Published in Human Factors in Computing Systems CHI ‘86 Conference Proceedings, 16-23. 1986.

Generalized Fisheye Views

George W. Furnas

Bell Communications Research
435 South St.
Morristown, New Jersey
201-829-4289

Abstract

In many contexts, humans often represent their own
"neighborhood" in great detail, yet only major landmarks
further away. This suggests that such views ("fisheye
views") might be useful for the computer display of large
information structures like programs, data bases, online
text, etc. This paper explores fisheye views presenting, in
turn, naturalistic studies, a general formalism, a specific
instantiation, a resulting computer program, example
displays and an evaluation.

1. Introduction.

Computer programs, structured data bases, organizational
charts, on-line text, menu access systems and maps -- users
are forced to view all of these potentially huge structures
through windows sometimes as small as a 24x80 character
video display. The problem is that there is too much to
show, ranging from local details to global structural
information. Currently the most common viewing interface
is simply a small window for looking into the structure,
centered at some point. For example, a simple editor
window might show a line in a program and a dozen
consecutive lines before and after it. A menu based
retrieval system might show the set of choices available at
the current node. The user navigates through the structure
by moving the window around (by scrolling, traversing
arcs, etc). As a result it is easy to get lost, i.e., to find
oneself in some incomprehensible wrong place with little
idea how to get to the right one (e.g., [1]). Presumably this
happens because such views have little information about
the global structure, and where the current view fits in.
Several techniques have arisen to try to deal with this
problem, most notably variants on a Zoom Lens analogy --
making available both a global and detailed view of a
structure, either side by side, as with paper road maps, or in
sequence. (One of the earliest examples was in Englebart's
Knowledge Augmentation Workshop [2].)

We have been exploring a different viewing strategy, based
on an analogy to a very wide angle, or "fisheye", lens. Such

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to
republish, requires a fee and/or specific permission.

©1986 ACM 0-89791-180-6/86/0400 - 0016

a lens can show places nearby in great detail while still
showing the whole world -- simply by showing the more
remote regions in successively less detail. An instructive
caricature of this appears in the "New Yorker's View of the
United states", a poster by Steinberg and now much
imitated for other cities. In the poster, midtown Manhattan
is shown street by street. To the west, New Jersey is a patch
of color on the other side of a blue-grey ribbon labeled
"Hudson." The rest of the country is reduced to a few
principal landmarks (Chicago, the Rocky Mountains,
California, etc.) disappearing in the distance. While this
representation is certainly a distorted view of the U.S., it is
a manageable abbreviation in which the most important
features of the New Yorker's world are preserved. The view
allows the New Yorker to answer local questions like,
"Where is the closest mail box?", but also more global
questions like "To ski in the Rocky Mountains, does it
make more sense to connect through LA or Chicago?". If
New Yorkers' fisheye views allow them to answer such
questions, perhaps analogous views would be useful in
computer interfaces.

The fundamental motivation of a fisheye strategy is to
provide a balance of local detail and global context. Local
detail is needed for the local interactions with a structure,
whether that means finding the nearest mailbox in midtown
or editing a particular line of a large program. The global
context is needed to tell the user what other parts of the
structure exist and where they are (e.g., the Rockies are out
west, beyond Chicago but before LA; there is an if
construct above the else construct currently being edited).
Global information may also be important even in the mere
interpretation of local detail (e.g., the meaning of the else
statement in fact depends on the content of the associated,
but remote, if{) statement).

By looking for an analogy to the New Yorker's abbreviated
view, i.e., a trade-off of detail with distance, it is possible to
consider fisheye views in a suprising number of domains.
In this paper we look at naturally occurring fisheye views,
and then turn to the question of creating them for computer
interfaces.

2. Naturally occurring fisheye views.

We have undertaken studies of naturally occurring fisheye
views for several reasons. At one level, as cognitive
psychologists, we were simply interested in how humans
represent large structures in their heads. More relevant

here, we thought that if fisheye views were ubiquitous it
might be because they were "naturally" useful in human
interactions, and might therefore make effective interfaces.
In addition we hoped to learn more about what such views
might look like, anticipating that findings might suggest
features for fisheye interface design.

