Notification Servers for Synchronous Groupware

John F. Patterson
Lotus Development Corporation
55 Cambridge Parkway
Cambridge, MA 02142-1295
+1 617 693 4236
john_patterson@crd.lotus.com

ABSTRACT

We introduce the Notification Service Transfer Protocol
(NSTP), which provides a simple, common service for
sharing state in synchronous multi-user applications. A
Notification Server provides items of shared state to a
collection of clients and notifies the clients whenever one of
the items changes. The division between client and server in
this system is unusual; the centralized state is uninterpreted
by the server. Instead, the responsibility for semantics and
processing falls on the clients, which collude to implement
the application. After describing NSTP, we differentiate it
from other systems in terms of the four design principles
that have guided its development.

Keywords

Synchronous groupware, multi-user applications, group-
ware infrastructure, client/server architectures, notification,
protocol, design principles, performance, state sharing.

INTRODUCTION

The problem of maintaining consistent state is central in
network-based synchronous multi-user groupware. In each
such system, the user interfaces (Uls) of the participants
must be kept consistent to promote the impression of
playing or working together. For example, players in
multi-user games like Doom must be aware of each other’s
presence, as must visitors in shared virtual spaces like
AlphaWorld. Users of shared editors must be able to see
changes and gestures made by coeditors, as must users of
shared whiteboards. Greif [7] and Baecker [3] have useful
background readings on such synchronous groupware.

Often, the technique for maintaining consistency is specific
to the application being implemented. Effectively, each new

Permission to make digital/hard copies of all or part of this material for
personal or classroom use is granted without fee provided that the copies
are not made or distributed for profit or commercial advantage, the copy-
right notice, the title of the publication and its date appear, and notice is
given that copyright is by permission of the ACM, Inc. To copy otherwise,
to regulglish, to post on servers or to redistribute to lists, requires specific
permission and/or fee.

Computer Supported Cooperative Work *96 , Cambridge MA USA

© 1996 ACM 0-89791-765-0/96/11 ..$3.50

Mark Day
Lotus Development Corporation
55 Cambridge Parkway
Cambridge, MA 02142-1295
+1 617 693 0576
mark _day@crd.lotus.com

Jakov Kucan
M.L.T. Laboratory for Computer
Science
545 Technology Square
Rm. NE43-334
Cambridge, MA 02139
+1 617 253 5866
kucan@theory.lcs.mit.edu

synchronous groupware application (re)invents some
mechanism for achieving consistency. Qur approach, the
Notification Service Transfer Protocol (NSTP), abstracts
out the problem of state consistency from any particular
application. It provides a simple, general, open, centralized
service to support the construction of synchronous
groupware.

In this paper, we describe NSTP and discuss the design
principles that differentiate it from similar systems.
Although NSTP is the collection of messages by which a
client obtains service from a Notification Server, we do not
discuss detailed message formats for NSTP. Instead, we
present a high-level view of how a Notification Server looks
via NSTP. This is essentially the conceptual model that the
programmer of a client needs to implement an application;
end users do not need to know anything about NSTP.

A simplified view of the service supported by NSTP is
presented in Figure 1. In this toy example, the server has
five “pieces” of state, represented by the different shapes.
Only two values of the state are possible: filled or unfilled.
When Client] sends a message to the server indicating that
the circle should be filled, the server changes the shared
state appropriately and then sends each of the clients a

Server

1pooe

A

Client1 Client2 Client3

Figure 1: Schematic of a Simplified
Notification Server.

122

notification of the state change. The notifications permit
the clients to maintain a consistent account of a common
fact, namely the state of the circle.

Although we believe NSTP does well at solving certain
problems of reuse and performance, NSTP does not attempt
to solve all problems of synchronous multi-user groupware.
There are two areas that we explicitly do not address:
persistent state and streaming traffic.

Persistent state outlives the execution of an application,
generally by making a record on a nonvolatile medium.
Asynchronous groupware requires sharing via persistent
state, since the users cannot rely on being simultaneously
present during a communication. Synchronous groupware
often requires some of both persistent and non-persistent
(ephemeral) state. For example, sharing via persistent state
may be best for any large, while sharing via ephemeral state
is appropriate for echoing shared pointers during the
discussion. A Notification Server is designed to be useful
for ephemeral state, not persistent state’. Insofar as an
application requires persistence, some other infrastructure
will be required. Some examples of such infrastructure are a
distributed database, a Web server, Lotus Notes’or a
distributed file system.

