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architectural styles, distribution architectures, Interlace

1. INTRODUCTION

The emergence of high-bandwidth networks and inexpensive home computers has

lead to the widespread use of computers for communications and collaborative

tasks. This has required the study of how to engineer interactive software that

supports multiple users. Such software is often called groupware [Baecker 1993], or

synchronous groupware in the special case of software supporting real time collab-

oration.

There are many kinds of interactive multiuser applications, each with di�erent

development and ergonomic requirements. Some support pure communications

tasks, for example, Internet telephones [Kolon and Goralski 1999] and chat pro-

grams [Viegas and Donath 1999] allow people to converse using voice or text, while

media spaces [Coutaz et al. 1998] contribute to mutual awareness in work groups

by allowing people to see views of others' o�ces.

Other applications support the collaborative production of work artifacts, such

as school assignments [Mitchell et al. 1995], bank loan applications [Kobayashi et al.

1998], software designs [Grundy 1998] or geophysical simulations [Duce et al. 1998].

These applications combine support for real-time discussion and manipulation of

shared artifacts.

Ideally, groupware applications should allow people to collaborate at least as

e�ectively as if they were in the same room. Addressing this ergonomic challenge,

experimental approaches have examined how collaboration can be aided through

communication of gaze awareness [Vertegaal 1999] and facial expressions [Scheirer

et al. 1999].

The development of groupware represents an interesting challenge to the soft-

ware engineering community, due to the ergonimic challenges of replacing face-to-

face communication combined with the engineering challenges of building robust,

responsive distributed applications. Since communication and collaboration are so

fundamental to human activity, we believe that the need to meet these challenges

will have a signi�cant e�ect on how software is developed. Developing synchronous

groupware involves most of the challenges of traditional applications, as well as new

challenges, These challenges fall into the areas of:

Distributed programming: Groupware applications are implemented as distributed

systems, involving traditional problems of network programming, code and data

distribution, consistency maintenance of replicated data, security, and fault tol-

erance.

Real-time performance: In order to e�ectively support real-time communica-

tion, groupware applications need to meet a set of performance bounds. These

include feedback time (the time it takes the application to respond to a user's

own input), feedthrough time (the time it takes the application to reveal other

users' actions), and jitter (the variance of feedback and feedthrough times.)

Acceptable values for these performance criteria are application-dependent. As

an example, Shneiderman suggests that in highly interactive applications, feed-
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back time should lie in the range of 50-150 ms [Shneiderman 1998].

User interface design: The success of a groupware application depends on the

quality of its user interface. Applications must permit users to smoothly blend

production and communication tasks, while avoiding con
icts in their activities.

The user interface must reveal to an application user not only the state of his or

her own interaction, but also the interactions of other users. The user interface

must seamlessly blend communication modalities such as speech, video, facial

expression or gaze.

The body of knowledge of how to build such applications is increasing, particu-

larly as the importance of communication in user interfaces increases. In this paper,

we survey one aspect of software engineering knowledge for synchronous groupware

systems|the software architecture. As we shall see, the presence of a catalogue of

architectural approaches aids developers in creating groupware applications. Our

systematic survey of these architecture styles helps to clarify the state of the art

of development methods for groupware, showing areas where considerable further

work is required.

1.1 Architecture

Software architecture contributes throughout the development lifecycle of software

systems [Bass et al. 1998; Shaw and Garlan 1996]. Architectures for synchronous

groupware particularly help in the challenges of programming distributed systems

with exigent performance and usability requirements. Software architectures help

to:

Document classes of design: Deciding how to structure software requires cre-

ativity, experience and experimentation. Once a way of structuring software

has been found to work well in one project, it is useful to record this structuring

approach so that it can be used in similar projects. Such structuring decisions

can be recorded as an architectural style that can be applied in new situations.

Ultimately, software designers should have a catalogue of architectural styles

available to them. This catalogue should clearly present the tradeo�s of archi-

tectural decisions, allowing designers to choose the architecture most suitable

to their application. Applications may be based on a single architecture style,

or on a combination of styles. Architecture styles can record mechanisms for

e�ciently sharing data, for aiding evolution of the architecture and for mak-

ing the system more tolerant of faults in the underlying distributed system

infrastructure.

Record design: Architecture diagrams record the high-level design of an appli-

cation. Maintenance programmers can make use of this information in under-

standing a system as it evolves. In novel application domains such as groupware

where experimental implementation techniques are being used, maintenance

programmers may not be able to easily recover the underlying design from the

code. It is therefore bene�cial to clearly describe the design.

Factor implementation: Software architectures factor systems into components

with well-de�ned interfaces. This simpli�es the implementation and mainte-

nance of systems by breaking the system into work packages suitable for team
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development, and reducing the complexity of each work package. If the under-

lying design of the system has been chosen from a catalogue of architectural

styles, the factoring properties are well understood before implementation be-

gins, reducing uncertainty in the development process.

Allow early analysis: By exposing system structure early, software architectures

can expose system properties before their implementation. In the case of group-

ware, such properties might deal with, for example, system performance, fault

tolerance, cost of construction and amenability to evolution.

Support tools: If a system designer is willing to adhere to a speci�c architec-

ture style, tools may help in the implementation of the architecture, perhaps

abstracting low-level details of the implementation of the architecture style.

Tools for the implementation of groupware typically help by abstracting some

aspects of the implementation of view consistency, model consistency, code and

data replication and network communication. In order to implement these is-

sues automatically, tools require the developer to adhere to some architecture

style.

Software architecture is therefore helpful throughout the life cycle of program

design, development and maintenance, in reducing cost of design and in better

predicting the behaviour of a design throughout the life cycle.

1.2 Structure of Survey

This survey provides an overview of the state of the art in software architecture for

synchronous groupware applications. It is organized around a common vocabulary

for describing architectural views of groupware (described in appendix B), exposing

similarities, dei�erences and trade-o�s between di�erent approaches. By methodi-

cally organizing the work done in software architecture for groupware, the survey

shows not only what has been accomplished in the �eld, but also what problems

remain open for further work.

The survey is therefore of bene�t to groupware implementers in that it provides

a catalogue of di�erent architecture styles and a description of available tools that

support those styles. This provides valuable information to developers, helping

them choose an appropriate architecture style for implementation.

The survey is further of bene�t to researchers in implementation techniques for

groupware and groupware toolkits, by exposing not only the work that has been

done, but what work remains.

Finally, the survey is of interest to researchers in software architecture in general,

by cataloguing examples of architecture styles developed for the emerging domain

of computer supported cooperative work.

The survey is structured around the themes of architectural description, design

and implementation:

Describing architectures: The �rst topic in the survey is reference architectures.

Rather than describing the architecture of a particular system, a reference ar-

chitecture describes a set of possible architectures. Reference architectures are

su�ciently general that they can be used to describe the architectures of ex-

isting systems. Reference architectures therefore serve to illustrate the space
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of possible architecture designs for a groupware system, where each articula-

tion point of the reference architecture represents a design choice leading to a

concrete system architecture.

Architectures for designing systems: We then move to architectural styles, which

capture speci�c techniques for structuring groupware systems. Architecture

styles support the implementation design of groupware by capturing design

strategies for use in new systems. Designers typically design their systems us-

ing one or more architectural styles, then develop implementations that are

consistent with those styles. Conceptual architectural styles usually aid the

developer by abstracting low-level details of the distributed implementation of

groupware, such as strategies for network communication, data replication and

consistency maintenance. Groupware development toolkits typically support

development using a single architectural style, requiring developers to use that

style, and in return providing an implementation that solves these low-level

implementation issues.

Architectures for implementing systems: Finally, we present an architectural

view that captures the distributed implementation of groupware. This view de-

scribes mechanisms for realizing groupware applications as sets of communi-

cating processes distributed over a network of computers. Developers typically

use a conceptual architecture style to create the high-level architecture of their

system, which can then be mapped to a distributed architecture either by hand

or using a tool. Since none of the reference architectures descussed in sec-

tion 2 are adequate to fully describe distribution architectures for groupware,

we introduce the Interlace reference model as a descriptive framework.

Throughout this presentation, toolkits supporting these architecture styles will

be presented. Toolkits usually support development using a particular architecture

style; for example, the RendezVous toolkit supports the Abstraction-Link-View ar-

chitecture style [Hill et al. 1994], while the Clock toolkit supports the Clock archi-

tecture style [Graham and Urnes 1996]. Toolkits are important to understanding

groupware architectures, as they provide a concrete realization of an architecture

style. Often, the only de�nition of the architecture style is that provided implicitly

by the tool's input domain. The success of a tool provides some measure of the

success of a particular architecture style. As this is a survey of groupware architec-

tures, however, we restrict ourselves to considering only the architectural issues of

these toolkits. We begin with a presentation of reference models for groupware.

2. REFERENCE MODELS

Reference models for groupware are intended to describe the structure of complete

groupware systems at a relatively abstract level. Reference models can be viewed

as either prescriptive or descriptive. In the prescriptive view, they express a philo-

sophical perspective as to how groupware systems should be constructed. In the

descriptive view, they provide a canonical framework within which we can reason

about the structures of existing groupware systems.

In this section we present four reference models which are relevant to group-

ware: Seeheim [Pfa� et al. 1985], Arch [UIMS Tool Developers' Workshop 1992],

Patterson's [Patterson 1995], and Dewan's [Dewan 1995]. Seeheim and Arch are
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the products of workshop committee e�orts and are actually models for single user

systems. They can be extended in a relatively straightforward way to describe

groupware systems. Patterson's taxonomy was the �rst real attempt to de�ne ar-

chitectures for groupware systems and focuses on a key issue for groupware: how

to maintain the shared objects with which the users interact. Dewan's \generic

architecture" extends the Arch approach from single user systems to groupware

and generalizes it to include several possible patterns of communication among the

replicated instances of an application.

2.1 Seeheim and Arch

Reference models for groupware originate in similar models proposed for single

user interactive systems. The key idea is that an appropriate decomposition of an

interactive system includes a clean separation between the application's underlying

logic or functional core and its user interface. This separation allows development

of core and interface to be largely decoupled and admits the possibility of di�erent

styles of user interface for a single functional core. For example, a list of numbers

could be viewed and manipulated as a column of text by one interface, as a bar

chart by another, and as a pie chart by a third. A reasonable extension to this

separation allows multiple, concurrent user interfaces to be attached to a single

functional core; this provides a simple model for a groupware system.

The �rst widely-accepted reference model for single-user interactive systems was

developed in 1985 at a working group in Seeheim, Germany, and later dubbed \the

Seeheim model" [Pfa� et al. 1985]. It is illustrated in �gure 1(a). The functional

core is allocated to the application component and the user interface is divided

into a presentation component, a dialogue controller and an application interface.

Roughly, the presentation component handles lexical aspects of the interaction, the

dialogue controller handles syntactic aspects, and the application handles semantic

aspects. The application interface is an adaptor, mapping between application-level

concepts and dialogue concepts to reduce the coupling between functional core and

user interface.

The small box shown to the right of the dialogue controller is a \fast switch",

which recognizes the requirement for rapid response on the part of the interface. It

allows the application to bypass the dialogue controller when dialogue state is not

a�ected by output events.

