. Pascoe, J. The Stick-e Note Architecture: Extending the interface
beyond the user. Proc. Intelligent User Interfaces 1997, 261-264.

21. Rabiner, L.R. A tutorial on Hidden Markov Models and selected
applications in speech recognition. Proc. of the IEEE, 77(2), 1989,
257-286.

22. Schmidt, A. and Van Laerhoven, K. How to build smart appliances.
IEEE Personal Communications 8(4), 2001, 66-71.

23. Scott, S., et al. Investigating human-computer optimization. Proc.
CHI 2002. 155-162.

24. Sohn, T. and Dey, A.K. iCAP: An Informal Tool for Interactive
Prototyping of Context-Aware Applications. Extended Abstracts of
CHI 2003, 974-5.

25. Trevor, J. et al. Issues in personalizing shared ubiquitous devices.
Proc. UBICOMP 2002, 56-72.

26. Weiser, M. Computer for the 21st century. Scientific American,
265(3), 1991, 94-104.

27. Wolfman, S.A. et al. Collaborative interfaces for learning tasks:
SMARTedit talks back. Proc. IUI 2001, 167-174.

CHI 2004 ׀ Paper 24-29 April ׀ Vienna, Austria

 Volume 6, Number 1

40

http://cooltown.hp.com/

	ABSTRACT
	Keywords: Context-aware computing, programming-by-demonstration, end-user programming, statistical machine learning

	INTRODUCTION
	RELATED WORK
	EXAMPLE APPLICATION
	A CAPPELLA DESIGN
	Recording System
	Event detection
	Visual events
	Audio events

	User interface
	Machine learning system

	VALIDATION: CASE STUDIES
	Case Study 1: Meeting Scenario
	Case Study 2: Medicine Taking Scenario
	Summary of Case Studies

	VALIDATION: USER STUDY
	CONCLUSIONS AND FUTURE WORK
	ACKNOWLEDGEMENTS
	REFERENCES