Streaming traffic is data such as video and audio.
Conferencing applications usually transmit continuous
streams of information among user stations. Other
applications, like multi-user editors and many multi-user
games, only transmit brief bursts of information when some
element of the application changes and other clients need to
be informed. Notification servers are useful for such bursty
traffic and less stringent real-time demands, but they are not
suitable for routing streaming traffic among clients. If an
application needs data streams for audio or video between
users, then some additional infrastructure will be required.

In summary, NSTP allows clients to communicate with a
centralized mechanism for maintaining consistent state
among those clients. It is not intended as a means either for
accessing persistent state or for streaming information
among clients.

This paper explores the design of NSTP by examining its
four major design principles, namely:

"There is actually nothing in NSTP that prevents a server implementation
from storing state in files before generating notifications; we simply
assume that such implementations will be avoided because performance is
a primary objective. There is also nothing that prevents a server from
backing up state during idle moments as a hedge against system crashes,
this would be prudent. Clients of Notification Servers cannot rely on
these forms of persistence. however, and must behave accordingly.

YL otus Notes is a registered trademark of Lotus Development Corporation.

123

Support for Awareness,
Centralized State Sharing,
Client-based Semantics, and
Place Browsing.

Each principle is explained, justified, and compared to the
design of other groupware infrastructure. At the end, we
ask how NSTP is distinctive and consider extensions for
improving NSTP. First, however, we begin with a brief
description of the conceptual model underlying NSTP.

CONCEPTUAL MODEL OF NSTP

The conceptual model of NSTP is a description of the
service from the vantage point of a developer who must
implement a client. Unlike some services (notably Internet
Relay Chat [9]), NSTP is not intended as an end-user
protocol. Client software uses NSTP to obtain service on
behalf of a user. The purpose of a Notification Server is to
share state information among a set of clients that work
together to implement a synchronous multi-user application.
The user’s experience of the application is determined by
the clients, not NSTP.

We would like NSTP to be simple, generally applicable,
and efficient. Two senses of efficient compete here. On the
one hand, the time required to receive a state change
request, make the change, and send notifications to all the
clients must be minimized. On the other hand, it is
inefficient to devote a process or processor to each new
multi-user application. The tension is between supporting
as many applications as possible and optimizing the
notification performance for each application. Since this
tradeoff is demanding enough, we have resisted the
temptation to add features to NSTP unless they facilitate the
management of state and the ensuing notifications. As a
result, NSTP is somewhat austere.

NSTP deals with four kinds of object: Places, Things,
Facades, and the server itself. Figure 2 illustrates the
relationships among these entities. Within the server, the
larger box with the dark outline corresponds to a Place.
The thicker outline is intended to imply that these objects
are opaque until the client becomes associated with
(“enters”) them. The geometric forms within the Place are
the Things. The box with the thinner outline in front of the
Place is its Facade. The geometric forms within the Facade
are views of the Things from the Facade. The thin outline
of the Facade is intended to convey that it is accessible by
any client associated with the server.

A Place is the most important kind of object. It contains the
shared state and partitions the server’s resources among
multiple applications. Each application uses at least one
Place within which its shared state is kept. Clients join the
application by entering the Place. Once they are in the
Place, they receive notifications about any change to the

Notification Server

=g e g Place
Q8.
0\ U fj Facade
» ®
Client2 Client3

Figure 2: A Place, its Facade, and some Things

state of Things in that Place; they may also make changes of
their own. Once the client leaves a Place, it no longer
receives notifications from that Place. In Figure 3, Clientl
has not entered any Places even though it has registered
with the server. The other clients are all in one or more of
the three Places. Note that Client2 and Client3 are in more
than one Place at a time; entering a new Place does not
require leaving the current Place.

Things are the keeper of state within the Places. They have
three parts: name, value, and attributes. Disregarding
attributes momentarily, the Things are essentially
property-value pairs for the Place. The name may be any
string; the value may be any byte array. The attributes
control access to the Things and indicate the type of
notifications that a Thing will cause. Attributes are set at
creation, and may not be modified thereafter. Since only
the value of an object can change, not its attributes, we
avoid the problem of whether attribute changes should
cause notifications. Things may be created, changed (value
only), locked, unlocked, and deleted. If specified by the
attributes, Things will cause notifications on creation,
change, or deletion.