We conducted several experiments using a simple
production paradigm. Subjects were told to imagine that a
young child of a newly immigrated neighbor family had
asked to be told about X's (where X's are States, Presidents,
Events in History,...). The subject's task was simply to list
10 examples of category X that they thought the child
should know about. The empirical fisheye conjecture is
that, to be cited, exemplars would have to be either of great
a priori importance or "close to home". Such fisheye
subsets were indeed listed. For states, subjects in both New
Jersey and Texas mention states of major a priori
importance (e.g., New York and California), and then show
geographic bias (e.g, Texans listed Arkansas, New
Jerseyans listed Connecticut). Similarly, subjects listed
presidents that were either pre-eminent (e.g., Washington,
Lincoln) or recent (e.g., Carter, Reagan).

Using other techniques, we have found that people in a
large corporation know a fisheye subset of the management
structure. Employees know local department heads, but
only the Vice Presidents of remote divisions.

We have also looked at academicians' views of the
academic world and found that in similarity ratings, the
disciplines near one's own loom extra large: an
experimental psychologist will judge the pair
"management" and "marketing" more similar than
"experimental psychology" and "psychiatry," but people in
the business school will make the opposite evaluation.

By examining the patterns of stories in 12 newspapers from
three geographic regions, we found news editors have
evolved a fisheye editorial strategy. The papers will contain
local news stories (e.g., a continuing local garbage strike)
and only more distant ones that are compensatingly greater
importance (e.g., the bombing of the U.S. embassy in
Beirut).

While there may be many interesting processes behind
these results, we draw the conclusion that many naturally
occurring views of the world do exhibit a fisheye character.
This suggests that apropriately generalized fisheye views
might provide a good viewing interface for large structures.

3. Formalizing generalized fisheye views.

In order to apply the fisheye concept to interface design,
the idea must be clarified formally. Fisheye views are an
example of a more basic strategy for the display of a large
structures. This basic strategy uses a "Degree of Interest”
(DOI) function which assigns to each point in the structure,
a number telling how interested the user is in seeing that
point, given the current task. A display of any desired size,
n, can then be made by simply showing the n "most
interesting" points, as indicated by the DOI function.

At this general level, successful display would depend on
discovering appropriate DOI functions. One might, for
example, seek to understand and decompose them in terms
of more primitive aspects of the structure. Generalized
fisheye views arise by decomposing the DOI into two
components: a priori importance and distance. In its
simplest, additive form the generalized fisheye Degree of
Interest function is,

DOlsisheye (X]-=y) = API(x) — D(x,y)

where DOlssneye 1, according to the fisheye model, the
user's Degree of Interest in a point, x, given that the current
point of focus is y, API(x) is the global A Priori Importance
of x and D(x,y) is the Distance between x and the current
point y. That is, the interest increases with a priori
importance and decreases with distance. (Presumably the
usefulness of a DOI so defined will depend at least on the
suitable definition of distance and a priori importance.)'

This simple formulation allows fisheye views to be defined
in any sort of structure where the necessary components
can be defined. Rooted tree structures will be illustrated as
a straightforward example that is quite different from the
New Yorker's map. They are of particular interest since
many large structures on computers are trees: structured
programming languages (e.g., like LISP, PASCAL and C),
hierarchically organized text (e.g., manuals, legal codes),
various highly structured scientific and technological
knowledge domains (e.g., biological taxonomies),
hierarchical file systems (e.g., UNIX), corporate
management structures, hierarchical menu access systems,
etc. The definition of fisheye DOI functions for trees would
thus allow fisheye displays for these structures.

To define the necessary components for a tree, consider
that D(x,y) has as a natural instantiation as diee(X,y), the
path length distance between x and y in the tree. Similarly
API(x) can become —diee(x,root), the distance of x from the
root, under the approximating assumption that points at
levels closer to the root are intrinisically more important.
(The minus sign simply gives the correct "sense" to the
arithmetic term -- further from the root means less
importance.) This gives,

1 The strategy of using a DOI with a threshold to abbreviate a display
requires only ordinal properties. Thus, in the current discussion, the DOI
function is not required to be positive. In fact, the example given below
has only negative values. Extensions of this simple DOI strategy can
depend on more than ordinal relationships, but not discussed here.

