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1 Introduction 

Fix primes .𝓁 < p. The supersingular .𝓁-isogeny graph . G𝓁 is the directed graph whose 
vertices are the .Fp-isomorphism classes of supersingular elliptic curves and whose 
edges are isogenies, up to post-composition by an automorphism. The graph is 
.(𝓁+1)-regular, has around .p/12 vertices and consists of one connected component. 
However, it has few obvious symmetries: Its structure more closely resembles that 
of a random regular graph in its statistical behaviour, including its graph spectrum. 
It is a Ramanujan graph. 

The graph . G𝓁 was introduced into cryptography in 2006 in [15], where the hard 
problem of finding paths in the graph was proposed. In the cryptographic setting, 
p is always taken to be a large prime of cryptographic size and . 𝓁 is a small prime 
like .𝓁 = 2 or 3. A key exchange protocol called SIDH based on the path-finding 
problem in . G𝓁 was proposed in [21] and was considered for standardization in 
the NIST Post-Quantum Cryptography process (2017–2022). Although SIDH has 
been broken [11, 40, 47], so far there do not exist polynomial time algorithms 
(polynomial in .log p) to solve either the path finding problem (to find a path joining 
two given supersingular curves) or the endomorphism ring problem (to compute the 
endomorphism ring, either as a maximal order in a quaternion algebra or by giving 
a basis of endomorphisms) of a supersingular curve. These problems are closely 
related to one another [24, 57] and to other cryptographic protocols such as CSIDH 
[13] and SQISign [22]. 

The graph . G𝓁, like any superhero worth its salt, has an ‘alter ego’, which is as 
the graph of maximal orders in a quaternion algebra .Bp,∞ ramified at p and . ∞. For  
each elliptic curve vertex, the endomorphism ring of the curve is such a maximal 
order. However, even viewed in this way, the graph is still its apparently disordered 
self. To reveal some familiar structure with which to navigate the graph, one can 
focus, one at a time, on the quadratic rings embedded in the quaternion algebra. 

The aforementioned structure recalls to mind the analogous graph for ordinary 
elliptic curves, whose endomorphism rings are merely quadratic orders. One can 
form an ordinary .𝓁-isogeny graph just as one does a supersingular one: Vertices are 
isomorphism classes of ordinary elliptic curves, and edges are .𝓁-isogenies [26, 52]. 
In this case, the endomorphism rings of the curves in a connected component are all 
orders in the same quadratic field. Stratifying the graph according to the conductors 
of these orders, with larger orders at higher ‘altitude’, we see at the top a cycle, or 
‘rim’, from which trees descend down the sides of the ‘volcano’ (see Fig. 1). This 
simple, organized picture is in contrast to the complexity of the supersingular graph. 

The storyline of the present chapter is that the (finite) supersingular graph . G𝓁

can be understood as the result of superimposing infinitely many volcanoes, each 
obtained by focusing on a single quadratic field embedded inside the quaternion 
algebra .Bp,∞ and its intersection with the various maximal orders. The volcanoes 
in this case are not the volcanoes of the ordinary .𝓁-isogeny graph, but rather the 
connected components of the oriented supersingular .𝓁-isogeny graph associated 
with a quadratic field K , denoted by .GK,𝓁. This graph has recently been studied by 
Colò-Kohel [17] and Onuki [42] in the cryptographic context. The vertices of . GK,𝓁

are pairs .(E, ι) consisting of an isomorphism class of supersingular curves, together
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Fig. 1 An oriented 3-isogeny volcano. The rim is comprised of the five black vertices. These 
vertices are primitively oriented by a 3-fundamental order . O. The gray vertices at altitude 1 
of the volcano are primitively oriented by the suborder of . O of index 3. The five thick dotted 
edges along the rim indicate horizontal oriented 3-isogenies, and the remaining black edges are 
ascending/descending 

with an embedding .ι : K → End0(E) of a quadratic field into the endomorphism 
algebra of the curve, called a K-orientation. Edges are again .𝓁-isogenies. (For the 
precise definitions, see Sect. 2.) 