A Facade is the external view of a Place. It comes into
being when the Place is created and is destroyed when the
Place is destroyed. Facades serve two purposes. First, they
provide access to any Things with attributes indicating that
they are publicly accessible. In Figure 2, the Place has two
publicly available Things, the square and the circle.
Distinct attributes control reading and writing of a Thing, so
a Thing can be publicly readable without being publicly
writeable or vice-versa. The other purpose of a Facade is to
provide entry to the Place.

Finally, the server itself provides some services to the
client. It authenticates clients and ensures that they should

Notification Server
a A EROAN O A
O OO OO
s ? el L2)
, g
Client1 Client2 Client3| |[Client4

Figure 3: Each client can be in zero, one, or more
Places (Facades omitted for clarity)

be allowed to use the server. Also, it provides the means to
create new Places and retrieve existing Places.

SUPPORT FOR AWARENESS

In this section we start to explain and justify the principles
of our design. Our first principle is that the server must
support an application class we refer to as “awareness”. The
Notification Server grew out of earlier work on a service
that made it possible for users of Lotus Notes databases to
know who else had the same database(s) open at the same
time. This service was built around a server where clients
registered whenever they opened or closed a Notes
database. Once registered, the clients received change
notifications for entering or departing clients.

Other systems that provide similar functionality use the
same technique, but often use different terminology.
Rendezvous® [10], Touring Machine [2], and GroupKit
[11] use the term session; LambdaMOO {4] and more
recently Jupiter [5] [8] have Places; Internet Relay Chat
(IRC) [9] has channels. We use the term session as a
general term for the mechanism that identifies and binds the
distributed elements of an application into a collection of
cooperating processes for a period of time.

While many different session models are possible, the two
most common involve either “calling-out” or “calling-in”.
A standard phone call and some conference calls exemplify
the calling-out model, in which conference participants are
brought into the conference by calling out to them from the
conference. A “meet me” telephone conference exemplifies
the calling-in model, in which participants call into the
session to indicate their interest in joining.

*Rendezvous is a trademark of Bellcore.

124

Another perspective on this distinction between calling-out
and calling-in is the type of network addressing that is
involved. In the calling-out model, clients are the entities
that may be addressed; the session is implicit. In the
calling-in model, sessions are the addressable entities. In
the world of groupware, some systems, e.g.
ProShare®,support calling-out, while others, e.g., Internet
Relay Chat, MUDs, and AlphaWorld, support calling-in.

Awareness applications work best with a calling-in model
with explicitly addressable sessions. If only clients are
addressable, then awareness can only be achieved by having
clients notify one another directly. For large numbers of
clients, this will only work if one is willing to devote the
bandwidth needed for the large number of broadcast
notification messages. In general, the number of
notifications required in such a system grows as O(n?). The
more efficient choice is to use a session server as a
clearinghouse or filtering point for matching client
notifications with those clients that are interested in
receiving the notification.

CENTRALIZED STATE SHARING

A system that only supports awareness (as described in the
previous section) is essentially a session server that permits
clients to join a session and then receive notifications
whenever any other clients join or depart. Such a server
facilitates state consistency among its clients, but the only
kind of state is the presence or absence of a client in the
session. We next asked whether this might be usefully
generalized to support client-defined shared state. From
earlier experiences with Rendezvous [10], we knew that
many synchronous muiti-user applications (e.g., games,
whiteboards, etc.) have only modest throughput
requirements. It seemed reasonable to centralize the shared
state.

We should point out that this was not an obvious choice.
GroupKit [11}, for example, has introduced a session
server, called the Registrar, to support awareness, but
avoids encumbering it with anything other than the simple
awareness requirements. Once the clients learn of each
other’s presence via the Registrar, further communications
are pursued on a client-to-client basis. The GroupKit
designers chose to centralize only where centralization was
truly required.

So why have we chosen to centralize these interclient
interactions? Why not simply have each client send its
messages to all other clients in the session?

Figure 4 illustrates our reasoning on this point. In the first
approach to interclient communication (A), each client
sends messages to all other clients. The designers of

“ProShare is a trademark of the Intel Corporation.