(a)

Di stance fromy:

dlree(xyy)
3
I I I
4 4 2
I I I I I I I | I
5 5 5 5 5 5 1 3 3
e e e et
666 666 666 666 666 666 022 444 444
y
"current focus"
(b) A Priori Inmportance in the tree:
Imp(x) = — dyee(X,root)
r oot
0
I I I
-1 -1 -1
I | I I I I I | I
-2 -2 -2 -2 -2 -2 -2 -2 -2
e e e et Ll
-3-3-3 -3-3-3 -3-3-3 -3-3-3 -3-3-3 -3-3-3 -3-3-3 -3-3-3 -3-3-3
y
"current focus"
(c) The Fisheye DO :
DOlfisneye(tree) (X|-=y) = API(x) — D(x,y)
= _(dtree(X,y) + dtree(X:rOOt))
r oot
-3
I I I
-5 -5 -3
I I I I I I I I I
A A A A -7 -3 -5 -5
crr e e ettt
-9-9-9 -9-9-9 -9-9-9 -9-9-9 -9-9-9 -9-9-9 -3-5-5 -7-7-7 -7-7-7

y
"current focus"

Figure 1. Distance, A4 Priori Importance and the Fisheye DOI for a rooted tree.

DOlfisheye(tree) (x].=y) = —(diree(X,y) + diree(X,root))

Figure 1 illustrates these two components, and how they
add together point by point to form the fisheye DOI
function for the tree. In the resulting DOI function, an
arithmetically larger number means the corresponding point
is more interesting for interactions focused at y. Thus, the
points with DO/=3 form the most "interesting" subset,
those with DOI/=S5 form the next most "interesting" subset,
etc.

Thus by choosing a threshold, %, and only displaying those
points with DOI(x) = k, one can obtain fisheye views of
different sizes. For example, letting &=3 selects only the
most interesting subset which, by the fisheye DOI, turns
out to be the direct ancestral lineage between y and the root
of the tree ("Zero-order fisheye view", see figure 2a, and
figure 1). This subset is "most interesting" basically
because points on that lineage increase in a priori
importance in exact compensation for their corresponding
increase in distance. If the display threshold is lowered to
include the next most interesting subset ("First-order

fisheye view", at k=35, Figure 2b), the ancestral line and its
"siblings" are included. At the next threshold value
("Second-order fisheye view", at k=7, Figure 2c¢)
"cousins" would be added. Consistent with the original
fisheye inspiration, at any choice of threshold, only higher
level points (i.e., by assumption, more major features) are
shown for further regions of the tree.

These views have a number of interesting properties. In a
regular tree, (1) the fisheye view achieves a logarithmically
compressed display of the original tree. (2) Because of the
convex, nested structure of the DOI sets, there exist fast
algorithms for computing such views, in time proportional
to the size of the view, and not the size of the tree. (3) As
the point of focus changes from y to some new), the
change in view is easily calculated, since the whole DOI
function above their common ancestor is unchanged. (4)
Users may move through the structure using such fisheye
views in a number of steps proportional to the log of the
number of intervening leaves of the tree. These formal

(a) Zero-order tree fisheye:

ot

[

[
<K W—W—WwW—wo

"current focus"

(b) First-order tree fisheye:

root
-3

I I
-5 -5

"current focus"

(c) Second-order tree fisheye:

r oot
-3

I |
-5 -5
I I
7 -7 -7 -7 -7
I
-3

U'I_loo_

[
-5 -7

I
-3
| |
-5 -5
I I
-7 7

-~
'

~—I
'

y
"current focus"

Figure 2. Zero-order, first-order and second-order fisheye views for a tree.

properties, among others, underscore the computational and
interaction efficency possible with fisheye views.

