

Object Eventing Service

Draft Revision 1
Michael Boyle (boylem@cpsc.ucalgary.ca), and

Michael Rounding (rounding@cpsc.ucalgary.ca)

 University of Calgary

Abstract
The Object Eventing Service provides a hierarchy of named nodes containing arbitrary binary
data intended to support the development of distributed or collaborative applications. The
service fulfills two key needs of users (e.g., developers of distributed or collaborative software):

• persistent data storage to be shared among a distributed collection of peers; and,

• selective notification of changes to the tree or the values stored at nodes.

Although this draft revision describes only a small fraction of the envisaged system, an effort has
been made to recognize opportunities for further enrichment of the service and design has
proceeded with the expectation that some or all of these enrichments may be added at a later
date.

Table of Contents

Basic Concepts ...6
Tree...6
Notifications ...6
Subscription Contracts... 9
Quality of Service ... 10
Network Topology ...11

Implementation ... 12
Wire Protocol.. 12
Database Tables.. 13

NODE Table.. 13
CONTRACT Table... 14
SUBSCRIPTION Table ..15

Processing Logic..15
General Introduction...15
LIST Verb.. 16
GET Verb .. 16
POST Verb ...17
REMOVE Verb...17
LEASECONTRACT Verb .. 18
CANCELCONTRACT Verb ... 18
SUBSCRIBE Verb ... 18
UNSUBSCRIBE Verb ... 19
NOTIFY Verb.. 19

Future Considerations ...20
Security...20
Replication and Dynamic Partitioning ..20
Concurrency Control, Transactions and Sub-tree Locking ... 21
Expiration and No-Store Nodes... 21
Triggers and Server-Side Processing ...22

References ..24

Basic Concepts Page 6 of 23

Object Eventing Service—Draft Revision 1 Boyle and Rounding, 2000-12-15

Basic Concepts

Tree
The tree in OES is a hierarchically organized global namespace; nodes in the tree store
arbitrary binary data. Every node in the tree has exactly one ancestor, with the exception
of a single root node in the tree, which has no ancestors. A node may have n≥0 children;
each child node has a nodename that is locally unique among its n-1 siblings. The
nodename of any non-root node is a character string at least one character in length. The
nodename of the root node is a zero-length character string. Figure 1 shows a hypothetical
tree representing a few continents, nations, and cities of the world.

For this revision, UCS-2—also known as
Unicode™—is assumed to be the character set
employed in OES. For each node in the tree, there
exists a single path of nodes extending from the root
of the tree to that node. The concatenation of the
names of each node along a path descending from
the root of the tree, interleaved with a path
separator character, constitutes the pathname of
the terminus of the path. For this revision, the path
separator character is assumed to be the reverse
solidus (\) character (UCS-2 character code
U+005E; commonly referred to as the ‘backslash
character’). Consequently, the legal set of
characters that may appear in a nodename is UCS-2
less the path separator character. For example, the
pathname of the node named ‘Calcutta’ is
‘\Asia\India\Calcutta’.

In this way, the tree resembles the familiar
metaphor employed in file systems, with folders and
files in the file system relating to nodes in the OES
tree. Unlike the file system metaphor, however,
non-leaf nodes in the OES tree may also store data:
in OES, there is no distinction between a container
node (i.e., folder) and a non-container node (i.e.,
file).

Notifications
The set of possible operations that may be made to a tree includes, but is not limited to:

• creating a node;

• removing a node; or,

• changing the value stored at a node.

We presume that distributed or collaborative applications which use OES will be
interested in taking some appropriate action when one of these operations is
performed. To fill this need, OES generates notification events for every such
operation.

Asia

India

Bombay

Calcutta

New Delhi

Malaysia

Kuala Lampur

Europe

France

Nice

Paris

Ireland

Cork

Dublin

«root»

Figure 1. Hypothetical OES tree.

Basic Concepts Page 7 of 23

Object Eventing Service—Draft Revision 1 Boyle and Rounding, 2000-12-15

Asia

India

Bombay

Calcutta

New Delhi

Malaysia

Kuala Lampur

Europe

France

Nice

Paris

Ireland

Cork

Dublin

«root» Subscription with depth d≤0 placed on Asia
receives notifications for changes to Asia only.

Subscription with depth d≤1 placed on India
receives notification for changes to India,
Bombay, Calcutta, and New Delhi

Subscription with depth d≤∞ placed on
Europe receives notification for changes to
Europe, France, Nice, Paris, Ireland, Cork, and
Dublin.

Figure 2. Subscrption depth.

Applications interested in receiving all of the notification events generated for any node in
a particular sub-tree place a subscription at the root node of that sub-tree. The
subscription includes information about the depth of the sub-tree rooted at the node to
which to watch for changes. The depth is a non-negative integer. For example, in Figure 2,
if a process places a subscription with depth zero on a the node named ‘Asia’, then it will
only receive notification events for operations that affect ‘Asia’ directly. If the process
places a subscription with depth one on the node named ‘India’, then it will receive
notification events for operations that affect that node, plus its immediate children. If the
process places a subscription with infinite depth on the node named ‘Europe’, then it will
receive notification events for operations that affect any node in the sub-tree rooted at the
node upon which the subscription was placed. Consequently, subscriptions are evaluated
not just on the node where an operation takes place, but also all of the ancestors that lie on
its path.

