	

	Department of Computer Science

Research Methods in HCI

CPSC 681

	Heuristic Evaluation

as

A Usability Engineering Method

	Prepared by:

	Yaser Ghanam

	

	

	
	

	
	

	To be submitted to:

	Prof. Saul Greenberg

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	

	Oct 2007

Table of Contents

2Table of Contents

Table of Figures
2
Introduction
3
Introduction
3
Procedure
4
1. Get the heuristics
4
2. Get the system ready
9
3. Get the evaluators
9
4. Do the evaluation
11
5. Compile the results
11
6. Conduct severity rating
11
7. Develop an action plan
12
Advantages
13
Disadvantages
13
Conclusion
14
Example: Heuristic evaluation of a paper mock-up
15
Description
15
Usability Heuristics
17
Severity Ratings
17
Solution
18
References
20
Annotated bibliography of key resources
21

Table of Figures
4Figure 1 - Visibility of system status

Figure 2 - Match between system and the real word
5
Figure 3 - User control and freedom
5
Figure 4 - Consistency and standards, copied from Greenberg [4]
6
Figure 5 - Error prevention
6
Figure 6 - Recognition rather than recall
7
Figure 7 - Aesthetic and minimalist design
8
Figure 8 - Help users recognize, diagnose and recover from errors
8
Figure 9 - Who finds what in HE, copied from Nielsen [3]
9
Figure 10 - Usability Problems Found vs. Number of Evaluators, copied from Nielsen [3]
10
Figure 11 - Severity Rating Scale
12
Figure 12 - Screen design for a hypothetical system
15

Introduction
The term “heuristics” has been widely used in different aspects of computer science to refer to a set of predefined and recognized principles upon which comparisons and evaluation of systems can be held. These principles are usually obtained from historical data of previously conducted projects or experiments and typically are agreed on by a group of scientists or experts in the field. In human computer interaction, Jacob Nielsen introduced the concept of heuristic evaluation as a discount usability method that best suits those extremely time constrained and budget limited projects. According to [1], heuristic evaluation is categorized under the informal methodologies of usability evaluation. A number of evaluators are given the set of predefined principles “heuristics” and asked to analyze a user interface using these heuristics as a standard. Although there are no restrictions on the number of the evaluators, there are some heuristics that define standards for how many evaluators are needed to increase the effectiveness and reliability of this method. It is stated by [2] that heuristic evaluation better be a group effort, simply because no one individual can inspect all the usability issues, but rather “different people find different usability problems.”
Heuristic evaluation can be applied very early in the design cycle even before any implementation starts, particularly if prototypes are used for evaluation. It can also be applied during the actual implementation phase, especially in iterative development models, where usability inspection can be applied to ready-to-use interfaces.
The following sections discuss this method in detail and give general guidelines on how to apply it. Moreover, the benefits and shortcomings of heuristic evaluation are also explained. At the end of this document, a fully detailed example is provided.
Procedure
This section is a succinct summary of the suggestions provided by Nielsen [3].

1. Get the heuristics
First of all, a set of heuristics has to be determined for the specific project under inspection. Each category of projects may have a different set of recognized usability rules of thumb. For example, a system involving human interaction with hardware devices may have different usability guidelines than a system that is purely software.
The following are ten rules of thumb for general user interfaces designs obtained from [3]:

Visibility of system status

At any point of time during the usage of the system, the user should be aware of what is happening. An incident where the user keeps clicking the mouse or randomly hitting the keyboard buttons trying to get a response from the system may be a good indication that this criterion is not met. Even though the system may be busy, it should clearly indicate its status. Notice the difference between message A and message B in Figure 1Error! Reference source not found.. While message B indicates what the system is currently doing and it clearly shows the progress, message A just asks the user to wait indefinitely.

[image: image2]
Figure 1 - Visibility of system status
Match between system and the real world

While using the system, the user should experience a real life like flow of processes. The communication between the system and the user should occur in the user’s language and conventions. Screens should appear in a logical manner, and messages must convey information in quickly and easily understandable terms. Figure 2 A (overleaf) shows an example of an unsuccessful choice of the colors of the buttons. Naturally, people perceive red as a warning sign (delete) and green as a safety sign (keep) as in Figure 2 B (overleaf).

[image: image3]
Figure 2 - Match between system and the real word
User control and freedom

It should be expected that users often don’t go in a smooth and strictly straight path while using any system. Improper choices of functionalities or commands are very likely to be made. The user should have a means of going back to the previous stage or exit at any point without having to restart anything. Thus, undo and redo functionalities are of great importance. If the user regrets doing something and can’t go back and fix it, this criterion is very likely to have been ignored. Let’s assume the scenario shown in Figure 3 where the user of a web based banking system made a mistake in a preauthorized payment request. The user intended to put $500 but he mistakenly put $5000. He just realized his mistake but can only go with the mistake and lose his money or cancel the whole transaction and redo it again as prototype A shows. However, in prototype B, the user can simply click on Modify to go back and correct his inputs.