125

[Client] [Ciient

\

A

l\

[CIlent

B

(S)—»Cier]

Cc

Figure 4: Three approaches to interclient interaction

GroupKit do this whenever possible, but they concede that
it is sometimes necessary to ensure that client requests are
serialized, i.e., placed in a consistent order. When this is
needed, one client (the upper one in approach B) assumes
the role of serialization point. It receives all the messages
and redistributes them (even to the original sender).
Finally, in approach C, we see the Notification Server
acting as this central serialization point, not the client.

Our primary reason for preferring a central serialization
point is that clients are typically less reliable than servers.
A client is usually thought of as supporting one person’s
work, while a server provides services for a number of
people. Because a server failure can affect more people, a
sensible manager will devote more resources to keeping
servers up. In addition, the pragmatics of machine
placement mean that servers are often in machine rooms
and relatively well-protected; clients are in the offices of
the users, where they are subject to being powered down,
unplugged, having coffee spilled in them, and the like.

These observations about client reliability are critical to
deciding which functions to centralize. In approach B,
should the process or machine fail, or should the user
simply decide to power down, then the other clients are
either stuck or a rather complicated recovery protocol must
ensue. With a server-based serialization point, like
approach C, clients are free to be unreliable without
disrupting the other clients’ access to the application.
Furthermore, more attention can be devoted (e.g., better
hardware, more reliable code, failover protection) to
ensuring that this critical bottleneck does not fail.

Arguably, the difference between GroupKit’s approach and
the Notification Server approach is a judgment about how
often serialization is required. Over all the interclient

messages, if serialization is rarely required, then GroupKit
accepts little risk and avoids the unnecessary delays
associated with serializing messages that do not require it.
If serialization is frequently needed or if clients fail often,
then a Notification Server will be simpler and more reliable.
It is perfectly reasonable, however, to use both, writing
clients that use a Notification Server when serialization is
required and that communicate directly when it is not.

Another system that supports awareness, but does not
support centralized state is Internet Relay Chat (IRC) [9].
IRC does go further than GroupKit by providing multicast
messaging via its servers, but it does not have a concept of
shared state and notifications about that state. Unlike
GroupKit, the absence of centralized shared state in IRC
was less an aversion to centralization than an indifference to
state sharing as a concern.

So why do we centralize state? The need for a central
serialization point does not imply a need for keeping state
centrally. Zephyr [6], for example, provides a service
similar to ours without keeping any client-defined state at
the servers; instead, the servers accept messages from
clients and multicast those messages back out to interested
clients. We offer two advantages for centralized state: it
simplifies lock-keeping and it is useful for introducing
latecomers to an application.

Whenever clients are permitted to change the same state
variables or collection of variables, it may be necessary to
ensure that only one is doing it at any given time. To
accomplish this, some form of locking is needed. Assume
there are several lockable tokens, but there is no centralized
keeper of locks. Then every client must respond to queries
from other clients about which clients have which tokens.
For any tokens they possess, they must process requests to
yield the token, send the token as needed, and notify all
relevant clients that the token has been passed. In contrast,
when there is a centralized lock keeper, clients do not
process lock requests and there is no need for clients to
keep track of where the locks are being held. Nichols, et.al.
[8] make similar arguments for the manner in which
centralized processing simplified their concurrency control.

Our other reason for preferring centralized state is that it
eases the problem of introducing a latecomer to a
synchronous application. If all the essential state in a
shared application is kept in the server, then the client that
comes late can determine what it needs to know without
encumbering any other client. When there is no such
server, as in GroupKit, then some client must take on the
role of communicating the current state to the latecomer. If
this client is not the serialization point, then various
problems of intermixing initial state messages with change
notifications are possible. If it is the serialization point,
then this client is even more encumbered.

126

One point of view about our decision to put shared state in a
centralized server is that we are exploring which services
are best centralized. We have already concluded that
awareness will compel some centralization. Given that we
will have a session server, we are trying to determine what
else it can usefully do. Clearly, some activities should be
done on a client-to-client basis, for example file transfer,
but we are unwilling to go along with GroupKit’s avoidance
of any additional centralization. In this regard, we are more
in line with LambdaMOQO [4] and Worlds, Inc’s VRML+
[i2].

CLIENT-BASED SEMANTICS

Two of our primary design objectives were to ensure that
Notification Servers were application-independent and that
they would perform well. We were aiming for a “lean,
mean, notification machine” that could be used in a wide
variety of synchronous groupware applications. The best
way to achieve these objectives was to avoid the temptation
to have the server “know” anything about the semantics of
its Places. Zephyr [6] pursues a similar design strategy, but
does not provide a state sharing service.