Basic Concepts Page 8 of 23

Object Eventing Service—Draft Revision 1 Boyle and Rounding, 2000-12-15

Asia

India

Bombay

Calcutta

New Delhi

Malaysia

Kuala Lampur

«root»

Limit l≤0 placed on Bombay: subscriptions on
India or Asia are not processed.

Limit d≤1 placed on Calcutta: subscriptions on
India are processed, but not Asia.

Limit depth d≤∞ placed on New Delhi:
subscriptions on New Delhi, India, and Asia
are processed.

Figure 3. Subscription notification upward propagation limit.

We presume that these operations may take place very frequently at some leaf nodes in the
tree. To balance the desire to provide a simple programmatic interface and yet provide
reasonable performance and ensure scalability, we introduce an upward notification
propagation limit for each node. This limit is a non-negative integer and controls how far
up the tree subscriptions are evaluated. For example, in Figure 3, if the limit on the node
named ‘Bombay’ is zero, then only subscriptions placed directly on that node are
evaluated. If the limit on the node ‘Calcutta’ is one then subscriptions placed on that node
and subscriptions placed on that node’s immediate ancestor (‘India’) are evaluated. If the
limit on the node ‘New Delhi’ is infinity, then subscriptions placed on any node along the
path leading to will be evaluated: ‘New Delhi’, ‘India’, ‘Asia’, and the root.

 To further improve scalability and
simplify programming, two additional
concepts are being considered:
notification barricades and subscription
pools. A notification barricade placed at
a node prevents any notification from
propagating upward beyond that node,
regardless of the notification
propagation limit of the node that
generated the notification event. For
example, in Figure 4, if a barricade is
placed at the node named ‘India’ then
notifications from the node named ‘New
Delhi’ will no longer make it to
subscribers on the node ‘Asia.’
Notifications from the nodes ‘Bombay’
and ‘Calcutta’ are unaffected by the
barricade, as their respective upward
propagation limits prevented
notifications from these nodes from
reaching ‘Asia’ anyway.

Asia

India

Bombay

Calcutta

New Delhi

Malaysia

Kuala Lampur

«root» Notification
barricade
placed on
India prevents
notifications
from New
Delhi from
reaching
subscriptions
on Asia.

Figure 4. Notification barricade.

Basic Concepts Page 9 of 23

Object Eventing Service—Draft Revision 1 Boyle and Rounding, 2000-12-15

Asia

India

Bombay

Calcutta

New Delhi

Malaysia

Kuala Lampur

Europe

France

Nice

Paris

Ireland

Cork

Dublin

«root»

Countries

Subscription pool linking France, India, Ireland,
and Malaysia to Countries: subscriptions need
only be placed on Countries to cover all these
independent sub-trees.

Figure 5. Subscription pools.

A subscription pool placed on a node short-circuits the normal upward bubbling of a
notification event generated at that node, and redirects so that it appears it was generated
from a different node. Normal bubbling of the redirected notification event continues
upward from this other node. For example, in Figure 5, a subscription pool placed on
France, India, Ireland, and Malaysia, redirecting to the node named ‘Countries’ means that
changes to any of France, India, Ireland, or Malaysia result in subscriptions on the node
name Countries to be processed. Subscription pools provide a convenient mechanism by
which to design notification topologies that do not conform to the strict hierarchical model
imposed by OES data store.

Subscription Contracts
A process P running on machine M may request that OES deliver to it notification events
for an arbitrary collection of nodes. To facilitate this, the process leases a subscription
contract from OES. The contract describes at least the means by which notification events
are to be delivered and the time at which the lease expires. It is permissible for a process
to renew its lease on a subscription contract, further extending into the future the time at
which the lease expires. If the lease expires, however, all subscriptions associated with the
expired contract are immediately cancelled, and the process, which took out the lease, will
no longer receive any further notifications associated with that contract. (It may continue
to receive notifications, in general, if it had taken out other contracts that have not yet
expired.) Moreover, all memory of the contract (e.g., the set of subscriptions made with it)
is cleared and its subscription-contract-id is rendered meaningless.

Basic Concepts Page 10 of 23

Object Eventing Service—Draft Revision 1 Boyle and Rounding, 2000-12-15

Quality of Service
We presume that a variety of qualities of service will be needed by applications that use
OES. Factors that influence the qualities of service include, but are not limited to
guarantees concerning:

1. generation of a notification event;

2. receipt of a notification event; or,

3. delivery of a notification event.

We presume that incoming requests to change a node’s value are queued up for
processing. For nodes which have values that frequently change, such as those
used in highly interactive applications, it may be desirable to discard intermediate
requests to change the values and silently drop the notification events generated by
such actions, particularly when the system under heavy loads. Quite often, it is
sufficient to simply process the most recently queued request, and silently drop
earlier requests that had been queued, but not yet processed. In fact, this is
prescribed to be the default behaviour; forced generation of a notification event for
every operation performed on a node is offered, however, as an extended quality-
of-service parameter.