During the period 1991{1992 the Seeheim model was re�ned and extended into

the Arch model [UIMS Tool Developers' Workshop 1992], shown in �gure 1(b). Arch

removes the fast switch, introduces a new adapter component in the user interface,

and makes explicit the types of data 
owing between the components. In Seeheim,

the dialogue controller is primarily concerned with processing input syntax; in Arch,

this responsibility is moved forward to the logical interaction component and the

dialogue component becomes responsible for screening inputs and sequencing the

tasks performed by the functional core.

The Arch model also has an associated \Slinky" meta-model which recognizes

that tasks can migrate between components in the architecture depending on the

developers' needs, the relative importance of di�erent development goals, and the

nature of the system. The metamodel implies that the relative size and importance

of the model's components may vary from system to system. In some systems, one
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Fig. 1. The Seeheim and Arch reference models for single-user interactive systems. The Arch

model is often drawn with its �ve components in the shape of an arch, the dialogue component

forming the \keystone".

or more components may be compressed out of existence, while others may expand

to cover multiple functions implied in the original architecture. The mental image

behind the name is the Slinky child's toy, which can be compressed and expanded

when passed from hand to hand.

The Seeheim and Arch models are motivated by the conviction that a system

divided into layers is easier to develop, maintain and extend. By de�ning the

layers such that they map easily onto existing systems (e.g., the physical interaction

component of Arch maps directly onto the X-Window system), the architectures'

proponents hoped to support ease of implementation using pre-existing software

components. In section 3 we present a number of architectural styles which can be

seen as specializations of the Seeheim/Arch reference models.

2.2 Patterson's Taxonomy

The �rst reference model developed speci�cally for groupware systems appears in

a taxonomy proposed by Patterson [Patterson 1995]. It is motivated by the ob-

servation that \the primary challenge for synchronous groupware applications is to

maintain shared state." Patterson divides application state into four levels: display

state, which is implemented in the video hardware that drives the user's physical

display; view state, a logical visual representation of the underlying data; model

state, the underlying data itself; and �le state, the persistent representation of

the model. The taxonomy intentionally leaves all computational aspects of the

application unspeci�ed.

Patterson's taxonomy is illustrated in �gure 2.1 It proposes three classes of

architectures for groupware: those based on actual shared state, those based on

1Where diagrams require multiple users we normally show only two; the reader should imagine

an arbitrary number of users with similar local architectures and communication paths.
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(c) Hybrid architecture(b) Synchronized state
architecture

Fig. 2. Examples from Patterson's taxonomy.

replicated state with synchronization, and hybrids including both approaches. The

key bene�t of actual shared state is simplicity; the bene�ts of replicated state are

potentially improved performance and the ability to turn synchronization on and

o�.

In shared state architectures, all levels above the �rst shared one are assumed

to be shared as well. This leads to architecture diagrams which look as if they

have been \unzipped" from the bottom; Patterson's reference model is occasionally

referred to as the \Zipper" model for that reason. In �gure 2(a) both the model

state and �le state are shared but views and displays are separate, providing users

with independently constructed views of common application data.

Figure 2(b) shows a shared view system implemented using a synchronization

architecture. The synchronized elements are intended to contain exactly the same

information and are replicated for performance or other pragmatic reasons. In

the example, users would see exactly the same views on their displays, a situation

sometimes referred to as strict What-You-See-Is-What-I-See or WYSIWIS [Ste�k

et al. 1987]. This contrasts with �gure 2(a) in which the users could have arbitrarily

di�erent views of the same underlying state. Patterson suggests that where views

are synchronized it is also necessary to separately synchronize models.

The example in �gure 2(c) is a hybrid architecture in which the model is shared

and the views are synchronized. This architecture provides a simple mechanism for

ensuring consistency of the model state and allows view sharing to be switched on

and o� as desired by the users.

Patterson's taxonomy provides a simple representation of possible distribution

architectures for groupware systems but abstracts away issues of computation, con-

currency and distribution. We revisit these issues in section 4. We suggest that only

sharing at the view and model levels is of direct interest for synchronous group-

ware: interaction through shared �les is di�cult to achieve in real time and, as

Patterson notes, synchronization of physical display information (that is, informa-

tion normally found in the video hardware itself) is not generally feasible and is

not necessary if views are synchronized or shared.
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Fig. 3. Dewan's generic architecture. Dotted lines represent ellipsis. All communication is via

events; however, the event indicator (see appendix B) has been omitted from the arrows for clarity.

2.3 Dewan's Generic Architecture

Dewan's reference model [Dewan 1995], illustrated in �gure 3, can be seen as a com-

bination and generalization of the Seeheim/Arch models and Patterson's taxonomy.

As in Seeheim/Arch, a system is modeled as layered components increasing in ab-

straction as one moves up the diagram (away from the user). As in the Patterson's

taxonomy, the structure may be \unzipped" up to some level and direct commu-

nication between the replicated layers is permitted. Dewan proposes no speci�c

number of layers.

Objects in layers closer to the user are called interactors of abstractions one layer

higher. An object in the middle of the hierarchy will be both an interactor and

an abstraction. An interactor creates a presentation of its abstraction, which may

include a transformation of the abstraction (e.g., a text �eld representing a number,

a bitmap representing a text �eld) as well as additional information which may be

viewed as \syntactic sugar" (e.g., scrollbars and menus).

Communication among objects in the model is via events, which may be syn-

chronous or asynchronous. Events re
ecting a single user's interaction with the

system are called interaction events and 
ow strictly up and down the tree. Events

re
ecting collaboration among users are called collaboration events and may 
ow

up and down the tree, if destined for a layer in the shared stem, or across, if des-

tined for peer replicated layers. An event traveling up (down) the tree can also

be \fanned out" to all layers one level above (below), e�ectively replicating input

(output) events across the branches of the system. Dewan suggests and motivates

a number of event classes supporting activities such as locking, commands, undo,

merge, and join/leave.

Components including code that directly supports collaboration are called col-

laboration aware; those without such code are collaboration transparent. The model

allows either type of component to appear at any level in the hierarchy.
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2.4 Discussion

Seeheim, Arch, and Dewan's generic architecture all model systems as a series of

layers going from concrete at the physical interface to abstract at the functional

core. In Arch and Seeheim there are three main layers concerned with physical

interaction, the control of dialogue, and semantic aspects of the application's data

structures. The adapter layers simplify the main layers and permit them to be

constructed in relative isolation. In Dewan's model an arbitrary number of layers

is permitted.

These models support the well-accepted software engineering principles of mod-

ularity and separation of concerns. Allocating the functions of a given layer to a

pre-existing component promotes reuse. Judicious use of the models is expected to

reduce total application complexity and lifecycle cost; while there are no empirical

studies demonstrating the truth of this conjecture for these models in particular,

there is some evidence that it does hold for layered architectures in general [Zweben

et al. 1995].

Some groupware development e�orts have been guided by the principles enshrined

in these models [Coutaz 1997; Singh and Green 1991]. Arch has been used as the

basis for a study of single-user interactive systems [Kazman et al. 1993] and Dewan

has characterized the architectures of a number of groupware systems using his

generic model [Dewan 1999].

Patterson's taxonomy usefully clari�es the patterns of state sharing and replica-

tion found in groupware systems but ignores distributed computation aspects. In

section 4.1 we introduce a new reference model to permit further exploration of

these issues.

All of these reference models propose structures or ways of looking at entire

applications in a relatively coarse-grained fashion. In the next section we look at

architectural styles, which provide patterns for application development at a much

�ner level of detail.

3. ARCHITECTURAL STYLES

An architectural style suggests a vocabulary of component and connector types, a

topology of interconnection, and a control 
ow strategy. Ideally, an architectural

style will provide the developer with a clear mental model for the system under de-

velopment, will provoke appropriate questions at an early stage in the development

process, and will provide direct operational answers to those questions [Calvary

et al. 1997]. For groupware the key question centers around how to build systems

that allow multiple users to concurrently interact with each other and with shared

data.

In this section we present a selection of architectural styles for groupware which

strive to answer this question. There have been a wide range of such styles proposed,

practically one for every groupware application, system, toolkit or programming

language. Here we include those styles which are in
uential and widely known as

well as a limited number of more recently proposed styles.

Most architectural styles for groupware are based on the same separation of user

interface and application seen in the Seeheim model (section 2.1). However, where

Seeheim proposes dividing the entire system into a single application and a single
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user interface, these styles divide the system into �ne-grained subsystems, each with

its own application and user interface component. Systems sharing this feature

include the Presentation-Abstraction-Control (PAC) [Coutaz 1987a], Model-View-

Controller (MVC) [Krasner and Pope 1988], Abstraction-Link-View (ALV) [Hill

et al. 1994], Suite [Dewan and Choudhary 1992], and Clock [Graham and Urnes

1996] architectural styles. These styles also share a rather surprising feature: they

do not directly express inter-user interaction. Instead, interaction is allowed to

arise implicitly from some form of state sharing. In a sense this is an e�ort to

reduce the complexities of groupware development to that of single user systems by

abstracting away issues relating to component-level distribution, communication,

and consistency maintenance. We revisit these issues in section 4.

There are also architectural styles which do directly express user interaction, typ-

ically by including other architectural features along with a Seeheim-like separa-

tion between user interface and application. Included in this group are architectural

styles based on explicit remote procedure calls (GroupKit [Roseman and Greenberg

1996]), inter-client communication channels (the Java Shared Data Toolkit [Bur-

ridge 1999]), and inter-component buses (Chiron-2 [Taylor et al. 1995]).

We begin the presentation with PAC*, which can be viewed as inhabiting an

intermediate space between the reference models of the previous section and the

other styles in this section. PAC* suggests a complete structure for an application,

based on the Arch reference model, and is also relatively abstract, whereas the

styles presented after it are quite concrete and most are directly supported by

programming environments or toolkits.

3.1 PAC*

The PAC* (Presentation-Abstraction-Control-*) architectural style [Calvary et al.

1997; Coutaz 1997] is the most recent member of a family of styles stemming from

PAC itself, which was �rst proposed by Coutaz in 1987 [Coutaz 1987b]. Later, PAC

was used as the basis for PAC-Amodeus [Nigay and Coutaz 1991], an application

architecture based on the Arch reference model in which the Dialogue component

is implemented in the PAC style. PAC* is an extension of PAC-Amodeus to group-

ware, based on \unzipping" the Arch in the style suggested by Dewan's generic

architecture. In this exposition we present �rst PAC, then PAC-Amodeus, and

�nally PAC*. PAC itself is described in more detail in [Buschmann et al. 1996].

The PAC architectural style decomposes a system into a hierarchy of PAC agents.

Each agent includes three facets : a presentation, which represents the user interface,

an abstraction, which maintains the underlying data, and a control, which mediates

all communication between the presentation and abstraction. Each agent is viewed

as autonomous, and may execute in an independent process or thread. A PAC

agent is illustrated in �gure 4(a).

The PAC control facet is similar in spirit to the dialogue component in the

Arch model. It provides a single location for dialogue-dependent code (i.e., code

which controls the dialogue between the presentation and the abstraction), thus

simplifying creation and maintenance of dialogue policy. It also decouples the de-

velopment of presentation and abstraction objects, since most syntactic or semantic

mismatches between them can be accommodated by the control.

The structure of a typical PAC application is shown in �gure 4(b). The hierarchy
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Fig. 4. The PAC family of architectural styles.

of PAC agents represents application composition. The root agent represents the

application as a whole, and is decomposed (here) into two subcomponents which

might represent di�erent visible windows of the application. These are in turn

further decomposed until the level of individual interactive objects is reached. Note

that in �gure 4(b) the presentation element of the root agent is shown with a dotted

line; since the application as a whole has no visual representation, its presentation

is e�ectively null. It is also possible for components to have null abstractions.