4. Fisheye interfaces.

The fisheye DOI function derived for trees in the previous
section was used to develop a program for making first-
order fisheye views of tree structured text files. An
example, showing views of a C-program, is presented in
the picture, for example. Very little orienting information
is available.

On the other hand, the fisheye view, seen in figure 4,
shows that the programmer is at a short for loop, within
the e case of a switch in which there are also four other
cases +, -, ¢, and default. This switch is in the else block
of the indicated if statement, within a while loop, in
program main(), etc. It is conjectured that being able to
see their work focus together with such contextual
information will be of use to programmers working with
structured code. Figure 5 compares the content of these
two views. The box indicates the standard window view

figures 3, 4 and 5. (This is a short calculator program which
does reverse-Polish-notation integer addition and
subtraction.) The simple flat window view of figure 3
shows lots of detail, some of which is not likely to be very
useful when working on the indicated line (marked by
">>"). The arithmetic details of the previous case intrude in
the top of

of figure 3 and the underlining shows the lines in the
fisheye view of figure 4. The main difference is that,
while both show detail at the center, some superfluous
detail at the edges of the flat view has been traded for
some more remote but higher-level, contextual
information. Related program viewing schemes have been
proposed recently for syntax-driven program editors [3]
[4] [5]- These have made use almost exclusively of the
distance component, whereas we also emphasize a priori
importance. Views that are effectively first order tree
fisheye views have arisen in the browsers of the
SMALLTALK [6] and INTERLISP-D environments.

28
29
30
31
32
33
34
35
36
37
38

>>39
40
41
42
43
44
45
46
47
48
49
50

t[0] = (t[0] + 10000)
- x[0];
for(i=1;i<k;i++){
t[i] = (t[i] + 10000)
- x[i]
- (1 - t[i-1]/10000);
t[i-1] % 10000;
}
t[k-1] % 10000;
br eak;
case 'e':
for(i=0;i<k;i++) t[i] = x[i];
br eak;
case '(':
exit(0);
def aul t:
noprint = 1;
br eak;

}

i f(!'noprint){
for(i=k - 1;t[i] <=0 && i > 0;i--);
printf("%",t[i]);
if(i >0 {

Figure 3. Standard 'flat-window' view of a C program. Line numbers are in the left margin.

Figure 4. A fisheye view of the C program. Line numbers are in the left margin.

lines.

#
#

—~

d
i

efine DG 40
ncl ude <stdio. h>

mai n()

i
wh

t
i

c
le

i, Xx[DIG 4], t[D d 4]
c=getchar()) != ECF){
(c >"'0" && c <="'9
el se {
switch(c){
case '+':
case '-'
case 'e'

, kK =DG4, noprint = 0;
) {

—~
—h o~

— —

e':
for(i=0;i<k;i++) t[i] = x[i];
br eak;

case '(':

defaul t:

if(!noprint){
}

noprint = O;

" "

indicates missing

We conjectured that such fisheye views should be more
useful, at least in for the tasks of navigating around or
examining unfamiliar parts of a large file. To test this we
ran an experiment in which 20 subjects were asked to
perform a navigation-related task in a large unfamiliar
hierarchical structure. The task was meant to compare
various views' ability to support a basic cognitive
operation for moving from one (undesired) location in a
file to another (target) location. Specifically subjects were
asked to determine the relative positions ("Which comes
first?") for two different parts of the hierarchical structure,
given various views of those parts. One sort of view was a
22-line standard "flat" view of the file, centered at a
randomly chosen line of focus. The other sort of view was
a first-order fisheye view centered at the line. Subjects
received either two flat views, two fisheye views, or one
of each on which to base their decision, and saw a total of
16 pairs in all. In order to prevent subjects from
answering on the basis of prior knowledge, a very
unfamiliar structure was used -- a botanical taxonomy of
the Class of Dicotyledons, classified down to families.

We found that people were only 52% correct with two flat
views, 64% correct with one fisheye and one flat view,
and 75% correct with two fisheye views. That is, as
expected, fisheye views are far superior. This result is
most certainly simply because the fisheye shows the
necessary structural information, and the fact is not lost
on the subjects.