We presume that clients taking advantage of OES exist in a partially disconnected
environment; that is, the communication link between an OES server and its clients may,
from time to time, be broken, and what’s more, a client may be unreachable at the time a
notification event must be delivered to that client. In most circumstances, such a condition
indicates extreme network failure, e.g., the process which made the subscription has died
or “gone away.” In these cases, it is desirable to have the contract expire immediately. In
fact, we prescribe this to be the default behaviour: a subscription contract immediately and
implicitly expires upon failure to deliver a notification for a subscription placed using that
contract.

In some circumstances, however, such implicit expiration of subscription contracts is
undesirable, and it is preferred to keep the contract “alive” until its stated expiration time.
This is offered as an extended quality-of-service parameter for subscription contracts.
Additionally, it may be critical that the client receive all notification events generated for a
subscription placed using such a contract—even while the client was disconnected—
provided the communication link between the client and the OES server is re-established
before the normal expiration of the subscription contract. Such a quality-of-service level
requires that notifications be cached for possible future receipt, and although expensive, is
offered as an extended quality-of-service parameter.

(N.B.: The quality of service parameter described next has numerous security and
implementation issues and although has not been struck from this record, it is highly
suspect and likely will not appear in any implementation.)

Highly interactive real-time collaborative applications often must remain aware of the
connectivity of participants. For example, an instant messaging application must provide
appropriate feedback to the user in the event a message could not be delivered to a contact.
To garner this awareness, users may optionally request delivery- and receipt-status
information for the notification generated for an action. This status information details to
which subscribers a notification event was:

• delivered and received: the subscribing process could be contacted;

Basic Concepts Page 11 of 23

Object Eventing Service—Draft Revision 1 Boyle and Rounding, 2000-12-15

• delivered, but not received: the subscribing process could not be contacted,
but the process has requested the guaranteed delivery level of quality of
service previously discussed; and,

• not delivered: the subscribing process could not be contacted, and the
process did not request the guaranteed delivery level of quality of service.

Network Topology
(N.B.: The functionality herein described will not be included in the first revision
of the service.)

It is expected that the OES service will provided in a distributed fashion, with multiple
machines responsible for parts of the tree. A distributed, (partially) replicated
architecture, with a federation of servers maintaining consistency across machines will
provide the greatest flexibility for scaling the architecture to higher and higher loads.

In particular, as we anticipate the use of the tree for sharing state information in highly
interactive collaborative applications, we expect that some areas of the tree will experience
extensive access. To prevent placing a bottleneck at OES server, we suppose that parts of
the tree may be offloaded to one of the machines that are accessing it quite frequently. The
central OES server maintains a shortcut to the machine that has leased responsibility for it,
redirecting, for a period of time, requests for this part of the tree to the leaser. The leaser
and the central server pass messages from time to time to ensure that a relatively recent
copy of the sub-tree is available on the server, should the leaser suddenly “go away.” In
effect, we propose that the communication topology be allowed to dynamically wander
from a strict client-server model, to a more relaxed peer-to-peer model, as deemed
appropriate by the application programmer.

Implementation Page 12 of 23

Object Eventing Service—Draft Revision 1 Boyle and Rounding, 2000-12-15

Implementation

Wire Protocol
The wire protocol to be used in OES follows the conventions laid out by popular Internet
protocols, such as HTTP [Fielding97], RVP [Osborne00], and DAV [Whitehead99]. This
wire protocol follows a strict client-server interaction pattern in which the client always
initiates a request, and the server always generates a reply. Except in the case of
notification delivery, the term client always refers to application software that utilizes the
OES service, and the term server always refers to the centralized process that maintains
the tree and arbitrates access to it. During notification delivery, the client and server
roles are swapped in the sense that the machine that runs the OES service initiates
communication with the machines that running application software placing
subscriptions.

Communication is done using TCP/IP stream sockets, or some similar guaranteed-
delivery, stream-based sockets protocol (e.g., IrSock). Communication is conducted
using UTF-7 encoded character streams. Lines of text are exchanged. Each line is
delimited by a carriage-return (character code: U+000D)/linefeed (character code:
U+000A) pair. Binary data, if it is to be transmitted, is encoded using the base64-
encoding scheme.

After a connection between client and server is established, any number of request-reply
exchanges may occur. A request-reply exchange follows a strict pattern, and begins with
the request. In an augmented Backus-Naur Form (BNF) similar to that used by RFC
2068, an exchange is defined as:

OES-Exchange = OES-Request OES-Reply
OES-Request = OES-Request-Line

*message-header
CRLF
[message-body]

OES-Request-Line = Verb SP [Verb-URI SP] “OES/1.0” CRLF
Verb = “LIST” | “GET” | “POST” | “REMOVE” | “NOTIFY” |

“LEASECONTRACT” | “CANCELCONTRACT” | “SUBSCRIBE” |
“UNSUBSCRIBE” |

OES-Version = “OES/0.1”
verb-args = *TEXT
OES-Reply = OES-Reply-Line

*message-header
CRLF
[message-body]

OES-Reply-Line = “OES/1.0” SP Status-Code SP Reason-Phrase CRLF
Status-Code = “200” ; OK

| “400” ; Bad request
| “404” ; Not found

Reason-Phrase = “OK” | “Bad request” | “Not found”
message-header = field-name “:” field-value CRLF
field-name = token
field-value = *TEXT
message-body = XML