PAC controls not only adapt the interfaces of their presentations and abstrac-

tions, but also initiate and route communications up and down the hierarchy as

required. This keeps the presentations and abstractions simple and localizes all

communications-related code in the control facets. The control facet can be seen

as implementing the Adaptor and Mediator design patterns described by Gamma

et al. [Gamma et al. 1995].

PAC is intended to be used at a conceptual level and is not tied to any one pro-

gramming language or implementation technique. Communication within a single

agent and between agents can take any appropriate form. One reasonable approach

would be for the control to directly call the presentation and abstraction, but for

the presentation and abstraction to communicate with the control via callbacks.

This allows presentations and abstractions to be written without regard to their

particular employment, making them more reusable. Communication up and down

the PAC hierarchy might take place via events. Other strategies are possible.

The original formulation of PAC assumed that an application would be homo-

geneously structured using only objects interacting in the PAC style. However,
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in the development of real applications it is often advantageous to reuse existing

large-grain components, such as windowing systems or relational databases, which

are outside the PAC architectural style.

The PAC developers observed that these large-grained components would typi-

cally be seen as mapping onto the interaction or functional core components of the

Arch model. However, the Arch dialogue component is normally unique for each

application. Since PAC has speci�c support for dialogue implementation, in the

form of its control facet, it seems well suited to this task [Coutaz 1997]. This obser-

vation motivated development of the PAC-Amodeus architectural style, in which

the dialogue component of the Arch model is implemented using PAC [Nigay and

Coutaz 1991].

PAC-Amodeus is illustrated in �gure 4(c). Typically, PAC presentations within

the dialogue component will be connected to some element of the logical inter-

action component. Similarly, PAC abstractions will be connected to elements of

the functional core adapter, which will perform any necessary translation between

PAC and the functional core itself. Nigay has proposed a set of structuring rules

to guide designers in creating appropriate PAC hierarchies for dialogue component

implementation [Nigay and Coutaz 1991].

The PAC* architectural style for groupware extends PAC-Amodeus by \unzip-

ping" the Arch structure in the style suggested by Dewan's generic architecture, but

also allowing multiple forks and joins. One possible example of a PAC* architecture

is illustrated in �gure 4(d). In [Calvary et al. 1997], Nigay's structuring rules are

extended speci�cally to deal with groupware development issues. In addition, they

suggest that multi-user applications must address the three dimensions of produc-

tion (the creation of shared artifacts), direct communication, and coordination of

users' activities across time [Salber 1995], and explain how PAC* can be used to ad-

dress these issues. The PAC* architectural style has been used successfully in the

development of complex multi-user applications with multi-modal input [Coutaz

1997].

As indicated above, the PAC* architectural style is at a relatively abstract level

and might reasonably be seen as occupying a middle ground between reference

models and architectural styles. In the balance of this section we present a series of

architectural styles which are more concrete in nature, many of which have either

direct programming language or toolkit support.

3.2 Model-View-Controller

The Model-View-Controller (MVC) architectural style was introduced in Smalltalk-

76 [Krasner and Pope 1988] to provide a clean, principled separation between user

interfaces and their underlying application semantics. In this section we present

MVC as de�ned in Smalltalk-80. The MVC style has been implemented with minor

variations in a wide range of user interface toolkits, most recently in Sun's Swing

framework for Java [Eckstein et al. 1998]. MVC is described as a design pattern

by Buschmann et al. [Buschmann et al. 1996] and is the archetype of the Observer

pattern described by Gamma et al. [Gamma et al. 1995].

The structure of (single-user) MVC is illustrated in �gure 5(a). The basic MVC

structure consists of a model, which represents the application's data; a controller,

which interprets user input; and a view, which presents output. The controller and
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(b) Example MVC application structure

vc

vc vc

vc

vc vc

vc

vcvc vc

m

m

m m

controller view

model

user
input

display
output

notification

updates and
requests e

c

d

e

f

h

g

(a) Interaction scenario

requests

(c) Shared-model multi-user MVC (d) Synchronized-model multi-user MVC

m

vcvc

m

vc

m

vc

E E

E

Fig. 5. Single user MVC and extensions for groupware. In (b),(c) and (d) the views and con-

trollers are combined, the call and callback arrows are superimposed, and the event indicators

have been omitted. In (b) we have shaded the view-controller pairs to highlight the tree structure.

the view are together similar to the PAC presentation object and the model to

the PAC abstraction; however, MVC has no direct analogue of the PAC control.

Instead the controller and view can communicate with the model via calls and the

model sends the view and controller events via anonymous callbacks.

The view and controller communicate with each other directly by calls. For

example, a pop-up menu would normally be implemented within a controller object;

the controller would communicate with the view to paint the menu on screen as

required. Since the coupling between views and controllers can be quite close,

many MVC variants (including Swing) implement view-controller pairs as combined

objects.

A typical MVC interaction sequence begins with user input (event 1, at �g-

ure 5(a)) which is interpreted by the controller and results in an update to the

model (2). The model broadcasts a noti�cation to the view and controller (3) that

some aspect of its state has changed. The view queries the model to determine

exactly what the change is (4) and on receipt of the details (5, the value returned

from the query) updates the display (6). The controller may also react to the

noti�cation by changing its mode of interaction.

Each view and controller requires explicit knowledge of its model's calling struc-

ture in order to perform updates and correctly interpret change noti�cations. Con-

versely, the model requires no information about its views and controllers. Instead,

a model provides a mechanism for views and controllers to register anonymous call-

backs with it, and uses those callbacks as destinations for event messages. This

allows arbitrary views and controllers to attach to a given model without alteration
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of the model itself.

As shown in �gure 5(b) an application in the MVC style may have many models

and associated view-controller pairs. The view-controller pairs are typically orga-

nized in a subview/superview tree representing visual containment. This allows

simple support for the clipping operations and coordinate transformations common

in graphical applications. Each view-controller pair could have a separate model;

however, in practice a single model is often associated with a subtree of the view

hierarchy. There is no default pattern of communication between the models in an

application; in fact, the models might not communicate with one another at all.

It is possible to develop groupware under MVC by attaching multiple view-

controller pairs (one for each user) to each model that needs to be shared. This

is illustrated in �gures 5(c) and (d) using true sharing and model synchroniza-

tion as suggested by Patterson's Zipper model. In these �gures the model and

view-controller components represent the collection of model objects and the view-

controller hierarchies, respectively. Despite the simplicity of this approach, MVC

(in its original form) is not a particularly satisfactory basis for groupware as it

does not support concurrently active controllers [Krasner and Pope 1988]. Some

recent systems loosely based on MVC, including Clock (see section 3.4), and the

transaction-based DECAF toolkit [Strom et al. 1998] overcome this di�culty.

3.3 Abstraction-Link-View

The Abstraction-Link-View architectural style (ALV, pronounced \al-vee") was de-

veloped at Bellcore as the architecture of the Rendezvous system [Hill 1992; Hill

et al. 1994], a toolkit designed for the construction of groupware supporting \con-

versational props" or shared objects. Its overall structure is similar to shared-model

MVC, with combined view-controller pairs (called views), separate hierarchies of

views and abstractions (models), and a declarative constraint mechanism called

the link which connects the two. Abstraction and view components are trees of ob-

jects; links are \bundles" of constraints. The ALV architectural style is illustrated

in �gure 6.

As shown in �gure 6(a), ALV treats user inputs as events, which are routed

to event handling routines de�ned in the view. Unlike MVC, the event handlers

do not act directly on the abstraction; instead, they modify data stored locally

in the view. Keeping local view data reduces the overhead of performing view

recomputation, but introduces a requirement that the view data be kept consistent

with any corresponding data in the abstraction. Meeting this requirement is the

role of the constraints. ALV constraints are one-way, from a source to a target;

however, two constraints with inverted sources and targets together constitute a

bidirectional constraint. Thus, changes in the view can automatically be re
ected

in the abstraction and vice versa.

The structure of an ALV application is illustrated in �gure 6(b). A user's view

component consists of a tree of view objects, which are connected by constraints to

corresponding objects in the abstraction. Normally each object in the abstraction

will be represented by one object in the view; however, some view objects (e.g., but-

tons) may not have corresponding abstractions. Since each user has an independent

view hierarchy and independent constraints, users can have very di�erent graphical

displays of the same underlying abstraction. Any change in the abstraction (typ-
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(b) Example ALV application structure; there  is one 
view hierarchy (plus constraints) for each user.
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Fig. 6. The ALV architectural style.

ically arising from an action in one user's view) will be automatically re
ected in

all users' views through the constraint mechanism.

In interactive applications, it is quite common for view and abstraction objects

to be created and destroyed during execution of a program. In ALV, the creation

of an object in one hierarchy can cause a corresponding object to be created in the

other by means of a \tree maintenance" constraint. For example, in �gure 6(b),

the object at the top of the abstraction hierarchy might dynamically instantiate its

three children at run time. A tree maintenance constraint (part of the constraint

bundle marked by a \*") could then cause the creation of corresponding objects

in the view, and the connection of those view objects to the abstraction hierarchy

using appropriate constraints.

The ALV constraint system allows independence of the views and models beyond

that provided by MVC. An MVC view requires intimate knowledge of its model's

calling structure and data representation; however, an ALV view can (in principle)

be programmed independent of any particular abstraction. Since constraints are

programmatic objects, they can include code to provide any syntactic or semantic

conversion required for the views and abstractions to work together. ALV's separa-

tion of interaction issues from representation and presentation issues allows each of

the three components to be simpler than it might otherwise be, supporting greater

reusability at the object level. [Hill et al. 1994].

3.4 Clock

The Clock architectural style [Graham and Urnes 1996] provides a component-level

framework supporting software development in the Clock declarative programming

language [Graham 1995]. The architectural style is directly supported by a visual

programming environment, ClockWorks [Graham et al. 1996].

As illustrated in �gure 7(a), Clock \in the small" is super�cially similar to MVC.

The Clock model is composed of one or more abstract data types (ADTs) whose

interfaces include both requests (referentially transparent accessors) and updates

(mutators). The controller consists of declarative functions, triggered by user in-

puts, which may make make requests of, or send updates to, the model. The

view consists of declarative functions, automatically triggered by changes in model

request values, which compute the program's output.

Clock derives some of its ideas from Weasel [Graham and Urnes 1992], an earlier

system developed by the same researchers. The principal di�erence is that Weasel
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Fig. 7. The Clock architectural style. In (b) and (d) the requests, updates and constraints have

been collapsed into a single arrow to reduce clutter.

had no controller; rather the Weasel view was a direct projection (in the functional

programming sense) of the underlying model. A user's manipulation of the view

therefore resulted in direct and immediate update of the model, and vice versa.

While this approach is appealing in its simplicity, it makes modal styles of user

interface particularly di�cult to construct; Clock introduced its separate controller

element to provide the required 
exibility.

A Clock application is composed of Clock components, hierarchically arranged

as illustrated in �gure 7(b). Each component may be missing any one of the model,

view or controller elements, but a component typically includes at least a view

and a controller. As in MVC and ALV, the hierarchy represents visual view con-

tainment. Since containing views are (partially) expressed as functions of their

contained subviews, views are constrained by their subviews as indicated in �g-

ure 7(c). Conceptually this means that a view will be automatically recomputed

if any of its subviews changes. In practice Clock includes optimizations to reduce

unnecessary view recomputation.