[image: image4]
Figure 3 - User control and freedom
Consistency and standards

Processes, functionalities and communication should all comply with the platform or domain standards and conventions. The user should never be in a situation where he is confused between two terms that possibly mean the same thing, or a single term having different interpretations in different places. For example, in some applications, they use the terms “print” and “publish” alternatively to indicate the same functionality of printing out the document. While the convention is that “print” sends the document to the printer to obtain a hard copy, the term “publish” is widely used to indicate the functionality of making the document available on the web. Such confusion should never occur in a usable system.
Furthermore, it is especially important to comply with standards as much as possible in order to minimize the mental effort required to perform a certain task. For example, standard buttons have a 3d effect that makes them appear raised. So, if you give labels the same effect, the users may confuse them with buttons and may attempt to click on them. As shown in
Figure 4
, the user may mistakenly click on “Contact” thinking that it is a button that allows further details, while it actually is just a grouping label.
[image: image5.png]9 Heuristic. pdf.

Ele Edt View Hstory Bookmarks Toos Help

@ - (3% I tpuiipages.cose ucolgry. cofesauliuploads| CPSCest Heurstic po [1] [IGl- oanei . russet S

pplication/pdf Object) - Mozilla Firefo>

[Customize Links] Free Hotmail (| Windows Marketplace || Windows Media [| Windows

| F73 Heuristic.pdf (application/pdf Obj...(| | | CHI 2005: Reviewing Guide) |) CPSC615 | Google Groups || I3 Facebook | My Photos — Profils Fctures |

HE kS D[] O[] ([-

4. Be Consistent

These are labels with a
raised appearance.

Is it any surprise that 1ach. 114
people try and click on Account i Status:
them?

Contact

Talanhana

Addrcas:

i

A
T e T e

@ Find: [heu tet O Erevons [Hghlght al [Metgh case

Dore

Figure 4 - Consistency and standards, copied from Greenberg [4]
Error prevention

Whenever there is a possibility of committing an error or a fatal action, the user should be warned by an explicit message stating exactly what consequences are expected after the action is performed. The situation where the user hesitates a lot before doing something because the conditions are vague or the outcomes are not very clear indicates an absence of this rule of thumb. Figure 5 below shows an extremely dangerous operation made without sufficient caution in case A, and with enough caution in case B.

[image: image6]
A

B

Figure 5 - Error prevention
It is also advisable that the system help the user prevent making errors by being flexible enough to check for errors and do automatic mitigation if possible. For example, if the birth year field format is yyyy and the user enters 85, then the system can automatically convert that to 1985.
Recognition rather than recall

Remind the user of anything that may be required rather than requiring the user to remember. For example, when moving from one step to another in a wizard, the user should not be expected to remember what his choice was in the first step while performing the fifth step. The system should make it easy and non-interruptive to retrieve any required information or at least get instructions whenever needed. For example, the user in Figure 6 A is required to have remembered or written down his account number before proceeding to the next screen, while in B the last three digits are given to him automatically.

[image: image7]

[image: image8]
A

B

Figure 6 - Recognition rather than recall
Flexibility and efficiency of use

Provide shortcuts for expert users to make performing frequent functionalities more time efficient. However, don’t make it an alternative of the usual way of doing things. Both experts and novices should be able to use the system. For example, in many text editors and web browsers the user can hit Ctrl^C to copy the selected items rather than having to go to the proper menu and look for the copy command. While experts rarely go to the menu to copy, it is still important to keep that alternative available for novices.
Aesthetic and minimalist design

Communication with the user should be short, simple and straightforward. Only relevant information needs to be conveyed to the user. Any other pieces of information that are not vital to the understanding of what is going on should not be directly displayed to the user. Notice the example in Figure 7 (overleaf). In case A, the system gives a status message to the user that is too detailed. The user may not know what Apache means or may wonder what 8080 indicates. Most probably, the user will ask what this message means or simply stop the system if the transaction is of a great value. Case B illustrates all what the user needs to know about the current status of the system.