As indicated, the message bodies consist exclusively of XML data. The schema
that applies to XML exchanged is:
<? xml version="1.0" >
<Schema xmlns="urn:schemas-microsoft-com:xml-data" xmlns:dt="urn:schemas-

microsoft-com:datatypes" >

Implementation Page 13 of 23

Object Eventing Service—Draft Revision 1 Boyle and Rounding, 2000-12-15

<ElementType name='node' content='eltOnly' model='closed' order='one' >
<AttributeType name='nodename' dt:type='string' required='yes' />
<AttributeType name='nodepath' dt:type='string' required='no' />
<AttributeType name='upl' dt:type='int' required='no' default='-1' />
<AttributeType name='guaranteed' dt:type='boolean' required='no' default='0'
/>
<AttributeType name='barricade' dt:type='boolean' required='no' default='0'
/>
<AttributeType name='subscriptionPool' dt:type='string' required='no' />
<attribute type='nodename' />
<attribute type='upl' />
<attribute type='guaranteed' />
<attribute type='barricade' />
<attribute type='subscriptionPool' />
<attribute type='nodepath' />
<ElementType name='content' content='textOnly' dt:type='bin.base64' />
<element type='content' minOccurs='0' maxOccurs='1' />
<element type='node' minOccurs='0' maxOccurs='*' />

</ElementType>
<ElementType name='notification' content='eltOnly' model='closed' order='one' >

<ElementType name='lastValue' content='textOnly' dt:type='bin.base64' />
<ElementType name='presentValue' content='textOnly' dt:type='bin.base64' />
<element type='lastValue' minOccurs='0' maxOccurs='1' />
<element type='presentValue' minOccurs='0' maxOccurs='1' />

</ElementType>
<ElementType name='contract content='eltOnly' model='closed' order='one'>

<AttributeType name='contractid' dt:type='uuid' required='yes' />
<AttributeType name='expiry' dt:type='dateTime' required='yes' />
<AttributeType name='contactinfo' dt:type='string' required='yes' />
<attribute type='contractid' />
<attribute type='expiry' />
<attribute type='contactinfo' />
<ElementType name='subscription' content='empty' >

<AttributeType name='nodepath' dt:type='string' required='yes' />
<AttributeType name='depth' dt:type='int' required='yes' default='-1' />
<AttributeType name='guaranteed' dt:type='boolean' required='no'

default='0' />
<attribute type='nodepath' />
<attribute type='depth' />
<attribute type='guaranteed' />

</ElementType>
<element type='subscription' minOccurs='0' maxOccurs='*' />

</ElementType>
</Schema>

Database Tables

NODE Table
This table stores the tree structure and the data associated with individual nodes.
In essence, this table is the OES tree.

Field Type Comment

Nodeid

Autoid Primary key

Parent_Nodeid Integer Parent node; constraint: 1=COUNT(SELECT *
FROM NODE N WHERE N.Nodeid =
[Parent_Nodeid])

Implementation Page 14 of 23

Object Eventing Service—Draft Revision 1 Boyle and Rounding, 2000-12-15

Nodename Char[64] Name; constraint: 1=COUNT(SELECT *
FROM NODE N WHERE N.Nodename =
[Nodename])

Content Char[10240] Base64 encoded binary content

Upl Integer Upward propagation limit; constraint [Upl]
>= -1; semantics: [Upl] = -1 means “infinite”;
default: -1

QoS Boolean Guaranteed generation of notification for
every operation; semantics: True (1) means “a
notification is generated for every operation,”
False (0) means “a notification might not be
generated for a particular operation;” default:
False (0)

Barricade Boolean Barricade is placed at this node; semantics:
True (1) means “notifications will not
propagate up the tree beyond this node,
regardless of the value of the generating
node’s upward propagation limit,” False (0)
means “notifications will propagate up the tree
beyond this node, contingent upon the
generating node’s upward propagation limit;”
default: False (0)

SubscriptionPool Integer (Null
allowed)

Subscription pool node; IF [SubscriptionPool]
IS NOT NULL THEN 1=COUNT(SELECT *
FROM NODE N WHERE N.Nodeid =
[SubscriptionPool])

CONTRACT Table
This table stores the information needed to maintain subscription contracts.

Field Type Comment

Contractid Autoid Primary key

Contactinfo String Contact information; a string of the form
“tcp:<host-ip-address>:<port>”

Expiry Date/Time Date and time this contract will expire

Implementation Page 15 of 23

Object Eventing Service—Draft Revision 1 Boyle and Rounding, 2000-12-15

QoS Boolean Guaranteed delivery of subscription notifications
for lifetime of contract; semantics: if True (1),
then the contract persists until its stated
date/time of expiration, even if a notification
cannot be delivered; if False (0), the contract, and
all its subscriptions, expire as soon as a
notification cannot be delivered, or at the stated
date/time of expiration, which ever is soonest

SUBSCRIPTION Table
This table stores the information needed to maintain individual subscriptions.