The component hierarchy extends the communications pattern shown in �g-

ure 7(a) from the component level to the application level by allowing both con-

trollers and models to respond to requests or updates originating from lower-level

controllers. A request or update is actioned by the local model, or failing this,

by the next component upward in the hierarchy which provides the request or up-

date in its interface. Within a component, the controller is considered to be below
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the model. Having controllers respond to requests and updates provides for their

transformation on the way up the hierarchy and allows resolution of any syntactic

or semantic mismatches between components. Since model constraints on views

are syntactically identical to requests, they are extended to the hierarchy in an

identical fashion. This provides a simple and natural mechanism for data sharing:

if a particular ADT is shared by several components, it is normally located in the

lowest component in the hierarchy that is visible to them all. Data required by

all components in an application is located at the root. The ClockWorks editor

provides a simple mechanism for moving ADTs from one component to another.

Groupware is programmed in Clock by providing a view function at some level

which allows one subview (sub-tree) to be created for each user. This has the

e�ect of \unzipping" the hierarchy, as shown in �gure 7(d), which is a multi-user

version of �gure 7(b). State represented in models above the unzipped sub-tree is

common to all users' views; state in the sub-tree is local to each user. This allows

view replication policies to be changed from completely independent views to full

WYSIWIS and back, simply by moving ADTs up and down the hierarchy. Clock's

formally de�ned semantics [Graham 1995] guarantee that requests and updates

always execute atomically, which eliminates a large class of concurrency control

problems.

3.5 Suite

The Suite system was originally developed to experiment with the automatic gener-

ation of single user interfaces [Dewan and Choudhary 1991] and was later extended

to support groupware [Dewan and Choudhary 1992]. It models groupware as a col-

lection of generalized data-structure editors acting on shared data [Dewan 1993].

The Suite architectural style, shown in �gure 8, is super�cially similar to shared-

model MVC; however, the details are quite di�erent. A Suite program consists of

a shared application which maintains and manipulates semantic state, and repli-

cated dialogue managers which provide the individual user interfaces (editors) for

the application's data structures. Applications and dialogue managers are coarse-

grained, heavy-weight objects. Applications are automatically persistent; dialogue

managers are created on request and \attached" to applications.
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An application will contain one or more active values representing its shared

data structures. These are replicated in the dialogue managers as interaction vari-

ables. Editors are derived semi-automatically from applications based on attributes

(declarative speci�cations) which the programmer associates with each active value.

Users can manipulate their interaction variables independently and can update the

corresponding active values using a \commit" mechanism. Applications communi-

cate with editors using calls; editors communicate with applications using callbacks

which are registered through the dialogue managers.

Suite's most novel feature is its support for �ne-grained control over the degree

of coupling between a program's multiple user interfaces [Dewan and Choudhary

1995]. This is implemented as event messages representing constraints on interac-

tion variables and is shown by the horizontal arrow in �gure 8. Coupling is similar

to synchronization but weaker; where synchronized elements exactly replicate one

another, coupled elements may include some replicated data and some local data.

In Suite, dialogue coupling can vary from strict WYSIWIS (which is equivalent

to view synchronization), through relaxed WYSIWIS (where some aspects of the

view are shared, others private), to completely asynchronous. The coupling can be

controlled along a number of dimensions including time and semantic completeness.

This control can be exercised by either the application programmer or the end user.

3.6 Chiron-2

The Chiron-2 (C2) architectural style [Taylor et al. 1996] is a component- and

message-based development approach for graphical user interface software. Al-

though not speci�cally targeted at groupware, C2 can be used to develop groupware

in a straightforward fashion; the original C2 paper [Taylor et al. 1996] includes a

distributed, multi-user meeting scheduler as an example. C2 derives partly from

the architecture of the Chiron-1 system [Taylor et al. 1995] and is in
uenced by

MVC.

Figure 9(a) illustrates the architecture of a hypothetical single-user application

designed in the C2 style. The style consists of components and connectors
2 with

specialized properties. Components are independent computational elements, each

of which may have internal state and its own thread of control. They communi-

cate with one another via the connectors, which are active elements responsible for

routing, broadcasting and �ltering asynchronous inter-component messages. The

internal structure of components is unconstrained by the C2 style, although Taylor

et al. suggest a wrapper-based mechanism to allow embedding of \legacy compo-

nents" (components developed in other styles) in a C2 application [Taylor et al.

1996].

Each component and connector has a de�ned \top" and \bottom", where \up"

normally represents more abstract, as in Dewan's generic architecture. The tops of

components may attach only to the bottoms of connectors, and vice versa. Connec-

tors may also be attached directly to other connectors, with the same top-to-bottom

restriction. Components may attach only to connectors.

2Elsewhere in this paper we use the terms \component" and \connector" in a more general sense,

following, e.g., [Perry and Wolf 1992; Shaw and Garlan 1996]. In this section the terms are used

speci�cally to denote components and connectors in the C2 architectural style.



20 � W.G. Phillips and T.C.N. Graham

(a) Single-user C2
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Fig. 9. Examples of the C2 architectural style.

The pattern of messages in C2 is quite similar to that of MVC. Messages 
owing

up the model are requests : directives that an action be performed by one or more

components higher in the system. Messages 
owing down are noti�cations, that is,

announcements of state changes. As with MVC, higher level components (models)

can be developed in isolation from lower-level components (view-controllers) but

lower level components necessarily rely on the semantics of higher level components.

There are several key di�erences between C2 and MVC. C2 messages are asyn-

chronous and mediated by the connectors, which may broadcast, selectively trans-

mit, prioritize, or silently absorb them, whereas MVC messages are passed syn-

chronously based on direct calls or callbacks. C2 noti�cations can be of arbitrary

type and are normally information bearing; in the original version of MVC [Krasner

and Pope 1988] noti�cations consist of an announcement of change without indica-

tion of what has changed. Finally, C2 components have both a top and a bottom,

whereas (in C2 terms) MVC models have only bottoms and MVC view-controllers

have only tops.

The C2 connector is similar in spirit to the PAC control element, in that it me-

diates inter-component communication. However, where a PAC control may incor-

porate arbitrary computation (including, e.g., mappings between the presentation

and abstraction interfaces) the C2 connector is responsible only for routing inter-

component communication. Any necessary mappings between components' native

interfaces is expected to be performed internally to the components themselves,

perhaps by providing a component wrapper.

C2 can be used for groupware by \unzipping" the architectural structure to an

appropriate level. Figure 9(b) shows the application of �gure 9(a) unzipped for

multi-user use. Note that the connector marked by a \*" would span multiple

machines and encapsulate the required communication topology and services.

3.7 GroupKit

GroupKit [Roseman and Greenberg 1996] is a widely used toolkit for groupware

based on the Tcl programming language and the Tk widget set [Ousterhout 1994].

GroupKit's architectural style is at a lower level of abstraction than the others dis-

cussed in this section, since it explicitly exposes distribution and communication
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issues to the GroupKit client programmer. GroupKit is based on the concept of

a conference, which consists of some number of users who interact via replicated

conference applications. Users in a conference can interact with one another either

directly, via multicast remote procedure calls (RPCs), or in an MVC-like indirect

style using shared active data structures called environments. Users may simulta-

neously participate in multiple conferences.

The architectural style supported by GroupKit is illustrated in �gure 10(a). Each

user's conference application is an independent process, running in a Tcl interpreter,

with local state. Tcl is a procedural language; GroupKit extends Tcl by allowing a

procedure call to be directed simultaneously to multiple applications in a conference.

Multicast RPCs can be directed to all applications in a conference (including the

sender), to all except the sending application, or to a speci�ed application.

Early versions of GroupKit required that all inter-application communication

be via procedure call, which made maintenance of shared data somewhat burden-

some [Urnes and Nejabi 1994]. Later versions introduced environments, which are

shared active dictionaries (collections of key-value pairs) with keys arranged in a

tree structure. Users manipulate environments directly via procedure call; actions

on environments automatically generate events which are multicast to all confer-

ence members. Applications can bind procedures to events in a highly 
exible

fashion, specifying the binding based on the type of event (e.g. addition or removal

of a key) and the a�ected key's location in the tree [Roseman 1998]. A conference

can include an arbitrary number of environments. The environment mechanism

has proven extremely useful in the creation of sophisticated large-scale groupware

applications [Roseman and Greenberg 1997].

In addition to the architectural features discussed here, GroupKit is also notable

for its comprehensive session management facilities [Roseman and Greenberg 1993]

(which are borrowed by Clock [Graham 1996]) and its extensive set of group-speci�c

user interface widgets. GroupKit's session management is built on its environment

structure. It o�ers a set of special purpose events indicating that users have joined

or left a conference, or that a latecomer to the conference requires updating as to

the current session state. Group-speci�c user interface widgets include multiple
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cursors, a multi-user scrollbar, and a \radar view" which allows users to see where

others are working in a large shared space. GroupKit is the basis of a commercial

product, TeamWave Workplace (formerly TeamRooms) which extends the Group-

Kit architecture by allowing multiple applications to run in nested interpreters,

giving each the illusion of a private variable namespace [Roseman and Greenberg

1997].

3.8 Java Shared Data Toolkit

The Java Shared Data Toolkit (JSDT) [Burridge 1999] is a commercial product

available from Sun Microsystems. It is illustrated in �gure 10(b). The JSDT is

built around a conference model similar to GroupKit's, where the JSDT conference

is called a session. Clients in a session can interact with one another by sending data

over named channels, by modifying shared active byte arrays, or by manipulating

synchronization primitives called tokens. The token and JSDT's built-in session

abstraction have been been omitted from �gure 10(b). They are accessed via a

call/callback event mechanism (called listeners) similar to that shown for byte

arrays and channels.

Sessions, channels, byte arrays and tokens all support a core set of four events.

These advise attached clients when other clients have joined, left, been invited to

join, or been expelled from the resource in question. JSDT also provides events

speci�c to each resource type: for instance a client that is a listener to a particular

session will be advised whenever a channel, byte array or token has been created

or destroyed within the session.

Channels are routing connectors, which can be con�gured for either \best e�ort"

or guaranteed message delivery. They support four message priorities, and can

optionally guarantee in order arrival of all messages of a given priority originating

with a given client. A client may attach to any number of channels in a session

and may monitor them either via a blocking read or by registering an asynchronous

callback. To send data a client �rst marshals it into a stream of bytes, then invokes

one of the channel's send methods with the byte stream as a parameter. Since

most Java objects can be represented as a stream of bytes via Java's serialization

mechanism [Arnold and Gosling 1997], messages can include arbitrarily rich data

structures. Messages can be addressed to all attached clients, to all attached clients

except the sender, or to a speci�c client.

The shared byte array provides a service analogous to the MVC model or Group-

Kit's environment. Data in the byte array normally consists of serialized objects,

just as messages on channels do. As with channels, any client can attach to any

number of shared byte arrays within a session. The shared byte array uses MVC-

style noti�cation, in that it only advises its client listeners that something in the

array has changed. It is then up to the listeners to reread the array and perform

any necessary actions.