[image: image9]
A B

Figure 7 - Aesthetic and minimalist design
Help users recognize, diagnose, and recover from errors

Whenever the user performs an illegal action or experiences an unusual condition while using the system, error messages should help him get a clear idea on the cause of the problem and a constructive suggestion on how to solve it. Error messages should speak the user’s language and should not contain technical terminologies or codes that are irrelevant to the user’s domain. Figure 8 illustrates two error messages. Error message A assumes that the user knows what null pointer exception is and suggests that the user debug the code to solve the problem. Also, notice the code number of the message that is not likely to be of any use to the normal user. You often come across this kind of messages while dealing with unstable operating systems or editing tools. Error message B; however, tells the user what the exact error is in a language he can understand, and it suggests a practical solution to the problem as well as a safe exit if the user still does not know what to do. It is important to mention at this point that how good an error message is can only be judged after knowing the domain of the system and the technical background of the typical users. That is, if you are a java developer working with Eclipse, error message A in Figure 8 is not that bad. Simply because as a developer, you know what an exception means, and more importantly, you actually can debug the program.

[image: image10]
A

B

Figure 8 - Help users recognize, diagnose and recover from errors

Help and documentation

A strong indication of good usability is the ability for the user to use the system and understand the processes and functionalities without or with very minimal amount of documentation. Buttons, menus and messages should be self explanatory and should not require a considerable mental effort to understand what they do or what they mean. This is because users generally don’t read manuals as stated by [5]. But whenever it is necessary to provide help and documentation, such information should be easy to search, read and understand. State explicitly what is to be done, how, and in which order. Examples of possible usages may substitute very huge or complex symbolic explanations.
2. Get the system ready
Typically, usability evaluation can be done on either prototypes or real systems. If you are developing a new application or interface, evaluating prototypes can save some time and effort, because no comprehensive redesign is required. In addition, the system will then be implemented on rigid bases (good usability practices), which decreases the amount of maintenance required afterwards. On the other hand, if you are doing a replacement study to provide an alternative interface or if you want to improve an existing system, then evaluation of real systems becomes more useful or even mandatory in some cases. To make the evaluation process more controlled and structured, [6] suggests that preparing typical scenarios is a vital step before the assessment course takes place. Typically, scenarios list in order the steps a user would go through in order to perform a fairly representative set of realistic tasks in a normal flow. To ensure that these scenarios actually represent real life tasks, it is asserted by [2] that such scenarios better be established on “the basis of a task analysis of the actual users and their work.”
3. Get the evaluators
Before recruiting any evaluators, the set of the agreed-on heuristics in the domain should be ready, and the prototype or the real system to be investigated should also be available along with any scenarios to be followed. Then, a number of evaluators are to be selected to start the evaluation process. As mentioned earlier, heuristic evaluation is not an individual effort, but rather it is an aggregate of different individual efforts working towards the same goal. While some people tend to find many minor problems, some others are capable of finding only one or two yet major problems. Figure 9 shows how difficult it is to predict which evaluators find which usability problems.

[image: image11.png]Unsuccessful

Evaluators

Successful

Hard ~—————————— Easy
Usability Problems

Figure 9 - Who finds what in HE, copied from Nielsen [3]
But this does not necessarily mean that the more evaluators are recruited, the better the system will be evaluated, or the more usability problems will be found. According to [3], the best number of evaluators range from three to five. Trying to figure out the best number of evaluator is simply a cost-benefit analysis of the value added by recruiting one more evaluator. At the beginning, there will be a substantial difference between the proportion of usability problems found by one evaluator and the proportion found by two or three evaluators. But when the number of usability problems found starts to saturate, adding more evaluators will increase the cost tremendously compared to the added benefit as illustrated in Figure 10. Therefore, the rule of thumb is to use on average five evaluators but never less than three.
[image: image12.png]o o o o o o
© 1B ¥ & & =