Field Type Comment

Contractid Integer Primary key; constraint: 1=COUNT(SELECT *
FROM CONTRACT C WHERE C.Contractid =
[Contractid])

Nodeid Integer Primary key; constraint: 1=COUNT(SELECT *
FROM NODE N WHERE N.Nodeid = [Nodeid])

Depth Integer Depth of subtree to watch; constraint: [Depth]
>= -1; sematics: [Depth] = -1 means “infinite;”
default: -1

QoS Boolean Guaranteed delivery of most recent subscription
notification; semantics: True (1) means “latest
notification is cached for delivery when client
unreachable,” False (0) means “undeliverable
notifications are discarded;” default: False (0)

LNPath String (Null
allowed)

Path of last node to generate a notification,
when this notification must be cached for later
delivery

LNOperation Integer (Null
allowed)

Numeric code to indicate operation that caused
latest notification; sematics: 0 means “post,” 1
means “touch,” 2 means “remove”

LNContent Char[10240] Content associated with latest notification

Processing Logic

General Introduction
All verbs take, as an argument, a URI: this URI is the path to the node in the tree on
which the verb operates. The client forms its request and sends it as a contiguous bundle
to the server. The server, upon receiving the entire request, verifies that it conforms to
the message standard described above. If the request is not a syntactically valid and
complete request, status code 400 is returned. For this status code, there are no header

Implementation Page 16 of 23

Object Eventing Service—Draft Revision 1 Boyle and Rounding, 2000-12-15

lines, and no content lines returned. Otherwise, verb-specific processing, as indicated
below, is performed.

LIST Verb
The LIST verb returns an enumeration of the names of all immediate children of the
node specified as the argument URI. In this way, it is much like obtaining a directory
listing of a file system folder. The XML tree returned has, as the document element, a
<node> element for the node specified as the argument URI. For each immediate child
of the specified node in the OES tree, a child <node> XML element appears in the XML
returned. Each <node> element in the returned XML has at least the required
nodename attribute present. It is generally presumed that <content> elements will not
be sent.

The server, in response to a LIST request, parses the argument URI and locates the
corresponding row in the NODE table. If no matching node is found, status code 402 is
returned. For this status code, there are no header lines, and no content lines returned.

The response XML document is constructed by outputting a child <node> XML element
for each row in the NODE table with a Parent_Nodeid that matches the Nodeid of the
node specified by the argument URI.

Even if there are no child nodes enumerated, status code 200 is returned. The
content returned is the ResponseXML produced by the pseudo-code above. The
response includes at least the Content-Type and Content-Length message
headers, and an XML document with at least one <node> element.

GET Verb
The GET verb returns the properties and content of OES tree node named in the
argument URI. In this way, it is much like reading a file system file. The XML
tree returned has, as the document element, a <node> element for the OES tree
node specified in the argument URI. This document element will have at least all
non-default valued attributes set, and will have a <content> element as a child—
even if the content is empty.

The server, in response to a GET request, parses the argument URI and locates
the corresponding row in the NODE table. If no matching node is found, status
code 402 is returned. For this status code, there are no header lines, and no
content lines returned.

Let ArgumentNode be the row in the NODE table corresponding to the argument
URI. The following pseudo-code describes how the output XML is to be
generated:

ResponseXML.createDocumentElement(“node”)
ResponseXML.documentElement.setAttribute(“nodename”,
ArgumentNode.Nodename)
ResponseXML.documentElement.setAttribute(“nodepath”,
ArgumentNode.Nodepath)
ResponseXML.documentElement.setAttribute(“upl”, ArgumentNode.Upl)
ResponseXML.documentElement.setAttribute(“guaranteed”, ArgumentNode.QoS)
ResponseXML.documentElement.setAttribute(“barricade”,
ArgumentNode.Barricade)

Implementation Page 17 of 23

Object Eventing Service—Draft Revision 1 Boyle and Rounding, 2000-12-15

ResponseXML.documentElement.setAttribute(“subscriptionPool”,
ArgumentNode.subscriptionPool)
elem = ResponseXML.documentElement.createElement(“content”)
elem.text = ArgumentNode.Content
ResponseXML.documentElement.appendChild(elem)

The server returns status code 200. The content returned is the ResponseXML
produced by the pseudo-code above. The response includes at least the Content-
Type and Content-Length message headers.

POST Verb
The POST verb provides a facility for: the creation of new nodes in the OES tree; the
update of an OES tree node’s contents and/or some or all of its attributes; and,
“touching” an OES tree node, so as to trigger a notification, without actually changing the
node’s contents or properties. The verb takes, as its argument URI, the path to the OES
tree node to create or update. The message body of the request must be a XML
document, with a single <node> element as the document element, which describes the
attributes and content of the node that are to be set. This <node> document element can
contain some or all of the non-required attributes; it may or may not contain a
<content> child element.

If the OES tree node specified does not exist it is created, with any attributes not
explicitly present in the request XML set to their default values. Similarly, if the
<content> child element is present in the XML, it is used to initialize the content of the
OES tree node. If the <content> child element is not present, the OES tree node is
created without an initial content setting. If any of the node’s ancestors do not exist, they
are also created: for each OES tree node created, its attributes are given their default
values and it is created without an initial content setting. Status code 200 is returned;
there are no message headers and no content returned for this request. Node creation
always results in a notification being generated.