Finally, the JSDT token is a synchronization primitive which can be requested

by a client, passed from one client to another, grabbed (if free), and released. The

semantics of tokens are de�ned by the client application, and it is expected that

higher level synchronization policies would be implemented on top of atomic token

operations. There can be any number of tokens in a session.

Each JSDT resource (session, channel, byte array or token) can have an active
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resource manager associated with it to implement an application-speci�c manage-

ment policy. Resource managers provide client authentication and access control;

actions normally requiring authentication include joining, creating or destroying a

resource. A resource manager can also force a misbehaving client to leave a re-

source by expelling it. The resource manager mechanism allows JSDT to support

applications in which clients are either unreliable or untrustworthy.

3.9 Discussion

In this section we have presented seven distinct architectural styles for groupware,

ranging from high-level and abstract to low-level and concrete.

These styles are all intended to provide appropriate abstractions for groupware

development. Since groupware has a large user interface component, it is hardly

surprising that most of them (PAC*, MVC, Clock, Suite, and Chiron-2) originated

as styles for constructing the user interfaces of single user software systems. What

is particularly striking is how little change was required to convert them to styles

for groupware. In all cases the key was provision of a mechanism for the de�nition

and control of shared state.

PAC*, MVC, ALV, and Clock are all based on components with �xed internal

structures, arranged in trees. Recently Tarpin-Bernard et al. have proposed a gen-

eralization of these styles, expressed as a framework called Multi-Faceted Agents

for Collaboration (AMF-C) [Tarpin-Bernard et al. 1998; Tarpin-Bernard and David

1997]. The framework de�nes each component as an agent which consists of a vari-

able number of facets. Each agent communicates with others another via messages

sent to well-de�ned ports. The internal structure of AMF-C agents is guided by a

family of design patterns. By constructing an agent with presentation, abstraction,

and control facets, the PAC* style may be directly emulated. Other, more complex,

patterns are also possible. Since AMF-C does not directly support constraints, it

is not clear whether it can directly emulate ALV or Clock.

ALV, Clock, and the Constraint-Imperative programming style [Freeman-Benson

and Borning 1992] all share an interaction technique in which user events are han-

dled imperatively but views are updated via declarative constraints. Graham argues

that this is the most natural approach: user inputs normally represent demands

for action, and therefore have imperative semantics; however, views are de�ned

in relation to their models, and the required relations are most clearly expressed

declaratively [Graham 1995].

In the next section we discuss distribution architectures for groupware systems.

Here we �rst mention the distribution approaches supporting the seven architectural

styles already discussed. GroupKit provides the programmer with direct control

over the distributed design of a groupware system, but requires explicit expression

of that design in the application code itself. Chiron-2 encapsulates distribution

decisions in its connectors, allowing components to be ignorant of the distributed

topology in which they are employed. Applications written in MVC, ALV, Clock,

Suite and the JSDT contain no code expressing distribution. Instead, toolkits sup-

porting these styles provide a run-time system that automatically maps applications

onto a distributed system. PAC* is relatively abstract, and PAC* designs can be

implemented using a number of distribution architectures.
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4. DISTRIBUTION ARCHITECTURES

Most of the reference models and architectural styles presented in sections 2 and 3

purposely suppress the distributed system aspects of groupware systems. This

allows the designers of groupware applications to focus more directly on problems in

the application domain, while largely ignoring distributed implementation concerns.

However, groupware systems are ultimately implemented as distributed systems,

and the choice of distribution architecture can have a signi�cant impact the system's

functional capabilities and performance.

In this section, we examine the range of distribution architectures for groupware

systems that have been reported in the literature. The most well known of these

are centralized and replicated architectures. In a centralized system the application

resides entirely on a shared server, whereas in a replicated architecture each user

has a local copy of the application and the applications are somehow synchronized

with one another. In addition to these, we discuss a variant of the replicated

architecture that includes central coordination, and the semi-replicated architecture

in which some aspects of the application are centralized while others are replicated.

We conclude with a brief discussion of systems which support 
exible distribution,

dynamic distribution, and object-based distribution.

To allow precise discussion of the features of these architectures, we begin by

presenting Interlace, a new reference model for distributed groupware systems. In-

terlace focuses on users, processes, and state, their distribution across connected

computing platforms, and their patterns of interaction. It provides a high-level

framework supporting the precise illustration of a variety of distribution architec-

tures.

4.1 Interlace

There are dozens of groupware applications and toolkits reported in the literature.

In almost every description, the authors provide some indication of the distribu-

tion architecture of the system described, using widely varying terminologies and

techniques to do so. In this section we propose a new descriptive framework, In-

terlace,3 to support our presentation of the distribution architectures of groupware

systems. Interlace is de�ned informally below and is illustrated by example in �g-

ure 11, which is a verbose version of �gure 12(b). See appendix B on page 41 for an

explanation of the visual notation used in these �gures. All Interlace diagrams in

this paper include two users and are drawn mirror-symmetrically, with the users'

input processes towards the center.

Interlace represents a groupware system as a collection of users, devices, con-

current processes, and state elements distributed across interconnected computing

platforms or sites. Some platforms will have one or more local users while others

will operate in a server role. Figure 11 includes two user sites and one server site,

indicated by the box-like shaded areas.

In Interlace, each user of a groupware system is supported by one or more input-

3Interlace is named for the Celtic interlace style of art, which consists of overlapping, intersecting

loops. Celtic interlace designs are topologically similar to Interlace architecture diagrams but

are generally much more soothing to look at. They are thought to represent the fundamental

interconnectedness of all things.
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Fig. 11. An example Interlace diagram. The abbreviations shown with each model element are

used in the Interlace diagrams in the balance of this section and are repeated for convenience in

appendix B.

output loops starting and ending with the user and consisting of:

|physical input devices connected to an input process, which transforms input into

logical interface events;

|a chain of one or more update processes, which transform interface events into

updates on state;

|a chain of one or more view processes, which collectively compute an interactive

view from the state elements; and

|a rendering process, which presents the view to the user on physical output de-

vices.

In �gure 11 there are two loops for each user: one through private state and

one through shared state. State and process elements of the model are private if

found only in a single user's loop, shared otherwise. Any element in a diagram can

be either shared or private. Loops can interlace (join and split) at any point; in

�gure 11 the two loops supporting each user split at the update process and rejoin at

the view process. The combination of shared elements and interlacing loops allows

us to model a wide range of systems. This includes, for example, shared editors

on a single screen [Bier and Freeman 1991]; such systems cannot be adequately

modeled by Zipper-style approaches such as Patterson's or Dewan's [Dewan 1995].

State sharing may be implemented through true sharing (as in the example �gure)

or by replication with synchronization, which we indicate using Patterson's notation

introduced in section 2.2 [Patterson 1995]. Data streams in Interlace may also be

synchronized, by which we mean that they contain identically ordered streams of

data in approximate temporal synchrony. We indicate this by applying Patterson's

notation to the a�ected arrows (see e.g., �gure 13(a) on page 29).
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Groupware systems generally require some form of consistency maintenance to

ensure that state remains consistent in the face of possibly con
icting updates from

multiple users. In Interlace we model this using a consistency maintenance process

which can appear at various places in users' loops depending on the approach taken

by the modeled system. It can also be integrated with shared state elements as in

�gure 11, in which case consistency maintenance is applied to all access to, and

synchronization of, the shared state.

Some updates to shared state may a�ect private state and vice versa. For exam-

ple, consider a shared text editor in which each user's cursor position is private, but

the document itself is shared. Here, the editor must gracefully handle the case in

which one user deletes a paragraph containing another user's cursor. In Interlace,

the update process is implicitly responsible for resolving this sort of inconsistency.

Similarly, the view process should avoid displaying a view that re
ects mutually in-

consistent shared and private state. Consistency maintenance is discussed in more

detail in appendix A.

The input and rendering processes of groupware systems are typically imple-

mented using a system-level service such as the X Window System, Microsoft Win-

dows, or Java interface primitives. These processes are tightly coupled with the

physical input and output devices and are almost always found on users' local ma-

chines. For this reason most Interlace diagrams do not include explicit physical

devices; however, some example devices are included in �gure 11 for illustration.

We refer to the input and rendering processes collectively as the display services

and de�ne the application as the update and view processes plus their associated

state.

Processes and state elements in an Interlace diagram will rarely map directly onto

the actual processes and data structures of the modeled systems. For example, the

�ve processes and three state elements shown at the server site in �gure 11 might be

implemented by a single-threaded server (one process) accessing a single 
at data

structure. However, the model would be considered accurate if that server performs

independent update and view computations for each client, and maintains both

shared information and information private to each client. The focus of Interlace is

on what type of computation is performed where, and on the distribution of state

across sites.

The sections that follow use Interlace to present the range of distribution archi-

tectures that have been proposed for groupware systems. These include centralized

systems, in which all elements of the application reside on a single computer; repli-

cated systems, in which a separate instance of the application is provided locally

for each user; and semi-replicated systems, in which some elements of the applica-

tion are centralized while others are replicated. We also present a variant of the

replicated architecture which includes a central coordination element, and brie
y

discuss systems which support 
exible, dynamic, and object-based distribution.

4.2 Centralized

In a fully centralized architecture, the application is located on a single server and

only the display services are found at the users' sites. Communication from the

users' sites to the application is via interface-level events such as X Window events;

communication in the reverse direction is via rendering requests. There are two
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Fig. 12. Centralized distribution architectures.

distinct variants of the centralized architecture, illustrated in �gures 12(a) and (b).

4.2.1 Variants. The architecture illustrated in �gure 12(a) supports collaboration

transparent applications, that is, applications which are normally intended for single

user use, but are being employed in a multi-user setting. This is achieved either by

simply merging the user's input streams or by having the consistency maintenance

process enforce a 
oor control protocol (see appendix A). On the output side, such

systems typically rely on modi�cations to the windowing system or a \pseudo-

window-server" to broadcast output events to the user sites. In �gure 12(a) this is

abstracted by the multiple arrows leaving the view process.

The architecture shown in �gure 12(b) is found in collaboration aware applica-

tions which are speci�cally designed for use by multiple users. Since each user has

private update and view processes and private state, the application can provide

relaxed WYSIWIS views of the shared state. Designers adopting this approach can

largely ignore distributed system issues since the only distribution is performed by

the interface toolkit (e.g., the X Window System).

4.2.2 Bene�ts and Liabilities. The main bene�t of the centralized architecture

is its simplicity. Since there is only one instance of the application running on a

single platform, internal e�ciency of the application can be maximized and state

consistency can be guaranteed relatively easily. The architecture also provides for

accommodation of latecomers (users who join a groupware session after it has be-

gun), since it is generally practical to provide them with access to the application's

shared state or display [Chung et al. 1993].

Both variants of the centralized architecture tend to be bandwidth intensive and

sensitive to network latencies, since communication between the server and the user

sites is at the level of interface events in both directions. However, performance is

often subjectively acceptable on high-speed local area networks [Abdel-Wahab and

Feit 1991; Hill et al. 1994; Urnes 1998].

The collaboration aware variant of this architecture has an additional drawback:

poor scalability. If the application's update and view processes are computationally

intensive, or if there is a large state storage requirement per user, the resources of

the server can quickly become exhausted as the number of users in the groupware
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session grows [Graham and Urnes 1992]. This problem is compounded by the fact

that changes in the shared state will normally require view recomputation to be

performed simultaneously for all users [Hill et al. 1994]. Scalability is also a factor

for collaboration transparent applications, although to a lesser degree [Lauwers

et al. 1990].