The reasoning behind this client-based semantics is quite
simple. In aggregate, clients have more available
computing resources than a server. Thus, the more that
processing can be shifted off the server and into the clients,
the less the server will need to do and the better its overall
performance will be.

This decision to keep the application semantics out of the
server had two identifiable consequences for the protocol.
First, the protocol includes no mechanisms for
programming a Place. There is no way, for example, to
inform the server that if a certain value is set then certain
activities should follow. This type of conditional
processing might be nice to have, but NSTP leaves it to the
clients to perform.

Similarly, NSTP has no concept of different types of state.
When we began designing, it seemed obvious to some of us
that we would want strings, integers, enumerated types, and
most standard types of variables. It became clear, however,
that we were beginning to encumber Notification Servers
with the need to process a language as well as issue
notifications. Retreating from this approach, we opted for a
single undifferentiated data type, a byte array. The
encoding and decoding of these byte arrays is left entirely to
the clients. The server does nothing but move the data
around.

While we feel that client-based semantics is an essential
element for ensuring the scalability of Notification Servers,
other systems have emphasized different concerns. MUDs,
in general, and LambdaMOO [4], in particular, are similar
to Notification Servers in that they support sessions, called

Places, and notifications about changes to the state within a
Place, but have made a notable commitment to server-based
semantics. LambdaMOO provides a programming
language with which users may create object behaviors.
The programs are stored and processed on the server. This
permits them to be shared among LambdaMOQO’s users.

With a Notification Server one would support
programmable objects in a different manner. Clients would
provide a Ul for writing programs and would store the
programs in a shared location. Then some state in the Place
would be modified to indicate the location of the new
program so that all clients could retrieve it. As needed,
clients would retrieve the program and process it locally.
This demonstrates that client-based semantics does not
really prevent Notification Servers from doing what
LambdaMOO can do; it just changes the location at which it
is done.

NSTP’s client-based semantics is one of its most striking
characteristics. It is assumed that different clients will be
needed for different applications. A whiteboard application
will require one type of client, a chess game another. The
collection of clients that enter a Place must work together to
determine how the Place is used. In a sense, the clients
collude in the interpretation of a Place.

Because NSTP assumes cooperating clients, it is open to
certain abuses that are less likely with LambdaMOO. For
example, one could write a generic client that could enter
any Place permitting one to eavesdrop on or vandalize the
Place. To inhibit this we have provided for:

user authentication when registering with a
server,

mechanisms for controlling who may enter
a Place,

access control on a Place’s state,

and a policy that sends notifications to all
clients within a Place whenever any other
client either enters or leaves the Place.

Moreover, eavesdropping on or vandalizing a Place would
probably be rather unrewarding, since one would only have
access to uninterpreted byte arrays, which could themselves
be encrypted. Nevertheless, the mechanisms that we
provide are only helpful if applications are written to use
them, which means that abuses remain feasible. When the
semantics are server-based there are more opportunities to
either provide or impose protective mechanisms.

Worlds, Inc’s VRML+ [12] reveals another situation in
which server-based semantics are in use. VRML+ is
designed to support a large scale muiti-user virtual reality.
Many users are expected to be simultaneously browsing
through 3D virtual worlds and they must all receive

127

notifications about one another’s movements. This is
accomplished with a server that regularly sends
notifications to its clients about any other clients that are
within a certain radius. '

VRML+ segments its notifications in a very different way
from NSTP. NSTP imposes the rather harsh boundary of
Places, which clients may either be in or not; VRML+ has a
notion of a three-dimensional space and determines one’s
notification set as a sphere around one’s location. While
this approach is not very general, it is more efficient for
very large Places and does demonstrate an advantage to
shifting some semantics into the server. '

PLACE BROWSING

Our final design objective for NSTP was that it should be
possible to browse from one Place to another. For example,
having entered a Casino Place where all sorts of games are
available, it should be possible to see and then enter Places
to play each of the different games. If the Places for
playing particular games are thought of as tables, then
sitting down at the poker table (entering the poker Place)
need not mean that one leaves the Casino. One’s client
might be prepared to be in two or more Places at once.