If the OES tree node specified already exists, the POST verb updates its attributes and
content. Only those attributes explicitly present in the request XML are updated; if the
<content> element is present in the request XML, then the content for the field is also
updated. Status code 200 is returned; there are no message headers and no content
returned for this request. Depending upon the quality of service specified for this node,
changes to the node’s contents might or might not result in a notification being
generated.

REMOVE Verb
The REMOVE verb provides a facility to remove individual nodes or entire sub-trees of
the OES tree. The argument URI to this verb specifies the path to the root node of the
OES sub-tree to remove. Thus, removing a particular node removes that node, its
associated content, plus the descendant nodes and their contents. It is not possible to
remove the root of the entire OES tree.

If the node specified by the argument URI does not exist, status code 404 is returned;
otherwise, status code 200 is returned. There are no message headers and no content
returned for this request. A notification is always generated for each node in the tree
that was removed as a result of this operation.

Implementation Page 18 of 23

Object Eventing Service—Draft Revision 1 Boyle and Rounding, 2000-12-15

LEASECONTRACT Verb
The LEASECONTRACT verb provides a facility for clients to take out a lease so that they
may subscribe to notifications for nodes in the OES tree. The argument URI provides
information on how to connect to the client, so that notifications may be delivered. This
is typically a string of the form ‘tcp:<ip-address>:<port>’ where <ip-address> and
<port> are the numeric IP address and port number of the client’s incoming notification
receiving process.

This request has no content associated with it, but may have one or two message
headers. The ‘Quality-of-service‘ header, if present, may take only the value
‘keep-alive.’ If this header is specified, then the contract remains intact until its
stated expiration time, even if a subscription notification could not be delivered before
then. If this header is not specified, the default quality-of-service (contract expires as
soon as a notification cannot be delivered) is in effect. The ‘Contract-id’ header, if
present, must specify a standing contract id returned as a successful response to a
previous LEASECONTRACT request. If this header is specified, then the given lease is
renewed and its expiration time is extended further into the future.

The reply to this verb is an XML document describing the contract leased or renewed.
This XML document will have, as its document element, a <contract> element. All
required attributes will be set for this element, but it will contain no child <subscription>
elements.

CANCELCONTRACT Verb
The CANCELCONTRACT verb provides a facility for clients to prematurely revoke a
contract they previously leased. Cancelling a contract immediately removes all
subscriptions associated with the contract. The argument URI for this verb is a contract
id returned in a previous successful LEASECONTRACT operation.

If the contract specified by the argument URI does not exist, status code 404 is returned;
there are no message headers and no content returned for this status code. If the
contract specified, however, could be found, then it is immediately cancelled. Status
code 200 is returned; there are no message headers and no content returned for this
status code.

SUBSCRIBE Verb
The SUBSCRIBE verb provides a facility for clients associate a subscription for
notifications passing through a particular node in the OES tree with a contract they have
leased. There can be only one subscription for a given node per contract, but many
subscriptions (for many different nodes) may be placed with a given contract. At any
rate, for a given notification-generating operation in the OES tree, only one notification
will be delivered for a given contract, regardless of how many subscriptions placed with
that contract may absorb the notification.

The SUBSCRIBE verb takes, as its argument URI, the path to the node to watch. There is
no content associated with this request, but the request must include at least the
‘Contract-id’ header: the value of this header must be a contract id returned as the
result of a previous successful LEASECONTRACT request. This request may optionally
specify a ‘Cache-last-notification’ message header, which may take the value
‘cache’ to indicate that the extended quality-of-service for subscription notification

Implementation Page 19 of 23

Object Eventing Service—Draft Revision 1 Boyle and Rounding, 2000-12-15

receipt is requested. The default behaviour, used when this message header is omitted,
is for notifications that cannot be delivered to be silently dropped.

In response to a SUBSCRIBE request, the server validates that the node specified by the
argument URI exists and that the contract specified in the Contract-id message
header exists and has not yet expired. Either of these conditions is not met, status code
404 is returned; there are no message headers and no message body for this status code.

If the node and contract are found, the row for the subscription is added to the
SUBSCRIPTION database if such a row does not already exist. Adding a second
subscription for the same node under the same contract results in a modification to the
SUBSCRIPTION database if the extended quality-of-service parameter changes; it does
not generate an error. In either case, status code 200 is returned; there are no message
headers and no message body for this status code.

UNSUBSCRIBE Verb
The UNSUBSCRIBE verb provides clients with a means to revoke a subscription
previously placed with a SUBSCRIBE request. This verb takes, as its argument URI, the
path to the node from which to unsubscribe. This request must specify the ‘Contract-id’
message header, the value of which must be the contract id specified in the previous
SUBSCRIBE verb. There is no message body for this request.

In response to an UNSUBSCRIBE request, the server searches for a row in the
SUBSCRIPTION table with the given node and contract id. If no matching row is found,
status code 404 is returned; there are no message headers and no message body for this
status code. Otherwise, if a matching row is found, the row is removed from the table
and status code 200 is returned; there are no message headers and no message body for
this status code. No further notifications will be processed for this subscription.

NOTIFY Verb
The NOTIFY verb is sent from the OES server to clients when a subscription notification
is to be delivered. Though semantically not a request, the interchange between
communicating processes follows the same request-response sequence all other
interactions between OES servers and clients.