4.2.3 Implementations. Many \shared window systems" including XTV [Abdel-

Wahab and Feit 1991], HP Shared-X [Gar�nkel et al. 1994], and Microsoft Net-

meeting [Microsoft Corporation 1997] are based on the collaboration transparent

centralized architecture. Often in such systems, one of the user sites will double as

the server.

The Rendezvous system (section 3.3) was implemented using a centralized, col-

laboration aware architecture since this avoided the requirement for a distributed

constraint implementation. Its designers considered adapting Rendezvous to other

distribution architectures [Hill et al. 1994], but implementations were never com-

pleted. The Clock run-time system (section 3.4) adopts this distribution archi-

tecture by default; however, Clock can also provide a semi-replicated architecture

(section 4.5). The centralized architecture is also used in many so-called \multi-user

dimensions" (MUDs) such as LambdaMOO.

4.3 Replicated

A fully replicated architecture is the opposite of a fully centralized one: here all

data and computation is replicated at all sites. As with the centralized architecture,

there are two main variants catering for collaboration transparent and collaboration

aware applications.

4.3.1 Variants. The collaboration transparent variant of the replicated distribu-

tion architecture is illustrated in �gure 13(a). Since the internal state of collabora-

tion transparent applications is not externally accessible, direct state synchroniza-

tion is not generally possible. Instead, synchronization of input streams is the ap-

proach most frequently used. As in the centralized case, inputs are routed through

a consistency maintenance process which may implement a 
oor control policy.

In the centralized architecture, the consistency maintenance process produces a

merged input stream directed at the single update process; in the replicated case

it produces a set of synchronized input streams directed at the replicated update

processes. As long as each update process is deterministic and receives identical

input, the replicated applications can be expected to operate in synchrony [Lauwers

et al. 1990].

The collaboration aware variant of the replicated architecture is illustrated in

�gure 13(b). Collaboration aware replicated applications are typically implemented

by synchronizing state rather than inputs. This allows for 
exibility in selection of

concurrency control protocols and provides for local state and relaxed WYSIWIS

views.

4.3.2 Bene�ts and Liabilities. An obvious liability of replicated distribution ar-

chitectures is the requirement that a separate copy of the application execute at

each users' site. This means that replicated applications require more aggregate

resources (processing power, memory, software licenses, etc.) than equivalent cen-
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Fig. 13. Replicated distribution architectures.

tralized applications. This is especially true for collaboration transparent applica-

tions. In environments with a mix of machine types and operating systems, the

requirement for identical applications at each site can become a signi�cant con-

straint, although multi-platform systems like Sun's Java [Arnold and Gosling 1997]

mitigate this somewhat [Begole et al. 1997].

Collaboration transparent applications with a replicated architecture may use

less network bandwidth than equivalent centralized applications. In the centralized

architecture, input events are unicast to the server and output events are multicast

from the server to all participants. In the replicated architecture, output events

are not distributed, since they are computed locally, but input events must be

subject to concurrency control and multicast to all sites. While some argue that

the replicated case is an improvement [Lauwers et al. 1990], there is little data to

support this contention.

For collaboration transparent applications, the fully replicated architecture has a

signi�cant number of liabilities, which have been documented in detail elsewhere et

al. [Lauwers et al. 1990]. These include the di�culties of ensuring input consistency

and ordering, ensuring output consistency, and of maintaining single application

semantics when multiple copies are running. For example, if a user in a replicated

application selects the save operation, should a �le be saved by each replica or only

by one? Latecomers are particularly problematic for fully replicated, collaboration

transparent applications. Since a late joiner cannot simply be given a copy of the

current application state, it is necessary to save a (possibly compressed) copy of

the entire input stream, which is \played back" to synchronize the latecomer with

the other session participants [Chung et al. 1998].

For collaboration aware applications, the main bene�t of the replicated archi-

tecture is enhanced interface responsiveness. If an optimistic concurrency control

algorithm is used (see appendix A), updates to shared state can be performed lo-

cally and are una�ected by network latency. A further bene�t is that a replicated

architecture distributes the computationally expensive view and update process-

ing to the users' computers. This would be expected to lead to better scalability;

however, this depends on the overhead incurred in synchronizing the state of the

replicated instances, which may be signi�cant.
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4.3.3 Implementations. Collaboration transparent shared window systems that

have been implemented using this distribution architecture include MMConf [Crow-

ley et al. 1990], VConf [Lantz 1986], and Dialogo [Lauwers et al. 1990].

Collaboration aware groupware systems supporting a replicated architecture in-

clude DreamTeam [Roth and Unger: 1998], Mushroom [Kindberg et al. 1996],

GroupDesign [Karsenty et al. 1993], GINA [Berlage and Genau 1993] and the orig-

inal version of COAST [Schuckmann et al. 1996].

4.4 Centrally Coordinated

The centrally coordinated distribution architecture is similar to the fully replicated

architecture except that the consistency maintenance process is centralized. As

with the fully replicated architecture, there is a variant supporting collaboration

transparent applications and a variant supporting collaboration aware applications.

4.4.1 Variants. The collaboration transparent variant of the centrally coordi-

nated architecture is shown in �gure 14(a). It is directly comparable to its fully

replicated counterpart, providing synchronized input streams to a replicated appli-

cation. The principal di�erence is that where the fully replicated architecture re-

quires execution of a distributed algorithm to ensure input stream synchronization,

this architecture allows a much simpler, centralized concurrency control scheme to

be used.

For collaboration aware applications, the architecture shown in �gure 14(b) is

most frequently used. It is di�erent in principle from its fully replicated counterpart

in that the latter uses active state synchronization whereas this architecture uses

synchronization of access to the replicated state. While it is possible to imagine

a version of this architecture based on state synchronization, we were unable to

identify any actual instances of such an architecture's use.

4.4.2 Bene�ts and Liabilities. The centrally coordinated distribution architec-

ture shares most of the bene�ts and liabilities of the fully replicated architecture.

The primary bene�t of adding central coordination to a replicated architecture is

the relative simplicity of implementing consistency maintenance using a centralized

algorithm rather than a distributed one. This has motivated at least one groupware

system (COAST) to migrate from a fully replicated architecture to one including

central coordination [Schuckmann 1998].

The main additional liability imposed by central coordination is the system's re-

liance on a single consistency maintenance server: if the server fails, the entire sys-

tem is rendered useless. As well, user interface response of a centrally coordinated

application will generally be poorer than that of a purely replicated application

with optimistic concurrency control, since each update to shared state will require

a minimum of two network transmissions.

4.4.3 Implementations. Collaboration transparent systems which have been im-

plemented using this architecture include the Java Collaboration Environment

(JCE) [Abdel-Wahab et al. 1999] and Java Applets Made Multi-user (JAMM) [Be-

gole et al. 1997; Begole et al. 1998]. Collaboration aware systems include NCSA

Habanero [Chabert et al. 1998], the Prospero system [Dourish 1996a], Ensem-

ble [Newman-Wolfe et al. 1992], and the most recent version of COAST [Schuck-
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Fig. 14. Centrally coordinated distribution architectures.

mann 1998].

JAMM, JCE and Habanero all rely on the Java Abstract Windowing Toolkit

(AWT) event mechanism [Chan and Lee 1998], in which interface objects post

events to a queue from which they are dispatched to other objects registered as

\event listeners". In Habanero events are manually routed to a central queue,

which forwards them to all applications in the groupware session. JAMM and JCE

produce a similar e�ect for collaboration transparent applications by patching the

AWT's internal event mechanism. JCE works with Java applications, while JAMM

works with Java applets (applications based on mobile code, which are typically

embedded in web pages) [Chan and Lee 1998].

4.5 Semi-replicated

In a semi-replicated distribution architecture some aspects of computation and

state are replicated while others are centralized. The policy for determining what

is centralized and what is replicated may vary with the application or system. One

approach is to to centralize shared state and processes and replicate private ones.

Another strategy is based on a \zipper-style" reference model (see sections 2.2

and 2.3) where the branches are replicated while the stem is centralized.

4.5.1 Variants. Figure 15(a) shows a semi-replicated architecture in which shared

state and its associated update and view processes are centralized, while private

state is maintained locally at each user's site. The architecture is suitable for both

collaboration aware and collaboration transparent applications. In e�ect, this is a

classic client/server architecture.

For collaboration transparent applications, this architecture can be viewed as an
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Fig. 15. Semi-replicated distribution architectures.

extension of that shown in �gure 12(a). Here, as in that �gure, the single-user ap-

plication runs on the server, with a consistency maintenance process insulating the

application from its multiple users. The di�erence is that here the window-sharing

system managing the shared application provides each user with some private state.

This state may allow the user to prepare work privately, then publish it to the shared

application, or it may play a role in the management of the groupware session.

For collaboration aware applications, �gure 15(a) can be seen as a modi�cation

of �gure 13(b) in which the shared state has been centralized on a server. In this

case the private state and its associated processes form an integral part of the

application rather than being an extension to it.

The architecture shown in �gure 15(b) is a multi-threaded client/server system

in which the server maintains some private state for each client. The architecture

shown in �gure 16(a) is quite similar, except that rather than centralized private

state we have replicated shared state. It is also possible to imagine (though di�cult

to draw!) an architecture incorporating both strategies. Both of these architectures

combine features of �gures 12(b) and 13(b). They are suitable only for collaboration

aware applications.

4.5.2 Bene�ts and Liabilities. As might be expected, the semi-replicated archi-

tecture provides a mix of the bene�ts and liabilities of the centralized and replicated

architectures. There is some evidence that with careful tuning the bene�ts can out-

weigh the liabilities [Urnes and Graham 1999].

For collaboration transparent applications, the semi-replicated architecture is

more 
exible than the centralized architecture and accommodates latecomers better

than the fully replicated architecture. Collaboration aware semi-replicated applica-

tions generally scale better than centralized ones, since computationally intensive

view and update processes can execute at the user sites [Graham et al. 1996]. They

are also simpler to develop, since consistency maintenance can be managed centrally

rather than via a distributed algorithm. If the protocol between the user sites and
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the server site is standardized, then a variety of user applications can access the

shared data simultaneously [Day 1997].

The principal liability of the semi-replicated architecture is that responsiveness

of the user interface may be impacted by network latencies between the user sites

and the server. This e�ect can be mitigated by the introduction of caches at the

user sites, as in �gure 16(b), at the expense of additional computational and storage

overhead [Graham et al. 1996]. Caches can also be added to the architectures shown

in �gures 15(b) and 16(a).

The semi-replicated architecture also shares the fully replicated architecture's

liability of requiring that the replicated applications be available at each of the user

sites. Here, as there, multi-platform technologies like Java somewhat reduce the

importance of this issue.

4.5.3 Implementations. The semi-replicated distribution architecture shown in

�gure 15(a) underlies the Noti�cation Service Transfer Protocol (NSTP) proposed

by Day et al. [Day 1997; Day et al. 1996; Patterson et al. 1996]. NSTP has been

used as the basis of a number of synchronous groupware applications developed with

loosely-coupled client components interconnected via a bus-like structure [Mitchell

1998]. The applications themselves are Java applets, which overcomes the di�culty

of distributing them across heterogenous computing environments.

Suite [Dewan and Choudhary 1992] and those GroupKit applications incorporat-

ing both shared environments and multicast remote procedure calls [Roseman and

Greenberg 1996] have distribution architectures that are a variant of �gure 15(a).