150D 03 SjyBURE JO O1RY

15

10

Number of Evaluators

Figure 10 - Usability Problems Found vs. Number of Evaluators, copied from Nielsen [3]
Evaluators need not be usability experts, especially in strictly limited budget projects, where justifying the usability cost is a challenge. Usability experts; however, tend to be more effective and are more likely to find more problems. An experiment conducted by [7] showed that about 41% of the usability specialists in the experiment were able to find all usability problems in a system, while only 22% of novices could do the same task. If evaluating a domain specific application, the evaluators better have some experience in the domain if possible. If not, assistance should be provided to answer domain specific questions related to the system under inspection. In the same experiment by [7], 60% of people who had experience in both usability and the domain could find all the usability problems in the system.
Beside the evaluators, a session manager is needed to coordinate between evaluators and aggregate the results. Moreover, observers may also be needed to assist evaluators during the evaluation session as will be detailed later.
4. Do the evaluation
Each evaluator is given the same list of heuristics against which he will be measuring the usability of the system. Also, if required, evaluators should get the set of pre-prepared scenarios they have to go through. Evaluators should perform the evaluation individually. That is, no communication between the evaluators is allowed before the evaluation session is formally closed. This is mainly to ensure the independence of judgments and to avoid any group pressure effects.
During the evaluation session, the evaluator navigates through the system (following the given scenarios if any) several times, preferably twice [3]. The first round would be to get familiar with the system and flow of processes, and the second round to do the actual assessment. The evaluator inspects the different screens, dialogues, forms, messages and menus in the system and compares them against the list of heuristics in hands. It does not suffice for evaluators to say that a specific rule of thumb is violated. Evaluators should give enough and very specific explanation on why they think something does not respect the usability principles. Moreover, evaluators should also be able to make any comments that are beyond these heuristics whenever necessary.
As the evaluator goes through the different interfaces and dialogues, he can either report his comments verbally to an observer or by writing. Although written reports can be useful in providing a formal record of the evaluation session, they can be time consuming, especially when it comes to aggregating all reports to come up with conclusions. If the evaluator gets stuck at any point because of an unstable prototype, or if the evaluator needs clarifications on certain aspects, especially domain specific aspects, the observer should provide any required assistance. It is important to note here that assistance should be provided with caution so that it does not interfere with the evaluators’ judgments.
The evaluation session should take no longer than one or two hours. If the system is complicated or the number of interfaces is large, it is advisable to split up the system and conduct smaller evaluation sessions.

5. Compile the results
By the end of the session, each evaluator should have his conclusions about the usability problems in the system reported with respect to the agreed-on heuristics. It is the responsibility of the session manager or facilitator to aggregate different reports and come up with a set of conclusions about the usability issues in the system.
6. Conduct severity rating
Having the evaluation session finished and all the assessment results synthesized, [3] suggests that a further step would be to relatively rate the severity of each usability problem in order to suggest a prioritized list of what to fix. This is usually done after all evaluators get an idea about all existing usability problems, both the ones they discovered and the ones other evaluators did. That is, each evaluator is given the chance to rate every single problem whether or not he was the one who found it. Otherwise, the evaluator may rate his own list of usability problems without considering the bigger context of other existing problems which may significantly bias the ratings.

Evaluators rate every usability problem from 0 to 4 according to the scale shown in Figure 11. Three factors determine the severity of a usability problem, namely: frequency of occurrence, impact on user and persistence (one-time versus repeating).
	0: Not a
problem at all
	1: Cosmetic problem
	2: Minor problem
	3: Major Problem
	4: Catastrophic problem

	
	
	
	
	

Figure 11 - Severity Rating Scale
7. Develop an action plan
At this stage, evaluators may meet with the facilitator and preferably the design team to discuss their opinions about the usability of the system and possible improvements. Heuristic evaluation is only an inspection method and, thus, is not expected to suggest solutions for existing usability problems. However, considering that evaluation is done against well defined usability principles or so called rules of thumb, then violations of these principles can be generally fixed by redesigning the interface in a way that respects the previously violated guidelines. For example, if an evaluator visits a system that violates the error prevention principle like the one in Figure 5 A, then a typical reaction would be replacing this dialogue box by the one in Figure 5 B. Severity rating plays an important role in any action plan, according to [3], releasing the software better be delayed if the usability problem is rated as a serious problem that needs immediate fixing. Other minor or cosmetic usability problems may be considered in further releases if the time-to-market is of high priority to the vendor.
Advantages
The main advantage of heuristic evaluation is that it is a discount usability engineering method [8]. That is, according to [3], heuristic evaluation is easy to teach. It takes only a half-day seminar to explain the few guidelines that will reveal many usability problems. It is also fast to conduct. As was previously mentioned, a heuristic evaluation session does not take more than two hours or effectively one working day in most cases. Of high importance, it is relatively cheap since no usability experts are necessarily required - Choosing evaluators is a very flexible process in this method. Furthermore, [3] emphasizes that “the intimidation barrier is very low leading to immediate gratification.” Also, the fact that heuristic evaluation does not necessarily require a working system makes it suitable for getting feedback early in the design process where prototypes can be used.

Due to these advantageous characteristics, a very high benefit to cost ratio can be achieved when applying this usability inspection method. One of the studies conducted by [9] showed a benefit to cost ratio of 48.