Alternatively, the Casino might have doors that represent
opportunities to leave the Casino and go to other interesting
Places. These might be other arbitrarily different Places,
much like the “see also” hyperlinks on a Web page.

This ability to browse among Places is an essential element
of both LambdaMOO [4] and MERL’s Diamond Park [1],
but they do not support browsing to arbitrary Places. Our
objective with NSTP was to ensure that links between
Places could be as rich as hypertext links.

The first two steps in achieving this goal are directly
analogous to HTTP. First, we borrowed the concept of a
URL as the standard form of addressing for Places. This
ensured that one Place could refer to another Place
anywhere on the Internet. Second, we recommend that
certain Thing names be reserved as indications of other
Places to access from the current Place.

This permits a client to discover a link in one Place that
leads to another and even to follow that link to another
server. The real difficulty comes in knowing how to enter
the Place. With client-based semantics each Place may
need a different client for its interpretation. Clearly, no
client can implement the interpretation for every possible
Place. If it does not, how can we ensure that any arbitrary
Place may be linked to any other arbitrary Place?

Our solution to this seeming conundrum is to permit Places
to indicate where an executable may be retrieved for
interpreting the Place. We provide a mechanism whereby a

browser may determine the type of a Place before entering.
This serves the same purpose as a MIME type in HTTP.
We also provide a mechanism whereby a Place browser
could obtain a URL for a Java application that could enter
and interpret the Place. Similarly, a Place could indicate
where to find an OCX for interpreting it.

The mechanism for achieving this trick is a Place’s Facade.
The Facade permits certain information about a Place to be
made publicly available so that a client may read the
information without actually entering the Place. Thus, one
can imagine a general-purpose Place browser that examines
a Place’s Facade, finds the URL for the Java code to
interpret the Place, downloads the code, and then upon
executing the code enters the Place. In this fashion,
different applications can use Places in very different ways
without foreclosing the ability of users to browse among the
Places.

CONCLUDING COMMENTS

We have presented a brief description of the Notification
Service Transfer Protocol (NSTP) and explained four basic
design principles that have guided this work. We conclude
by characterizing NSTP’s niche in the world of groupware
infrastructure and presenting some areas for future
improvement.

One way of classifying alternative groupware infrastructure
is in terms of the amount of service that they migrate into a
session server. We can begin with systems that do not use a
session server and then consider ones that use a session
server and progressively introduce an awareness service,
shared state, and then semantics. This yields the following
classification with examples:

* No Server
> ProShare
* Server: awareness only
» Rendezvous
> Touring Machine
> IRC
> GroupKit
* Server. awareness, and shared state, but no
semantics
> NSTP
* Server: awareness,

application semantics
> LambdaMOO/Jupiter
» VRML+

shared state, and

The most distinctive aspect of the NSTP design is that it
provides server-based state without server-based semantics.
Unlike GroupKit, NSTP does not shy away from
centralizing state; unlike LambdaMOQO, the semantics
associated with this state remains the concern of the client,
not the server. We are trying to strike a balance between

centralizing some critical services, e.g., serialization,
lock-keeping, and latecomer support, while ensuring that a
Notification Server can provide low-latency notifications
for many simultaneously active applications.

‘Three extensions of NSTP currently under consideration

are:

* multicast messages,
¢ predefined Places, and
* server-launched agents.

Multicast messages allow clients to send messages to other
clients within a Place without actually changing any state on
the server. Initially, our design did not include this
capability because we were concentrating on the shared
state. We expect, however, that without some ability to
send multicast messages, clients will use shared state for
multicasting when there is no need to record the message,
even ephemerally. This is inefficient. With multicast, we
believe we will improve overall efficiency by eliminating an
inefficient practice.

Predefined Places and server-launched agents are
mechanisms for allowing the server to impose more
structure on Places so that clients can trust them more.
Predefined Places are templates for well known Places that
a server is prepared to create. The client obtains the Place
by specifying its type in the creation request. Then the
server creates the Place and populates it with the Things
that such a Place requires. For these types of Places, any
client can be assured that certain Things will be available
and initialized with the appropriate attributes; the clients
need not trust that some other client has set everything up
correctly. Since NSTP currently requires that Places be
prepopulated with certain state, predefined Places are
merely a generalization of this capability and should not
unduly harm performance. (They could actually improve
it.)

