

- What is experimental design?
- What is an experimental hypothesis?
- How do I plan an experiment?
- Why are statistics used?
- What are the important statistical methods?

Quantitative evaluation of systems

Quantitative:

- precise measurement, numerical values
- bounds on how correct our statements are

Methods

- user performance data collection
- controlled experiments

Evaluation-Controlled Experiments

1

Collecting user performance data

Data collected on system use (often lots of data)

Exploratory:

- hope something interesting shows up
- but difficult to analyze

Targeted

- look for specific information, but may miss something
 - frequency of request for on-line assistance
 what did people ask for help with?
 - frequency of use of different parts of the system why are parts of system unused?
- number of errors and where they occurred
 why does an error occur repeatedly?
- time it takes to complete some operation - what tasks take longer than expected?

Controlled experiments Traditional scientific method Reductionist - clear convincing result on specific issues In HCI: - insights into cognitive process, human performance limitations, ... - allows system comparison, fine-tuning of details ...

Evaluation-Controlled Experiments

Controlled experiments

Strives for

lucid and testable hypothesis quantitative measurement measure of confidence in results obtained (statistics) replicability of experiment control of variables and conditions removal of experimenter bias

A) Lucid and testable hypothesis

State a lucid, testable hypothesis – this is a precise problem statement

Example 1:

There is no difference in the number of cavities in children and teenagers using crest and no-teeth toothpaste when brushing daily over a one month period

Evaluation-Controlled Experiments

3

A) Lucid and testable hypothesis

Example 2:

There is no difference in user performance (time and error rate) when selecting a single item from a pop-up or a pull down menu of 4 items, regardless of the subject's previous expertise in using a mouse or using the different menu types"

in toothpaste experiment

- toothpaste type: uses Crest or No-teeth toothpaste
- age: <= 11 years or > 11 years

in menu experiment

- menu type: pop-up or pull-down
- menu length: 3, 6, 9, 12, 15
- subject type (expert or novice)

Dependant variables

- c) Hypothesis includes the **dependent variables** that will be measured
 - variables dependent on the subject's behaviour / reaction to the independent variable
 - the specific things you set out to quantitatively measure / observe

Evaluation-Controlled Experiments

5

Dependant variables

in menu experiment

- time to select an item
- selection errors made
- time to learn to use it to proficiency

in toothpaste experiment

- number of cavities
- frequency of brushing
- preference

Subject Selection

d) Judiciously select and assign subjects to groups

ways of controlling subject variability

- reasonable amount of subjects
- random assignment
- make different user groups an independent variable
- screen for anomalies in subject group
- -superstars versus poor performers

Controlling bias

e) Control for bias

unbiased instructions
 unbiased experimental protocols

 prepare scripts ahead of time

 unbiased subject selection

I designed them myselfl

Now you get to do the

pop-up menus. I think you will really like them...

Evaluation-Controlled Experiments

7

Interpretation

g) Interpret your results

- what you believe the results really mean
- their implications to your research
- their implications to practitioners
- how generalizable they are
- limitations and critique

Statistical analysis

Calculations that tell us

- mathematical attributes about our data sets
 mean, amount of variance, ...
- how data sets relate to each other
 whether we are "sampling" from the same or different distributions
- the probability that our claims are correct
 "statistical significance"

Statistical vs practical significance

When n is large, even a trivial difference may show up as a statistically significant result

- eg menu choice: mean selection time of menu a is 3.00 seconds; menu b is 3.05 seconds

Statistical significance **does not imply** that the difference is important!

- a matter of interpretation
- statistical significance often abused and used to misinform

Evaluation-Controlled Experiments

Example: Differences between means

Given:

Condition one: 3, 4, 4, 4, 5, 5, 5, 6 Condition two: 4, 4, 5, 5, 6, 6, 7, 7

- two data sets measuring a condition
 height difference of males and females
 - time to select an item from different menu styles ...

Question:

 is the difference between the means of this data statistically significant?

Null hypothesis:

- there is no difference between the two means
- statistical analysis:
 - can only reject the hypothesis at a certain level of confidence

Evaluation-Controlled Experiments

Problem with visual inspection of data

Will almost always see variation in collected data

- Differences between data sets may be due to:

normal variation

eg two sets of ten tosses with different but fair dice
 » differences between data and means are accountable by expected variation

real differences between data

 eg two sets of ten tosses for with loaded dice and fair dice
 » differences between data and means are not accountable by expected variation

Evaluation-Controlled Experiments

11

Different types of T-tests

Comparing two sets of independent observations

- usually different subjects in each group

number per group may differ as well

Condition 1 Condition 2 S1-S20 S21-43

Paired observations

- usually a single group studied under both experimental conditions
- data points of one subject are treated as a pair

Condition 1 Condition 2 S1-S20 S1-S20

Different types of T-tests

Non-directional vs directional alternatives

non-directional (two-tailed)
 no expectation that the direction of difference matters

directional (one-tailed)