In addition to implementing fisheye views for indent
structured programs of figures 3-5 and the botanical

taxonomies of our experiment, we have an interactive
fisheye veiwer for part of the Texas Legal Codes, text
outlines,” a decision tree (identification key) for types of
trees, a directory of telephone area codes, our corporate
directory, and UNIX file hierarchy listings. All of these
applications are based on the tree fisheye DOI function
derived above.

5. Conclusions.

This paper has described generalized fisheye views.
Fisheye views provide a balance of local detail and global
context by trading off a priori importance against
distance. They appear naturally in many human contexts
and can be implemented for a wide variety of computer
information structures. The formal definition presented
here allows interfaces to be defined and explored in any
structure where distance and some display-relevant notion
of a priori importance can be defined. This is possible for
lists, trees, acyclic directed graphs (DAG's, such as ISA
networks in knowledge representations), general graphs
and Euclidean spaces, among other structures.’ It is
important to remember that, unlike the geographic
example which inspired the metaphor (the New Yorker's

? Fisheye views of outlines and structured text like legal codes have
much in common with views generated by "outline processors", now
coming onto the market place, and the early hypertext ideas of Nelson
(7]

* We note that "4 Priori Importance" need not be structurally defined,
like "level" in a tree. It may be independently specified for each point,
though often less efficient algorithms may result.

View), the underlying stuctures need not be spatial nor the
"output" even graphic. For example, the stucture might be
a semantic net and the output be a fisheye-structured
exposition in natural language text.

Even without formal treatment, fisheye-type views can be
invented simply by analogy -- trading off distance and
detail. One such example, with a rather different flavor, is
presented in figure 6. It is a "fisheye calendar", showing
the current day in "day-at-a-time" detail, the current week

#define DI G 40
#i ncl ude <stdio. h>

in "week-at-a-time" detail and the rest of the month in
"month-at-a-time" detail. The goal is to give the user
needed hour-by-hour information about today, but some
sense of the appointment structure for the rest of the week
and month. We are currently implementing an interactive
version of this calendar.* A number of results from our
studies of natural fisheye representations suggested future
work in creating views. In particular some effects were
not consistent with a simple fisheye model: (1) In some
cases, the sphere of local interest was somewhat

1#
2 #
3
4 main
5
6
7
8

int c, i, x{DG4], t[DF4], k = DIG4, noprint = 0;
whil e((c=getchar()) !'= EOR){

9 if(c>="'0 & c <= '9"){

10 x[0] =10 * x[0] + (c-'0");

11 for(i=1;i<k;i++){

12 x[i] = 10 * x[i]

13 + x[i-1]/10000;

14 x[i-1] % 10000;

15 }

16 } else {

17 switch(c){

18 case '+':

19 t[0] =t[0] + x[O0];

20 for(i=1;i1<k;i++){

21 t[i] =t[i] + x[i]

22 + t[i-1]/10000;

23 t[i-1] % 10000;

24 }

25 t[k-1] % 10000;

26 br eak;

27 case '-':

28 t[0] = (t[0] + 10000) " The Tayout of this calendar 1s very similar o some graphics work bj

29 - x[0]; Farrand [8].

30 for(i=1;i<k;i++){

31 t[i] = (t[i] + 10000)

32 - x[1]

33 - (1 - t[i-1]/10000);

34 t[i-1] % 10000;

35 }

36 t[k-1] % 10000;

37 br eak;

38 case 'e':

39 for(i=0;i<kii++) t[i x[i];

40 break'

41 case 'q'

42 eX|t(O)

43 defaul t:

44 noprint = 1;

45 br eak;

46 }

47 if(!'noprint

48 for(i=k - 1;t[i] <=0 &&i > 0;i--);

49 printf("%",t[i]);

50 if(i >0 {

51 for(i-- ; i >=0; 1--

52 printf("9®4d",t[1]);

53

54

55 putchar('\n");

56 for(i=0; i > k;i++) x[i]

57 1

58 1

59 noprint = O;

60

61 }

Figure 5. Full view of the C program. Box shows lines in "flat" view. Underlines show lines in the fisheye view.