Disadvantages
Although heuristic evaluation has many pros, usability experts point out some cons that address some defects in the method. It is worthwhile to mention that originally the usability heuristics list consisted of about a thousand entries [10]; but Nielsen decided to come up with an optimized list of these principles in order to make it a discount usability methodology. This huge reduction made the new set of principles very broad and general [4]. This generality has a strong potential to create confusion among the different kinds of usability issues or mislead developers when trying to find specific solutions. Also, some research suggests that results not obtained from end users may result in inferring changes that are not required [11]. Others, like [12], states that heuristic evaluation finds a “distressing” number of minor problems, some of which are only a matter of “taste,” the thing that makes pointing out these problems a “false alarm.”
Conclusion

Heuristic evaluation is an informal basic usability engineering method where a small number of evaluators, preferably three to five, participate in an evaluation session that lasts no longer than two hours. During this session, evaluators independently make judgments on to what extent the interface complies with a small set of broad and general usability principles in the domain. Results from all evaluators are reported in aggregate and then given back to the evaluators to give severity ratings for the problems identified. The final output of the evaluation session is a set of prioritized usability problems in the system under inspection. Optionally, by the end of the evaluation session, the evaluators can meet with the design team to discuss the usability issues and possible solutions. If a distributed tool is used, evaluators need not be co-located when the session is conducted.
Heuristic evaluation proved to be an effective discount usability method, mainly because it is relatively easy to learn, fast to conduct, cheap and flexible. Although it can be an advantage, evaluators need not be usability experts or domain experts - Potential end users may be recruited instead.
Heuristic evaluation can be applied very early in the design phase using prototypes, or during the implementation phase using a working system. It is particularly useful in iterative development models where a working system is very likely to be available at any point in the project cycle.
Generally, heuristic evaluation may not be the best option for conducting in-depth usability testing, especially with complex interfaces that require a comprehensive consideration of human factors or psychological patterns to uncover the usability issues. It also may not be suitable to test the usability of critical systems or to conduct a detailed analysis of users’ expectations.
Heuristic evaluation is not expected to replace other usability engineering methods, but can be an excellent option as a discount usability method in time-constrained budget-limited projects.
Example: Heuristic evaluation of a paper mock-up
Note: This example along with the solution provided is obtained from [13]. This example was slightly modified to fit the context of this paper.
Description
[image: image13.png]ther. pdf - Adobe Reader

nielson93-usabilityengappendix-tra

Ele Edt Vew Document Toos Window Help

= k| & [)iz 1 ® @[] Kollie -

& page 1

] Images | Frou. N(Ql}l O‘ - will mak N
ab. £Engtlece ake the dialog box go aw;
B image 1 —Q—L——E—Qﬁ-: CQ specification 1o the oo B2 WY and will resetthe date ang time

' previous value,

£ Image 2 S The user i,
S Titles m’gmﬁcaﬁgn‘s“]"d‘;k map display by editing the boxes 1

E] 162169083 R nly e g, T OFthe map. The y 200

B ' can P
TRAVELweather B S L e e

£ at box. If the user presses a non-n,
!3?51qu: 82/89/93, 9AM| ot than o vaia he s types ha;i‘u..(ﬂg in the map conter o
low oord; @n integer

bythaktmNmeoﬂawgd g,y.,,‘“s from 0 10 99

fll
o @Temperature o it e ppeter W or E), the syt il s, om0 10 179
; ten analertd;

boxis an Oprecipitation g ' B¢ “Unknown Map Cooras

 Clickin €rTor message box § we ror
B3 Ouisibility K Galog e “OK
2w it precs away
K O Wind "

ovide RF Oc
weather Zoom Specifications
i 6] Map Center: (41N 7200

orah ==

pothetical Figure 24 Screen design for a hypothetical system to provide weather
system 0 information and forecasts to travellrs.

024 Screen
esl
mforma 10n Figure 24 shows a design for a system to provide weather informa-
an tion to travelers. TRAVELweather (a non-existing system) can
v provide information about the weather at 3AM, 9AM, 3PM, and
| arietelp 9PM for the current day as well as the two next days, using
[de reported readings for past weather and forecasts to predict future
8] Figure 24 weather. The interface is designed for use on a graphical personal
hows ‘computer with a mouse, and will appear in a separate window on
desigo or a the screen.

S0 i ‘The user operates the interface by typing the desired time into the

! 9 box in the upper right part of the screen. If the user types a date

5] rovide other than today or the next two days, or if the user types a time
information other than the four times for which information is available, the
about the system will show an alert dialog box with the following error

b message: "Weather Data Not Available.” Theonly button in
the error message box is an “OK” button. Clicking the OK button

Exercise 8: Heuristic Evaluation of a Paper Mock-Up

th
dforecasts
toplc

ted

readin

Figure 12 - Screen design for a hypothetical system

to provide weather information and forecasts to travelers, copied from Nielsen [13]
Figure 12 shows a mock-up user interface design for a system (TravelWeather) that provides weather information to travelers. TravelWeather can provide information about the weather at 3 AM, 9 AM, 3 PM and 9 PM for the current day as well as the two following days, using reported readings for past weather and forecasts to predict future weather. The interface is designed for use on a graphical personal computer with a mouse, and will appear in a separate window on the screen.