This verb takes, as its argument URI, the path of the node that generated the
subscription notification. The message body contains an XML document describing the
notification. This XML document has, as its document element, a <notify> element.
This document element has its contract-id attribute set to the contract under which the
subscription(s) that placed to capture this notification.

If the notification is being delivered as a result of a POST request, the XML document
returned will have a <presentValue> child element. If the notification is being delivered
as a result of a REMOVE request, the XML document returned will have a <lastValue>
child element.

Future Considerations Page 20 of 23

Object Eventing Service—Draft Revision 1 Boyle and Rounding, 2000-12-15

Future Considerations
In this section, we address some issues that will be considered in future revisions
of this draft.

Security
The present specification does not make any provisions for important security
considerations, such as authentication, access control, and wire privacy. Below, we
elaborate how these concepts could be layered on top of the OES architecture just
described.

Wire privacy and authentication can be integrated into transport-level security (TLS)
features that rely on so-called public key infrastructure (PKI). The core idea here is that
OES clients acting on behalf of some user present a PKI certificate to identify themselves;
the server then issues a pass-phrase challenge to the client. The certificate and the pass-
phrase are verified against an authentication database. A likely choice for an
authentication database would be a directory service.

If the challenge fails, the connection is immediately aborted; requests from that client at
that time are not processed. If the authentication challenge is successful, session
certificates are exchanged: these certificates are used to encrypt requests and responses
and thus provide privacy on the wire.

Access control is arguably best afforded using discretionary access control lists (DACLs)
much along the same lines used in file-system security. The DACL is defined on the root
of the sub-tree to which it pertains: as is the case in many file-systems, the security
settings for an OES tree node is presumed to be inherited from ancestor nodes. The
DACL names principles (i.e., users) or groups of principles permitted to perform an
action. These actions could correspond to the verbs discussed in the previous section on
the OES wire protocol. Before fulfilling a request, the server would verify that the
authenticated principle has sufficient privilege. If the principle is not authorized, status
code 403 (Forbidden) could be returned.

Authentication could be deferred until the DACL for a node indicates that authentication
is required. In such a case, status code 401 (Unauthorized) could be returned. To
support the subsequent authentication interaction phase, an AUTHENTICATE verb
could be added to the wire protocol; this verb could then be issued by clients to start the
authentication process.

We advocate that metadata such as DACLs be embedded into the tree as an accessible
property on nodes and accessed in a fashion orthogonal to the way data is accessed. We
hope that making the content bodies for all OES requests and replies XML documents
will help in this area: DACLs could, for example, simply be transmitted a child element
of the <node> document element of a GET reply or POST request.

Replication and Dynamic Partitioning
Replicating all or parts of the OES tree may be a technique amenable to improving
service scalability, reliability, and performance. By replicating the tree across a farm of
redundant servers, each equally capable of handling any request, and appropriately
balancing the load across all machines in the farm, the service may scale to large
numbers of clients. This is also a common technique for improving reliability.

Future Considerations Page 21 of 23

Object Eventing Service—Draft Revision 1 Boyle and Rounding, 2000-12-15

However, as the size of the server farm increases, the overhead of synchronizing the tree
across all machines becomes unbearable. Partitioning the tree so that responsibility for
each main branch off the root (for example) is assigned to smaller, largely independent
clusters of machines may help improve performance as the system scales.

Moreover, a general mechanism for dynamically partitioning the tree may also help
improve responsiveness in synchronous real-time groupware applications. These
applications typically exchange small chunks of data very frequently over short periods
of time. Dynamic partitioning of the tree, where one of the individual groupware clients
assumes responsibility for the small portion of the tree used to exchange groupware data
(e.g., tele-pointer coordinates), could improve performance by relinquishing the server of
the burden of maintaining this part of the tree. In much the same way a symbolic links
are used in distributed file systems, shortcuts could be applied to nodes redirecting
clients to another OES implementation responsible for the sub-tree rooted at that node.
Clients, contacting the central server to access that part of the tree, could be returned
status code 302 (Moved Temporarily) and a Location message header giving contact
information for the client that has assumed responsibility for the sub-tree.

Responsibility for a sub-tree could be obtained on a timed lease, much like subscriptions.
The central OES server implementation and the client that assumed responsibility for
part of the sub-tree could, from time to time, synchronize data stores. Keeping a
reasonably recent copy of the sub-tree on the server may help smooth fail-over if the
client that assumed responsibility for the sub-tree were to unexpectedly “disappear.”
Full synchronization of course, should take as the lease expires.

Concurrency Control, Transactions and Sub-tree
Locking
There are, however, no mechanisms present in the current design to afford concurrency
control. It is presumed that operations are serialized at the server in some manner
beyond the control of clients using this service. This, however, is insufficient when
computation takes several nodes as input or outputs to several nodes. What is needed is
a means to programmatically serialize access to nodes in the tree. Also closely related is
the fact that our present design does not support transactional computations: those in
which each sub-step must occur successfully and un-interleaved or else not at all.

To facilitate this, we propose a mechanism in which clients may obtain a temporary lock
on a sub-tree of the hierarchy. While the lock is held, only those requests to access a
node in the sub-tree that come from the lock holder are honoured. Other clients could
have their requests denied and be returned status code 409 (Conflict) to indicate that the
node requested was under a lock.