Server-launched agents are a mechanism for providing the
appearance of server-based semantics without actually
encumbering the Notification Server. For some predefined
Places, it should be possible to indicate that the server
should launch a special client, called an agent, when the
Place is created. The server could ensure that the agent is
always the first client to enter the Place and the last to
leave. This client could then offer some seemingly
server-based processing for the Place.

Although server-launched agents might seem to violate our
approach of client-based semantics, a server need not
launch agents on its own processor. It can communicate
with a special agent server on another processor and thereby
prevent the agents from disrupting notification
performance. In addition, since agents are simply clients

128

associated with predefined Places, we have not changed the
protocol to make them possible. Notification Servers that
support applications that do not need server-based
semantics are not encumbered by the fact that other
Notification Servers use the capability.

As we look at the future of NSTP, the challenge will remain
the same. We must maintain a balance between providing
more service and preserving the efficiency of Notification
Servers. We think the best way to achieve the “lean, mean
notification machine” is to remain committed to
client-based semantics and avoid encumbering the server
with functionality that is application-specific. Our strategy
has been to add functionality to the server only when we
can persuade ourselves that it is:

* a generally valuable capability,

* needed in the server, and

* not a burden on applications that choose
not to use it.

We expect this strategy to continue.

WHERE TO GET MORE INFORMATION

More information about NSTP may be obtained at our web
site, www.research.lotus.com, including a complete
specification of the protocol and a reference implementation
of the server (written in Java.)

REFERENCES

1. Anderson, D.B., Barrus, J W., Howard, J.H., Rich, C,,
Shen, C., and Waters, R.C. “Building Multiuser
Interactive Multimedia Environments at MERL” IEEE
Multimedia 2, 4, 1995, pp. 77-82.

2. Arango, M., Bahler, L., Bates, P., Cochinwala, M,,
Cohrs, D., Fish, R., Gopal, G., Griffeth, N., Herman,
G.E., Hickey, T., Lee, K.C., Leland, W.E., Lowery, C.,
Mak, V., Patterson, J., Ruston, L., Segal, M., Sekar,
R.C., Vecchi, M.P., Weinrib, A., and Wuu, S-Y. “The
Touring Machine.” Communications of the ACM 36, 1,
1993, pp 68-77.

3. Baecker, RM. (Ed) Readings in Groupware and
Computer-Supported Cooperative Work: Assisting

129

10.

1.

12.

Human-Human Collaboration
Publishers, San Mateo, CA 1993.

Morgan Kaufmann

Curtis, P. LambdaMOQ Programmer’s Manual,
Xerox, August 1993.

The most recent version is available as
ftp.//ftp.parc.xerox.com/pub/MOO/ProgrammersManual.ps.

Curtis, P., Dixon, M., Frederick, R., and Nichols, D.A.
“The Jupiter Audio/Video Architecture: Secure
Multimedia in Network Places.” Proceedings of ACM
Multimedia ‘95, ACM Press, 1995,

DellaFera, C.A. and Eichin, M.W. “The Zephyr
Notification Service.” Proceedings of the USENLX
Winter Conference, Dallas TX: USENIX Association,
1988.

Greif, 1. (Ed) Computer-Supported Cooperative Work:
A Book of Readings Morgan Kaufmann Publishers,
San Mateo, CA, 1988.

Nichols, D.A., Curtis, P., Dixon, M., and Lamping, J.
“High-Latency, Low-Bandwidth Windowing in the
Jupiter Collaboration System.” Proceedings of UIST
‘95, Pittsburgh, PA: ACM Press, 1995, pp. 111-120.

Oikarinen, J., and Reed, D.
Protocol RFC 1459, May 1993,
Available at fip://ds.internic.net/rfc/rfc1459.txt.

Internet Relay Chat

Patterson, J.F., Hill, R.D., Rohall, S.L., and Meeks,
W.S. “Rendezvous: An Architecture for Synchronous
Multi-User Applications.” CSCW ‘90 Proceedings,
Los Angeles, CA: ACM, 1990.

Roseman, M. and Greenberg, S. “Building Real Time
Groupware with GroupKit, A Groupware Toolkit.”
ACM Transactions on Computer Human Interaction,
ACM Press, Scheduled for March 1996.

Steremberg, A., Close, J., Hayes, K., and Mitra
VRML+: Technical Documentation March, 1996,
The most recent version is available at
http://www/worlds.net/vrml/technical/.