The user operates the interface by typing the desired time into the box in the upper right part of the screen. If the user types a date other than the current day or the following two days, or if the user types a time other than the four times for which information is available, the system will show the following alert dialog box:

[image: image14]
Clicking the “OK” button will make the dialog box go away and will reset the date and time specification to the previous value.

The user changes the map display by editing the boxes for zoom magnification and for the center of the map. The system ensures that only integer numbers can be typed in the map magnification box by simply beeping every time the user presses a non-number key in that box. If the user types anything in the map center box other than a valid set of coordinates (an integer from 0 to 90 followed by the letter N or S, followed by a space, followed by an integer from 0 to 179 followed by the letter W or E), the system will show the following alert dialog box:

[image: image15]
Clicking the “OK” button will make the dialog box go away and will reset the coordinates to their previous value. With respect to all three input boxes, the user’s changes take effect as soon as the user clicks the mouse outside a box after having edited it.

Perform a heuristic evaluation of this interface against the list of usability heuristics provided to you by the session facilitator. Remember to evaluate the entire interface, including both the figure and the text describing what happens as a result of various user actions. The result of heuristic evaluation should be a list of the usability problems in the interface with reference to the usability principle violated by that aspect of the interface. It is not sufficient just to say that you do not like it with reference to the usability principles provided. Try to be as specific as possible and list each usability problem separately. For example, if there are three things wrong with a certain dialogue element, list all three with reference to the various usability principles that explain why that particular interface element is a usability problem. There are two main reasons to note each problem separately: First, there is a risk of repeating some problematic aspect of the dialogue element, even if it were to be completely replaced with a new design, unless one is aware of all its problems. Second, it may not be possible to fix all usability problems in an interface element or to replace it with a new design, but it could still be possible to fix some of the problems.
Also, try to give each problem a severity rating following the guidelines provided by the session facilitator. Remember that this step is typically done after the aggregation of all the reports, but this is just an exercise, so go ahead and do it as soon as you think you have found all the usability problems in the interface.
Each problem should be noted down on a separate index card following this format:

	Problem: The name of the system is displayed much too prominently. By making the name smaller, room could be provided for alternative dialogue elements, or the screen could be made less busy.
Principle violated: Match between system and the real world.
Severity: 1

Usability Heuristics
1. Visibility of system status: The system should always keep users informed about what is going on, through appropriate feedback within reasonable time.

2. Match between system and the real world: The system should speak the users' language, with words, phrases and concepts familiar to the user, rather than system-oriented terms. Follow real-world conventions, making information appear in a natural and logical order.

3. User control and freedom: Users often choose system functions by mistake and will need a clearly marked "emergency exit" to leave the unwanted state without having to go through an extended dialogue. Support undo and redo.

4. Consistency and standards: Users should not have to wonder whether different words, situations, or actions mean the same thing. Follow platform conventions.

5. Error prevention: Even better than good error messages is a careful design which prevents a problem from occurring in the first place. Either eliminate error-prone conditions or check for them and present users with a confirmation option before they commit to the action.

6. Recognition rather than recall: Minimize the user's memory load by making objects, actions, and options visible. The user should not have to remember information from one part of the dialogue to another. Instructions for use of the system should be visible or easily retrievable whenever appropriate.

7. Flexibility and efficiency of use: Accelerators -- unseen by the novice user -- may often speed up the interaction for the expert user such that the system can cater to both inexperienced and experienced users. Allow users to tailor frequent actions.

8. Aesthetic and minimalist design: Dialogues should not contain information which is irrelevant or rarely needed. Every extra unit of information in a dialogue competes with the relevant units of information and diminishes their relative visibility.

9. Help users recognize, diagnose, and recover from errors: Error messages should be expressed in plain language (no codes), precisely indicate the problem, and constructively suggest a solution.

10. Help and documentation: Even though it is better if the system can be used without documentation, it may be necessary to provide help and documentation. Any such information should be easy to search, focused on the user's task, list concrete steps to be carried out, and not be too large.

Severity Ratings

· 0 = this is not a usability problem at all.

· 1 = cosmetic problem only - should be fixed only if extra time is available.
· 2 = minor usability problem - fixing this should be given low priority.

· 3 = major usability problem - important to fix, so should be given high priority.
· 4 = usability catastrophe - imperative to fix this before product can be released.