The key di�erence is that both these systems support direct communication be-

tween user sites, in the form of events in Suite and of remote procedure calls in

GroupKit. In Interlace this communication is modeled by adding a bidirectional

arrow between the replicated update processes of �gure 15(a).

Both Weasel [Graham and Urnes 1992] and Clock [Graham et al. 1996] can

implement applications using semi-replicated distribution architectures. Weasel's

distribution architecture is that of �gure 15(a). Clock's distribution annotations

(see section 4.6) allow it to create applications with any of the distribution archi-

tectures shown in �gures 15 and 16. Experiments suggest that applications exhibit

the best responsiveness when implemented using an architecture similar to that

of �gure 16(a), with the addition of client-side shared state caches and a high-

performance, semi-optimistic concurrency control algorithm [Urnes 1998; Urnes

and Graham 1999].

Variants of the semi-replicated architecture are also found in the JSDT [Burridge

1999], Jupiter [Nichols et al. 1995], Promondia [Gall and Hauck 1997], the DOL-

PHIN system [Streitz et al. 1994], Bentley's system for air tra�c control [Bentley

et al. 1992], and Neil Stephenson's �ctional Metaverse [Stephenson 1993].

4.6 Flexible Systems

Systems and toolkits supporting architectural styles like those discussed in section 3

must ultimately map the programmer's design to a distributed architecture. For

the most part these toolkits either provide a single distribution architecture for all

applications (e.g., centralized, as in Rendezvous) or require the programmer to mix

code re
ecting distribution decisions with code re
ecting application functionality
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Fig. 16. More semi-replicated distribution architectures.

(e.g., as in GroupKit). Systems supporting 
exible distribution express application

semantics separately from application distribution. This allows the programmer

to �rst implement the required functionality, then adjust the run time distribution

architecture to suit application needs. Two systems supporting 
exible distribu-

tion are the GroupEnvironment (GEN) [O'Grady 1996] and Clock (see section 3.4).

Dourish's Prospero system was originally intended to incorporate 
exible distribu-

tion [Dourish 1995] but this goal was later eliminated in favour of providing a novel,


exible, consistency maintenance mechanism [Dourish 1996a; Dourish 1996b].

GEN provides 
exible distribution policies via an open implementation strat-

egy [Kiczales et al. 1997]. A toolkit with an open implementation provides the

developer with access both to the usual application programmer interface (API)

and to a meta-interface o�ering principled control over elements of the toolkit's

implementation. This allows the developer to extend or modify the toolkit's API

and to alter the internal function of the toolkit in a constrained fashion. In GEN the

aspects of the toolkit which are exposed via the meta-interface are those concerning

distribution.

The GEN toolkit includes default implementations for replicated and central-

ized distribution architectures. In [O'Grady 1996], O'Grady demonstrates that the

toolkit can be extended via the meta-interface to provide for selective routing of

messages, object migration, and optimistic consistency maintenance schemes. GEN

was an experimental prototype and is no longer maintained. However, recent re-

leases of GroupKit incorporate a restricted version of GEN's meta-interface for the

management of GroupKit environments [Roseman 1998].

In Clock, distribution 
exibility is provided by the addition of annotations to the

ClockWorks architecture diagrams [Urnes 1998; Urnes and Graham 1999]. These

annotations act as hints to the Clock run time system and allow the programmer to

specify the location of the client/server split, the caching policy to be used by the

clients, the concurrency control algorithm to be applied, and which shared ADTs
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can be safely replicated to user sites. The annotations are guaranteed to preserve

Clock's formally de�ned semantics [Graham 1995], although they necessarily a�ect

application behaviour under di�erent failure scenarios.

A ClockWorks diagram with no annotations will be implemented using Clock's

default centralized distribution architecture. Those designs including an indication

of the client/server split will be implemented using a variant of the semi-replicated

architecture; exactly which one will depend on the other annotations selected. Mod-

ifying the annotations provides a safe and simple mechanism for experimenting with

di�erent distribution strategies.

The main di�erence between the GEN and Clock approaches is that GEN allows

the application developer program-level control over the application's distribution

architecture, while Clock allows the developer to select from distribution options

already present in the Clock run time system. Clock's approach is simpler, but

GENs is more 
exible. Which approach will prove more useful in practice is an

open question.

4.7 Dynamic Systems

Most groupware systems, including the 
exible systems discussed above, demand

that the developer choose the system's distribution architecture at design time.

This requires that the developer make assumptions about such characteristics of

the run time environment as the number, capabilities, and relative usage costs of

the system's user and server sites; the sites' interconnection topology; the network

bandwidths and latencies between them; and the variability of any of these factors

over time.

It seems unlikely that any one distribution architecture can be appropriate for all

circumstances. This has motivated suggestions that the distribution architecture of

a groupware system should be chosen at run time and adjusted dynamically during

the interactive session [Dourish 1995; Greenberg and Roseman 1999; O'Grady 1996;

ter Hofte 1998]. Adjustments could include dynamic replication or centralization

of state or processes at either a coarse- or �ne-grained level. Research into migra-

tory applications [Black et al. 1987; Johansen et al. 1995; Jul et al. 1988], which

allow executing processes to be relocated transparently across a network, suggests

that such an approach may be viable. We are unaware of any groupware system

that dynamically adjusts its distribution architecture at run time in the full sense

suggested here; however, two systems which do provide a restricted sort of dynamic

distribution are Chung and Dewan's enhanced XTV [Chung and Dewan 1996] and

the Visual Obliq system [Bharat and Brown 1994; Bharat and Cardelli 1995].

Enhanced XTV supports collaboration transparent applications using the cen-

tralized architecture shown in �gure 12(a), with one of the client machines doubling

as the application server. The system allows the server to migrate from one client

to another, either to optimize responsiveness for the client that \has the 
oor", or

to account for session changes such as the pending shut down of a server machine.

An obvious mechanism for server migration would be to save and ship a binary

image of the running application; unfortunately this is not generally possible under

Unix. Instead, enhanced XTV relies on a sophisticated event logging and playback

mechanism to synchronize the new server with the existing session.

Visual Obliq allows the construction of collaboration aware distributed applica-
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tions by direct manipulation. It is based on Cardelli's Obliq distributed program-

ming language [Cardelli 1994], in which objects have locations but computation

can roam the network. Obliq provides a mechanism for the atomic replication and

relocation of objects to new sites. Visual Obliq uses this facility to initialize the

user interface of a groupware application at a server site and ship it to the user

site where it continues executing [Bharat and Brown 1994]. The actual distribution

architecture of an executing Visual Obliq application is roughly the semi-replicated

architecture of �gure 15(a). Collaboration aware Java applets (e.g., [Mitchell 1998])

operate in an analogous fashion.

In [Bharat and Cardelli 1995], Visual Obliq is extended to allow complete graph-

ical applications to migrate from one computer to another. However, the imple-

mentation speci�cally excludes migratory multi-user applications, for which con-

nectivity would need to be maintained during migration. How best to address this

issue remains an open research question.

4.8 Object-based Distribution

The four distribution architectures presented in sections 4.2 through 4.5 are all

rather large-grained and based on a classic client/server computing model. Several

recent systems are based instead on �ne-grained, distributed object models. These

include DECAF [Strom et al. 1998], AMF-C [Tarpin-Bernard et al. 1998], and

TeleComputing Developer (TCD) [Anderson et al. 2000].

DECAF is a variant of MVC which includes combined view-controllers (views),

models, and transactions. Transactions are created by views whenever updates are

to be performed. DECAF views and transactions are always found at user sites, but

the models they interact with may be arbitrarily distributed. An application will

consist of many views, and a single view may be attached to many models at many

locations. Further, models may be arbitrarily replicated and connected to one an-

other via synchronizing replica relationships. DECAF provides atomic transactions

and replica synchronization using a distributed consistency maintenance algorithm,

which is brie
y discussed in appendix A.

Tarpin-Bernard et al. argue that AMF-C (brie
y described in section 3.9) is an

ideal candidate for distributed groupware implementations since its facet bound-

aries provide natural \fragmentation points". These allow individual agents to be

split across network boundaries. Each AMF-C agent may have one of the four dis-

tribution architectures already discussed, and a complete agent system may have

an arbitrarily complex mix of these.

The TCD system provides a distribution architecture (called Dragon
y) for sys-

tems designed in the Clock architectural style. It extends Clock's 
exible distri-

bution mechanism by allowing each Clock component to incorporate a separate

caching and consistency maintenance strategy [Wright 1999]. Dragon
y also al-

lows each component in a Clock architecture to be implemented at a separate site,

although this is expected to be rare in practice.

All three of these systems provide the developer with great degree of 
exibility

in choosing an actual distribution architecture for an application. Guidelines for

e�ectively employing this 
exibility have yet to be developed.
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4.9 Discussion

The general trend in distribution architectures has been from simple to complex.

Earlier systems tended to be either fully centralized or fully replicated. More re-

cent systems have tended to use more complex distribution architectures including

centrally coordinated, variants of semi-replicated, or object-based strategies. Ad-

ditionally, there has been some recent experimentation with 
exible speci�cation

of distribution architectures and with systems which dynamically recon�gure their

distribution architectures at run time.

The distribution architecture of an application must satisfy a number of con-


icting concerns. Depending on the application, these may include responsiveness,


owthrough, and consistency (discussed in appendix A); e�ective use of bandwidth

and machine resources; scalability; fault tolerance; provision of persistent stor-

age; accommodation of external resources (e.g., large databases or non-groupware

client/server systems); and support for temporarily disconnected users. No one

distribution architecture will satisfy all concerns for all applications. It there-

fore appears likely that 
exible and dynamic distribution will become necessary

as groupware systems move out of the research lab and into the mainstream.

5. CONCLUSION

Software architectures represent codi�ed solutions to commonly occurring problems.

In this paper we have presented three classes of such solutions for the problem of

developing groupware: reference models, architectural styles, and distribution ar-

chitectures. Each addresses a di�erent problem which must be solved. Reference

models suggest overall structures for groupware systems. Architectural styles pro-

vide operational answers to questions of detailed design. Distribution architectures

express the distribution of computation and state across multiple sites.

Here, we have o�ered only glimpses into the groupware problem domain itself. In-

deed, groupware researchers are still very much in the process of identifying the key

requirements for e�ective groupware systems [Graham and Grundy 1998]. As the

the problems posed by these requirements become better understood, the architec-

tural solutions presented here will necessarily be adapted, extended, and replaced.

Ultimately, we expect that support for groupware applications will be incor-

porated directly into mainstream operating systems, in much the same way that

support for graphical applications has been gradually added over the past �fteen

years. The current challenge is to determine the architectural abstractions and

infrastructure that such support will require.
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APPENDIX

A. CONSISTENCY MAINTENANCE

The design of a groupware system typically involves tradeo�s between the desirable

properties of responsiveness, predictability, and consistency. Meeting any two of

these goals is typically straightforward, but it appears impossible to meet all three

without compromise [Karsenty and Beaudouin-Lafon 1993]. In this appendix we

�rst de�ne these properties, then present some consistency maintenance strategies

for groupware and their e�ects on responsiveness and predictability.

A.1 De�nitions

Responsiveness. Responsiveness refers to the system's observable reaction to user

input, which must be rapid enough to avoid degrading user performance. For

common tasks such as typing or mouse motion, a total delay of less than 50{

150 milliseconds from input to observation is required [Shneiderman 1998]. For

other tasks a slower response time may be acceptable.