Locks are, of course, risky. They should operate on a timed basis, with the timeout
reasonably short, and fairness algorithms should be used to prevent starvation when
large numbers of clients are contending for access to the same sub-tree.

Expiration and No-Store Nodes
For some applications it is not important that the data at a node be persistently stored;
for these applications a pure notification service is ideal. In earlier discussions about the
design of this service, the notion of content expiration was pervasively used throughout
the design. It was dropped in favour of the simpler design presented previously, but will
be briefly mentioned here.

Future Considerations Page 22 of 23

Object Eventing Service—Draft Revision 1 Boyle and Rounding, 2000-12-15

Expiration refers to a mechanism whereby nodes and their contents have an associated
lifetime (expiry). Although the language used to describe expiry can be arbitrarily rich,
we looked at the case where it can be expressed as a fixed point in time (e.g., now, in 50
minutes, never) or as a consequence of activity in the tree (e.g., when another value is
stored at this node, when someone retrieves this value). When a node expires, the node
is removed from the tree. When the content for a node expires, that content is
disassociated from the node; the node itself, however, may continue to exist without
content. (More on this shortly.)

Expiry opens up several nice behaviours not otherwise afforded by our design. A pure
notification service is now possible by simply setting the content of a node to expire
immediately: the posted content is communicated in any subscription notifications
generated, but is immediately removed from the system as soon as the subscription
notifications have been delivered.

With expiration, it is possible for a node to have multiple content values associated with
it at a single instance in time: the most recently posted content not-yet-expired is
assumed to be the “default value” or “top of the stack” and is the one returned when
clients issue the GET verb to query for the node’s value. However, as values expire, any
previously posted not-yet-expired values take effect, in most-recently-posted-first order.
This is useful in on-line presence awareness applications, for instance: one’s status may
have a default value “offline” that never expires, but a process started when one logs on
to a workstation periodically sets and resets the value to “online” with, say, a one minute
expiry. When one logs off and this process dies, the periodic refresh stops and within a
minute one’s status will revert to the default “offline” value.

Expiration applies uniformly to all concepts in OES. We have already described that
subscription contracts are leased for specific periods of time, that is, have expiry. We
suggest that DACLs, if implemented, could also have expiry. For example, imagine you
are closing negotiations on the terms of the purchase of a new home. You want your
realtor to have the easiest time to quickly get in touch with you today, without having to
risk playing voice mail tag. You want your realtor to know when you are in your office
and when you are at home because these are the places you are able to accept such calls.
If this information was unobtrusively tracked and subsequently recorded in the OES
tree—in itself, a substantial undertaking—you can grant your realtor the privilege to see
this information for today only by applying an appropriate DACL entry that expires at
the end of the day. The privilege is automatically revoked at the end of the day, when the
DACL expires, without burdening you with the task of remembering to revoke the
privilege manually and then actually doing it. By a similar argument, quality-of-service
attributes could also have expiry.

Triggers and Server-Side Processing
In attentive user interfaces, many small changes are coalesced to make simpler, and in
many cases, more meaningful inferences as to one’s state. Consider a typical office: if
the lights are on, and there is pressure on the seat of the chair, and the computer mouse
is moving, then one could infer that there is someone seated in front of the computer,
and thus might be accessible via computer-mediated communication channels. Each of
these signals can be easily sensed, but alone or independent of one another they are not
terribly useful for determining how best to reach someone. The problem is magnified if
one considers hundreds of unique sensors, monitoring activity, some of which are
changing very rapidly.

Future Considerations Page 23 of 23

Object Eventing Service—Draft Revision 1 Boyle and Rounding, 2000-12-15

The useful information is the inference made out of the sensed inputs. We suppose that
some sort of server-side processing that reacts to frequent changes in one part of the tree
to provide slower-changing, higher-level semantic information out of these inputs.
Clients could then subscribe to the higher-level semantic information and skip trying to
gather all the intermediary inputs and make sophisticated inferences out of them.

Rather than leaving a dedicated client—an intelligent agent, if you will—running out
there somewhere to listen to all these changes, we suppose that in a manner analogous to
database triggers, arbitrary scripts could be bound to a node to provide a facility for this
kind of processing on the server side. Of course, this entails numerous security and
performance issues, some which could be addressed by DACLs and dynamic partitioning
of the tree to push these inference computations out towards the edges of the network,
closer to where the inputs are sensed.

References Page 24 of 23

Object Eventing Service—Draft Revision 1 Boyle and Rounding, 2000-12-15

References
[Fielding97] Fielding, R., et al. IETF RFC 2068: Hypertext Transfer

Protocol—HTTP/1.1. Publicly available from
http://www.ietf.org/ and other RFC repositories.

[Osborne00] Osborne, R., et al. RVP: A Presence and Instant Messaging
Protocol. http://msdn.microsoft.com/library/techart/rvp.htm

[Whitehead99] Whitehead, J. and Goland, Y. Y.. WebDAV: A network protocol
for remote collaborative authoring on the Web. In Proceedings
of the European Conference on Computer Supported
Cooperative Work (ESCSW’99).
http://www.ics.uci.edu/~ejw/papers/dav-ecscw.pdf