Solution
The following is a subset of the list of the 31 usability problems found in the TravelWeather interface when it was subjected to heuristic evaluation by four usability specialists. Every problem is associated with a possible solution, the principle violated and a subjective severity rating.
1. Problem: The name of the system is displayed much too prominently. By making the name smaller, room could be provided for alternative dialogue elements, or the screen could be made less busy.
Principle violated: Match between system and the real world.
Severity: 1
2. Problem: Even though weather does not respect political boundaries, it is hard to read a map without the display of state and country borders. The map shows the northeastern United States from New England over New York and New Jersey to Delaware (as well as a part of Canada). It would be even harder to read the map if the ocean and lakes had not been set off in a different pattern.
Principle violated: Match between system and the real world.
Severity: 3
3. Problem: The pattern used to denote oceans and lakes does not make it sufficiently clear what parts of the map are land and what are water. Instead of the current pattern, use a wavy pattern or blue on a color screen.
Principle violated: Consistency and standards - map standards.
Severity: 2
4. Problem: Since Long Island is an island, it should be drawn as such and not as a peninsula (the long arm jutting out to the right at the 28° temperature), even if the resolution of the vector graphics map database makes it difficult to do so. Exaggeration may be needed in this case to match the way the users think about geography.
Principle violated: Match between system and the real world.
Severity: 2
5. Problem: The user has no way of knowing that the box with a date and time can be edited since there is no label, prompt, or help text.
Principle violated: Consistency and standards - UI labeling standards, Help and documentation.
Severity: 4
6. Problem: The day/month/year date format may be misinterpreted by foreign tourists. One way of avoiding this problem is to represent months by their name instead of their number.
Principle violated: Error prevention.
Severity: 2
7. Problem: The error message “Weather data not available” is not precise. Instead, the system should repeat the date and time as entered by the user and explain why they were not acceptable to the system. Different error messages should be used for dates and times that are not formatted correctly, dates and times that are before or after the time interval for which weather information is available, and times that are not one of the four hours for which information is available.
Principle violated: Help users recognize, diagnose, and recover from errors.
Severity: 4
8. Problem: The error message “Weather data not available” is not constructive. The error message ought to inform the users about how to correct their input to make it acceptable to the system. For example, if the user’s error was to specify 10 AM as the time, the system could say that “Weather information is only available for 3 AM, 9 AM, 3 PM and 9 PM.”
Principle violated: Help users recognize, diagnose, and recover from errors.
Severity: 3
9. Problem: Displays of temperatures in Fahrenheit and Celsius are mutually exclusive, with exactly one of the two being active at any one time. Therefore, the choice if temperature scale should be made with radio buttons and not with checkboxes which are used for options that are not mutually exclusive.
Principle violated: Consistency and standards - UI standards.
Severity: 4
10. Problem: The system should be more forgiving in its acceptance of latitudes. For example, 190E should be interpreted as 170W.
Principle violated: Error prevention.
Severity: 1
11. Problem: It is not apparent from the screen how one quits the TravelWeather system. For example, add a close box or a quit button.
Principle violated: User control and freedom.
Severity: 4
12. Problem: If the same users can be expected to repeatedly use the system, they will probably also repeatedly ask for weather for the same areas. Support for this user need can be provided by having the system remember the last seven or so locations typed in the map center box and provide direct access to them through a pop-up menu. The next time the system was started, the map could also come up with the zoom specifications (magnification and center) set to the values from the last time the same user used the system.
Principle violated: Flexibility and efficiency of use.
Severity: 2
References
[1] Nielsen, J., and Molich, R. (1990). Heuristic evaluation of user interfaces, Proc. ACM CHI'90 Conf. (Seattle, WA, 1-5 April), 249-256.

[2] Nielsen, J., Heuristic evaluation, http://www.useit.com/papers/heuristic/heuristic_evaluation.html, accessed September 30, 2007.
[3] Nielsen, J., and Mack, R.L. (Eds.), Usability Inspection Methods, p25-62. John Wiley & Sons, New York, NY (1994).

[4] Greenberg, S., Overview of Heuristic Evaluation, http://pages.cpsc.ucalgary.ca/~saul/wiki/uploads/CPSC681/Heuristic.ppt, accessed October 10, 2007.
[5] Rettig, M. (1991). Nobody reads documentation, Communications of the ACM, 34 (7), 19-24.
[6] Kantner, L., Rosenbaum, S. (1997). Usability studies for WWW sites: Heuristic evaluation vs. Laboratory testing, Proc. ACM SIGDOC 97 Conf. (Utah, USA), 153-161.
[7] Nielsen, J. (1992). Finding usability problems through heuristic evaluation. Proc. ACM CHI'92 Conference (Monterey, CA, May 3-7), 373-380.

[8] Nielsen, J. (1989). Usability engineering at a discount. In G. Salvendy & M.J. Smith (Eds.), Designing and using human-computer interfaces and knowledge based systems (pp 394-401). Amsterdam, the Netherlands: Elsevier Science Publishers, B.V.
[9] Nielsen, J. (1993b). Iterative user-interface design, IEEE Computer 1993, 26 (11), 32–41.
[10] Smith, S., Mosier, J. (1986) Guidelines for designing user interface software, htp://www.hcibib.org/sam/contents.html, accessed October 14, 2007.