Only interested if the mean of a given condition is greater than the other

Evaluation-Controlled	Experiments
-----------------------	-------------

df	.05	.01	df	.05	.01
1	12.706	63.657	16	2.120	2.921
2	4.303	9.925	18	2.101	2.878
3	3.182	5.841	20	2.086	2.845
4	2.776	4.604	22	2.074	2.819
5	2.571	4.032	24	2.064	2.797
6	2.447	3.707			
7	2.365	3.499			
8	2.306	3.355			
9	2.262	3.250			
10	2.228	3.169			
11	2.201	3.106			
12	2.179	3.055			
13	2.160	3.012			
14	2.145	2.977			
15	2 131	2 947			

Example C x ₁ = 3 4 4 4 5 5 5 x ₂ = 4 4 5 5 6 6 7	6 Hypothesis: there is no significant difference 7 between the means at the .05 level
Step 1. Calculating s ²	$V = 2$ $V = 8$ $Ex = 36 - 44$ $x = 4.5 = 5.5$ $E(x^{3}) = 168 = 257$ $(E \times)^{2} = 12.46 = 1.4366$ $df = 1.44$ $S^{2} = \frac{E \times x^{2} - (E \times)^{2} / N}{N + N \times -2}$ $= 1.68 - 1.246 + 2.65 - 1.436 / 8$ $= 1.142.9$

Г

ten 2. Leeking un eritient volue of f	u/	.05	.01
Step 3: Looking up critical value of t	1	12.706	63.65
 critical value = 2.145 			
 because t=1.871 < 2.145, there is no significant difference therefore, we cannot reject the null hypothesis i.e., there is no difference between the means 	14	2.145	2.97
	15	2.131	2.94

use a statistics p Condition one: 3 Condition two: 4	ackage (e.g., E) 3, 4, 4, 4, 5, 5, 5, 1, 4, 5, 5, 6, 6, 7,	cel has simple s 6 7	stats)	
	Unpair	ed t-test		
	DF:	Unpaired t	Value: Prob. (2	<u>2-tail</u>):
	14	-1.871	.0824	
Group:	Count:	Mean:	Std. Dev.:	Std. Error:
one	8	4.5	.926	.327
two	8	5.5	1.195	.423

Sig	nificance levels and errors	
Тур	e 1 error reject the null hypothesis when it is, in fact, true	
Тур	e 2 error accept the null hypothesis when it is, in fact, false	
Effe – † – I	cts of levels of significance high confidence level (eg p<.0001) • greater chance of Type 2 errors ow confidence level (eg p>.1) • greater chance of Type 1 errors	
You thes	can 'bias' your choice depending on consequence of e errors	

Evaluation-Controlled Experiments

17

Which is Worse?

Type I errors are considered worse because the null hypothesis is meant to reflect the incumbent theory.

BUT

you must use your judgement to assess actual risk of being wrong in the context of your study.

Evaluation-Controlled Experiments

Scales of Measurements

Four major scales of measurements

- Nominal
- Ordinal
- Interval
- Ratio

Nominal Scale

Sources of error

 agreement in labeling, vague labels, vague differences in objects

Testing for error

- agreement between different judges for same object

Classification into named or numbered ordered categories

- no information on magnitude of differences between categories
- e.g. preference, social status, gold/silver/bronze medals

Allowable manipulations

Ordinal Scale

- as with interval scale, plus
- merge adjacent classes
- transitive: if A > B > C, then A > C

Statistics

- median (central value)
- percentiles, e.g., 30% were less than B

Sources of error – as in nominal

Evaluation-Controlled Experiments

Interval Scale

Classification into **ordered** categories with equal differences between categories

- zero only by convention
- e.g. temperature (C or F), time of day

Allowable manipulations

- add, subtract
- cannot multiply as this needs an absolute zero

Statistics

- mean, standard deviation, range, variance

Sources of error

- instrument calibration, reproducibility and readability
- human error, skill...

Ratio Scale

Interval scale with absolute, non-arbitrary zero – e.g. temperature (K), length, weight, time periods

Allowable manipulations

- multiply, divide

Evaluation-Controlled Experiments

Example: Apples

Nominal:

apple variety
Macintosh, Delicious, Gala...

Ordinal:

apple quality

- US. Extra Fancy
- U.S. Fancy,
- U.S. Combination Extra Fancy / Fancy
- U.S. No. 1
- U.S. Early
- U.S. Utility
- U.S. Hail

Evaluation-Controlled Experiments

Correlation

Measures the extent to which two concepts are related

 eg years of university training vs computer ownership per capita

How?

- obtain the two sets of measurements
- calculate correlation coefficient
 - +1: positively correlated
 - 0: no correlation (no relation)
 - -1: negatively correlated

Evaluation-Controlled Experiments

Correlation

Dangers

- attributing causality
 - a correlation does not imply cause and effect
 - cause may be due to a third "hidden" variable related to both other variables
- drawing strong conclusion from small numbers
 - unreliable with small groups
 - be wary of accepting anything more than the direction of correlation unless you have at least 40 subjects

Evaluation-Controlled Experiments

25

27

You know now

Controlled experiments can provide clear convincing result on specific issues

Creating testable hypotheses are critical to good experimental design

Experimental design requires a great deal of planning

You know now

Statistics inform us about

- mathematical attributes about our data sets
- how data sets relate to each other
- the probability that our claims are correct

There are many statistical methods that can be applied to different experimental designs

- T-tests
- Correlation and regression
- Single factor Anova
- Anova

Evaluation-Controlled Experiments