Predictability. A system is predictable if it faithfully executes actions requested

by the user and provides a reasonable degree of explanation for any other events

occurring in the interface. For example, in a shared editor the disappearance

of a paragraph from one user's display might be \explained" by the fact that

another user was editing in that region. This kind of explanation requires

mutual awareness among users [Dourish and Bellotti 1992], and 
owthrough of

each user's actions to the other users [Dix 1996] .

Consistency. There are several types of consistency requirements for distributed

systems [Coulouris et al. 1994]. For the purposes of this paper, the most impor-

tant of these are update and replica consistency. Update consistency requires

that all multi-valued updates appear as atomic. Replica consistency requires

that if a single data element is replicated, all replicas of it are maintained in an

identical state. A weaker version of replica consistency requires only that all

replicas reach identical states at quiescence. Replica consistency can be seen

as a special form of update consistency, and cache consistency can be seen as

a special form of replica consistency.

Consistency maintenance approaches for groupware can be classed as either pes-

simistic or optimistic. Pessimistic approaches emphasize predictability over re-

sponsiveness and disallow any action which could potentially violate consistency.

Optimistic approaches are motivated by the observation that in groupware sys-

tems with good awareness and 
owthrough, semantic inconsistencies between user

actions are relatively rare [Ste�k et al. 1987]. The optimistic approach therefore

emphasizes responsiveness over predictability and allows inconsistencies to arise,

possibly repairing them later.

A.2 Pessimistic Approaches

Most pessimistic approaches to consistency maintenance are based on serialization

and locking. Strict serialization involves globally ordering all updates and requiring

that they be executed in order at all sites. In single user applications, serialization

is often su�cient to ensure reasonable application behaviour. However, in multi-

user applications the interleaving of con
icting updates can cause inconsistency or
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unpredictability. For example, consider two users simultaneously attempting to

move an object in a graphical editor. If one moves the object left while the other

moves it right, serialization alone might result in the object bouncing back and

forth between the two users' cursors. To prevent this, many systems require that

an update process acquire an exclusive lock on shared state (in this case the object's

position) before modifying it. Update consistency may also demand that an update

process acquire a lock on all state that is to be read from or written to during an

update, before calculating and applying the modi�cations.

Locking is transaction-based. Each transaction is typically broken down into

three phases: lock acquisition, where the update process requests exclusive access

to a set of objects and the system (eventually) grants or denies it; manipulation of

the objects themselves; and release, where control of the objects is returned to the

system. Locks can be requested explicitly by the user or implicitly by the update

process based on user actions [Newman-Wolfe et al. 1992].

Lock granularity can signi�cantly impact the user interface behaviour of a group-

ware application. At one extreme, the lock can be imposed at the level of the entire

application. This approach is called 
oor control by analogy to the \social proto-

col" often used in large meetings [Boyd 1993; Shen and Dewan 1992]. Changes in

possession of the 
oor are mediated either by a user with special privileges (who

\chairs" the session), or by the current 
oor holder, or in an ad hoc fashion. At the

other extreme, locking can be performed on the most primitive objects available

in the application. This can allow a high degree of concurrent user interaction, at

the expense of possibly-considerable lock maintenance overhead. Still more concur-

rency can be provided by separating locks for reading data from locks for writing

to it.

Waiting for locks introduces delay and degrades responsiveness. If the lock is

unobtainable, or if the lock request must traverse a slow or intermittent network

link, or if the lock granting process is computationally expensive, the observed

degradation can be signi�cant. Several optimistic and semi-optimistic consistency

maintenance strategies have been proposed to overcome this problem [Cormack

1995a; Ellis and Gibbs 1989; Karsenty and Beaudouin-Lafon 1993; Strom et al.

1998; Urnes and Graham 1999]. In general they allow the user to update local state

replicas immediately (optimizing responsiveness) and then propagate the updates to

remote replicas. The challenge is to ensure that an acceptable degree of consistency

and predictability is maintained in the process.

A.3 Optimistic Approaches

The most optimistic approach to consistency maintenance is not to provide it at all.

Greenberg and Marwood argue that inconsistencies are acceptable in applications

like pixel-oriented shared whiteboards that are intended for informal communica-

tion rather than the production of a common artifact [Greenberg and Marwood

1994]. If two users draw intersecting lines (say, one red and one blue), that appear

in opposite orders on their two whiteboards, then the pixel at the lines' intersec-

tion will be red on one board and blue on the other. This kind of inconsistency

is unlikely to cause the users any confusion and can therefore be tolerated. Incon-

sistencies can also be tolerated where they can easily be detected and resolved by

social protocols acted out by the system's users [Ste�k et al. 1987].
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Locking at one semantic level can remove the requirement for consistency main-

tenance at lower levels. In our example of the shared graphical editor, once a lock

on the object's position is obtained the application can move the object without

applying consistency maintenance to each individual motion. If the node's position

data is locally replicated, this can provide a dramatic improvement in interface

responsiveness [Urnes and Graham 1999].

Where some degree of consistency maintenance is required and locking pro-

vides unacceptable performance, a fully or semi-optimistic algorithm may be em-

ployed. Fully optimistic algorithms include the distributed OPerational Transform

(dOPT) [Ellis and Gibbs 1989], the Calculus for Concurrent Update (CCU) [Cor-

mack 1995a], and the Optimal RESponse TimE (ORESTE) algorithm [Karsenty

and Beaudouin-Lafon 1993]. These allow updates to be made to local state imme-

diately (providing optimal responsiveness), then propagated to remote replicas for


owthrough. The algorithms sacri�ce short term consistency, but guarantee that

all replicas will reach a consistent state at quiescence.

dOPT de�nes a partial order of all operations in the system (roughly, Lamport's

happened before relation [Lamport 1978]) and guarantees that all events in the

partial order are executed in order at all sites. Where two operations o and p are not

in the partial order, dOPT has all sites execute either o0
�p (p followed by o0) or p0

�o,

where o0 and p
0 are transformations of o and p chosen such that o0

�p and p
0
�o have

the same e�ect given the same initial state. CCU, which corrects a subtle 
aw in

dOPT [Cormack 1995b], works in essentially the same way. Both CCU and dOPT

require the programmer to provide a transformation function for every ordered

pair of operations possible in the system. This gives n2 transformation functions

for a system with n distinct operations. Choosing transformations which are both

correct and predictable is a challenging and apparently sometimes unachievable

task [Nichols et al. 1995].

ORESTE is based on a total order of all events in the system. Where operations

are determined to have been executed out of order at a site, and the order is de-

termined to have caused a state inconsistency, that site will \undo" the o�ending

operations and \redo" them in the correct sequence. This requires that all opera-

tions in the system include a mechanism to undo them and that all ordered pairs of

operations be categorized as to whether they con
ict, safely commute, or mask one

another. The rollback and reapplication of operations in ORESTE can be re
ected

as unpredictable behaviour in the user interface.

Semi-optimistic algorithms include Clock's eager concurrency scheme [Urnes 1998;

Urnes and Graham 1999] and that of the Distributed, Extensible Collaborative Ap-

plication Framework (DECAF) [Strom et al. 1998]. In both of these approaches,

update calculations are allowed to proceed using possibly inconsistent data. Then,

before updates are applied, the consistency of the source data is veri�ed either

centrally (in Clock) or by execution of a distributed algorithm (in DECAF). If an

inconsistency is detected, the update may be restarted or aborted. However, since

inconsistencies are rare in practice, these mechanisms provide considerably higher

responsiveness than lock based systems, even allowing for the overhead of multiple

transaction retries [Urnes and Graham 1999].

In Clock all views are pessimistic; that is, a view only displays the results of

successfully committed updates. In DECAF, views can be either pessimistic or
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Fig. 17. Key to the visual notation and abbreviations.

optimistic. Optimistic views sacri�ce predictability, but provide interface respon-

siveness directly comparable to that of fully optimistic algorithms. DECAF allows

the view display policy to be switched between optimistic and pessimistic at run

time to compensate for changing network conditions [Banavar et al. 1998].

A.4 Conclusion

This appendix has presented a brief overview of consistency maintenance approaches

for groupware. Good starting points for further reading include [Greenberg and

Marwood 1994; Kindberg 1996; Munson and Dewan 1996; Wright 1999].

B. VISUAL NOTATION

The visual notation used in this paper is presented in �gure 17 and described

informally below. Abbreviations used in the Interlace diagrams of section 4 are

also listed in the �gure.

Data 
ow. Data 
ow connectors represent the directed movement of information

between components. The actual type of connection (call, callback, constraint,

etc.) is unspeci�ed. The arrowhead(s) represent the direction(s) of 
ow.

Call. A call is an explicit procedure call or method invocation, which may have

a returned value. The caller requires knowledge of the calling structure of the

callee. The arrowhead indicates the callee.

Callback. A callback is an anonymous call, registered by the callee with the caller

using some prede�ned mechanism. Callbacks rarely have return values. The

arrowhead indicates the callee.

Constraint. A constraint expresses an automatically maintained relationship be-

tween a source and a target. Changes in the source are propagated to the target

by an underlying constraint maintenance system. Constraints are commonly

found in functional and constraint programming systems. The arrowhead indi-

cates the constraint's target; a double-headed arrow indicates a bi-directional

constraint.
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Event. An event is a noti�cation that something of signi�cance has occurred. It

may be transmitted via data 
ow, call, or callback, and is indicated by deco-

rating an arrow with the event symbol. Whereas a call or callback normally

requires action on the part of the callee, an event may be ignored by the recip-

ient.

Synchronization. Synchronization is an identity relation on replicated state ele-

ments or data streams. Synchronized state elements contain exactly the same

information at quiescence but may diverge when updates are pending. Synchro-

nized data streams transmit identical sequences of information in approximate

temporal synchrony. Adapted from [Patterson 1995].

Caching. Caching is a restricted form of synchronization in which only some por-

tion of the shared state is replicated in the cache. Caches serving di�erent

users will typically contain di�erent subsets of the shared state, their contents

will vary over time, and active maintenance of cache coherence is necessary to

support semantically correct application behaviour.

Routing connector. A routing connector encapsulates information about the in-

terconnection topology of the elements it connects and actively routes informa-

tion between those elements. Adapted from [Taylor et al. 1996].

Event sequence. Dynamic behaviour of systems is illustrated using event se-

quence numbers to indicate ordering. Adapted from the Uni�ed Modeling

Language collaboration diagram notation [Booch et al. 1999].

Component. A component may contain processes, state, and objects, and may

have an arbitrarily rich internal structure. Physical devices are also represented

as components.

Object. Objects include encapsulated state, operations which can be invoked on

the state, and a well-de�ned interface to those operations. This includes ab-

stract data types as well as \objects" in the sense normally meant in discus-

sions of object-oriented programming languages. Objects may also encapsulate

a concurrent process element, in which case they are agents.

Process. A process element represents some computation performed by the system

based on data represented separately, in either in a state or object element.

Process elements are normally concurrent.

State. State elements store information which is read and updated by separate

process elements.

User. A human (or possibly human-like agent) user of a groupware system.

Server site. A computer which does not interact directly with a user. Adapted

from the Uni�ed Modeling Language \node" notation [Booch et al. 1999].

User site. A computer, its input and output devices, and at least one user.
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