[11] Heuristic Evaluation, Usability.gov, http://www.usability.gov/methods/heuristiceval.html , accessed October 1, 2007.
[12] Jeffries, R., Desurvire, H. (1992). Usability testing vs. Heuristic evaluation: Was there a contest? SIGCHI Bulletin, 24 (4), p39.

[13] Nielsen, J. (1993). Usability Engineering, 273-274. Academic Press.
Annotated bibliography of key resources

Nielsen, J. (1993). Usability Engineering. P115-163. Academic Press.

In the fifth chapter of this book, Nielsen discusses in great detail heuristic evaluation as a usability engineering method. Every heuristic (aka usability principle) is thoroughly investigated along with relevant examples and illustrations. Then, an overview of the whole procedure on how to actually conduct the evaluation is presented including instructions on how to choose evaluators. However, the procedure presented in this chapter is not fully detailed as the one presented in the next reference below.
Nielsen, J., and Mack, R.L. (Eds.), Usability Inspection Methods, P25-62. John Wiley & Sons, New York, NY (1994).

In the second chapter of this book, Nielsen introduces the revised set of usability heuristics but doesn’t elaborate on each as he does in his “Usability Engineering” book. But rather, he elaborates more on the procedure itself. By giving a lengthy and detailed case study of an evaluation of a highly domain-dependent system, Nielsen does a great job in guiding the reader through the whole process in sufficient detail. This includes how to know the best number of evaluators, how to prepare and run the actual evaluation session, how to conduct a debriefing session as well as other aspects of heuristic evaluation. Severity rating and its reliability is also discussed in a separate section. If the reader is interested in knowing more about the characteristics of the usability problems found by heuristic evaluation, a whole section is dedicated for that.
Nielsen, J. (1992). Finding usability problems through heuristic evaluation. Proc. ACM CHI'92 Conference (Monterey, CA, May 3-7), 373-380.

The paper mainly studies the effect of the level of expertise of the evaluators in a heuristic evaluation as well as the characteristics of the usability problems found by this kind of usability testing. Conclusions are drawn through a case study of an evaluation of a telephone operated interface where evaluators were categorized as: novices, regular usability specialists and double specialists (having experience in both usability engineering and the domain of the system). Moreover, the paper introduces a classification of the problems found as major or minor depending on an analysis of their characteristics.

Nielsen, J., and Molich, R. (1990). Heuristic evaluation of user interfaces, Proc. ACM CHI'90 Conf. (Seattle, WA, 1-5 April), 249-256.

This is an early paper on heuristic evaluation presenting the nine usability principles developed earlier by the authors. The paper introduces an empirical test of heuristic evaluation involving four different experiments.

Nielsen, J., Heuristic evaluation, http://www.useit.com/papers/heuristic/heuristic_evaluation.html, accessed September 30, 2007.

Major papers and books on heuristic evaluation, especially those by Nielsen, are summarized in a very clear and concise description on this website. This is an easy- and quick-to-read manual on what heuristic evaluation is all about and how to conduct it.
 91%

Uploading audio file

Please Wait…

A						B

Confirm

Cancel

Please confirm the transaction.

Name: David Brown

Visa Card: 4047 1121 2545 1100

Amount: $5,000/month

Payee: HCI Calgary Community

Please confirm the transaction.

Name: David Brown

Visa Card: 4047 1121 2545 1100

Amount: $5,000/month

Payee: HCI Calgary Community

Confirm

Cancel

Modify

A 					B

A						B

Keep

Delete

Do you want to keep or delete this document?

Delete

Keep

Do you want to keep or delete this document?

Debug

YES

NO

Do you want to clean your disk now?

This process will erase all contents on the disk. Are you sure?

YES

NO

Do you want to clean your disk now?

Formatting C:\

63%

YES

NO

Stop

Please be patient. Processing your request…

Error: Cannot create a story card before creating a backlog. Do you want to?

Next

Cancel

Username: Crown

Your new account number:

311554541212-154

Click Next to proceed.

Next

Please choose a password. The last three characters in your password should match with the last three digits of your account number.

154

Next

Please choose a password. The last three characters in your password should match with the last three digits of your account number.

Cancel

Stop

Please be patient. Trying to establish a connection with the Apache server via port 8080…

Fatal Error: 0F2341-Z1

Null Pointer Exception at line 110. Do you want to?

Cancel

Create a backlog

OK

Unknown Map Coordinates.

OK

Weather Data Not Available.

PAGE
21