exaggerated when compared to a simple immediate
fisheye tradeoff -- suggesting a similar need in display
design. For example one might include just a few more
local lines around the for loop line in figure 4. (2) Often
there were cases of "multi-focus" fisheye views, as in the
geographic study when the subject had lived in more than
one state. In this case detail occurred at both foci and fell
off at points far from either. This observation serves to
remind that users might need to see detail in more than
one place at a time, with a fisheye context around each.
The fisheye calendar we are currently developing will
explore this capability -- showing two days at higher
detail, when desired. (3) Finally, there were typically
additional, non-fisheye effects (e.g., human-interest
newspaper stories could have almost any geographic
origin). This is a good reminder that while perhaps useful,
fisheye views do not capture everything. There may also
have to be ad hoc, domain and task dependent
components of any display of a large structure.

REFERENCES

[1] Robertson, G., D. McCracken and A. Newell The
ZOG approach to man- machine communication,
Technical Report CMU-CS-97-148, Department of
Computer Science, Carnegie Mellon University,
Pittsburgh, PA, 1979.

[2] D. C. Englebart and W. K. English, A research center
for augmenting human intellect, AFIPS Conference
Proceedings, Vol. 33, 1968, 15ff. Also SRI-ARC Catalog
item 3954.

[3] Alberga, C. N., A. L. Brown, G. B. Leeman, M.
Mikelsons and M. N. Wegman, A program development
tool, IBM Research Report, Computer Science
Department, IBM Thomas J. Watson Research Center,
Yorktown Heights, New York,1979.

[4] Horton, M. Design of a Multi Language Editor,
Doctoral Thesis, U. C. Berkeley Computer Science, 1981.

[S] Mikelsons, M., IBM Research Report, Computer
Science Department, IBM Thomas J. Watson Research
Center, Yorktown Heights, New York.

[6] Teslar, L, The Smalltalk Environment, BYTE, 6,
1981, 90-147.

[7] Nelson, T. Computer Lib Hugo's Book Source:
Chicago, IL, 1974.

[8] Farrand, W. A. Information Display in Interactive
Design, Doctoral Thesis, Department of Engineering,
University of California at Los Angeles, 1973.

December 1986
3 L] w ™ r k] J
Dec 16 8|78 i L] L] DR
*CLEAN®JACK SMITH [*Laave Austin *YACATION *YACATION [*VACAI*N. Al
(leavi 10pm Tak 8:30a.m North Carolina Coas| North Caroll] Norty 2:230g
*BELLC{ 11:30 Lunch To North Carclina Sue
a LEAVE MCC Amarican Pigt 287 at
with| Pack Office (4 days vacation) *FUANI
*DINNE Tumn inc put iy
Dabod Badge, kays
Basif*MEET w/RAY ALLARD
10t
[*rNISH (His office)
(for pl*BANKING
Close Austin Accounts
*ALLERGY APT.
Gat Shot
LPick up medicine L]
(pay bid, too)
Dec 22 32|33 13 128 37 |28
BROOK CLEVELAND *CHAIBTMAS EVE CHABTMAS AE TUR*HOLIDY
Dinnel Thru 12/27 Midnight Church Sarvice @Parent's Houle v 11y Aunt
8:30 10:30a.m 10AM Unitd 7:204
*PACK| United fight 1037 [*TOM'S BIATHOAY Arr| Bro
for Cf Gat him & present
After Lunch
[*OMNER W/DAVE
Coming over at &:80
(*NUTCAACKER BALLE
8:30pm
Dec 20 (20 |30 B] £] g
*MOVERS *NEW YEARS [*BACK TO WOl
Furniture Arrives (Hoora yi) “MARLA'S FIRSY
Find sut time... [*PARTY At Balicors
*STAAT ARAANGING FURNITURE at TomilLynn's
==only 3 days to get settied
lan & [B 1] ¥ 1] T
*MCC PTAC [*MCC PTAC *MCC PTAC [*MCC
Srarts continues continues ands
Lian 12 T2 |13] 1.1 L] ik L]

Figure 6. A Fisheye Calendar.