Upon forgetting orientations, each of these volcanoes covers the supersingular .𝓁-
isogeny graph. In particular, each rim maps to a closed walk in the .𝓁-isogeny graph. 

We concern ourselves with a particular type of closed walk in . G𝓁: one with 
no backtracking and which is not a repeat of a smaller closed walk. We keep its 
direction (traversed ‘forward’ or ‘backward’), but forget any choice of basepoint, 
and call this an isogeny cycle (Definition 3.1). The main result of this chapter is that 
each isogeny cycle is obtained, by forgetting orientations, from exactly one oriented 
volcano rim (up to conjugation of the rim; see Sect. 3.1 for definitions). 

Theorem 1 (See the Precise Version in Theorem 3.2) Fix distinct primes .𝓁 < p. 
Let .r > 2. The isogeny cycles of length r in . G𝓁 are in bijection with the rims of 
length r of the union of all oriented supersingular .𝓁-isogeny volcanoes over . Fp, up  
to conjugation of the orientations. 

The exact statement is discussed in Sect. 3.1, and a detailed example is given 
in Sect. 6. At the highest level, the bijection is given by a simple process. Given 
a rim, one can forget the orientation information to obtain an isogeny cycle in 
the supersingular graph. Conversely, given an isogeny cycle, one can compose the 
sequence of isogenies it comprises, to obtain an endomorphism. This endomorphism 
induces an orientation, placing the initial curve on a rim. The proof, however, 
spans around a third of the paper, in large part because of the existence of special 
cases and issues spawned by extra automorphisms and quadratic fields in which p 
ramifies. In particular, the bijection is not canonical due to these considerations. See 
also Remark 2.17, where we make some philosophical comments on the obstacles 
presented by extra automorphisms in the supersingular isogeny graph. 

We use the bijection of Theorem 1 to count isogeny cycles of length r in . G𝓁. The  
essential ingredient is that the rims of K-oriented .𝓁-isogeny volcanoes correspond
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to cycles of length r in the permutation on the oriented rim vertices arising from the 
action of an element of order r in the class group of an order of K . 

Theorem 2 (See the Precise Versions in Theorem 7.1, Corollaries 7.3 and 7.7) 
The number of isogeny cycles of length r in . G𝓁 is given by 

.
1

r

E

O∈Ir

∈O,𝓁hO, (1) 

where . Ir is a set of quadratic orders satisfying certain splitting properties for . 𝓁 and 
p specified in Sect. 5, and .∈O,r is defined in Theorem 5.1 and satisfies .1 ≤ ∈O,r ≤ 2, 
with .∈O,r = 2 whenever p is unramified in . O. The quantity (1) is bounded above by 

. 
2πe0.578 log(4𝓁)

3
𝓁r(log r + c) + O(𝓁3r/4 log r)

as .r → ∞, where the constant c is explicit, and the implied constant in the big 
O notation can be made explicit using Corollary 7.7. For  .p ≡ 1 (mod 12), the  
quantity (1) asymptotically approaches . 𝓁

r

2r
as .r → ∞. 

The asymptotic for the number of isogeny cycles is as expected for Ramanujan 
graphs (see Sect. 7.1), and we give a standard but self-contained proof for expander 
graphs. However, the class number formula and the explicit upper bound are 
consequences of the main bijection between rims and isogeny cycles. Figure 7 and 
Sect. 6 contain experimental data confirming our results. 

Our strategy for counting isogeny cycles leads immediately to an algorithm to list 
all isogeny cycles of length r in . G𝓁. In particular, the discriminants of elements of 
. Ir are bounded by . 𝓁r . The  j -invariants of the isogeny cycles are roots of the Hilbert 
class polynomials of the orders .O ∈ Ir . The cycle in . G𝓁 can be determined by use of 
the modular polynomial . Ф𝓁. This generalizes a simple congruence condition check 
on p used in [15, Section 5.3.4] to rule out the existence of small cycles for the 
Charles–Goren–Lauter hash function. The exact value of .∈O,r in the ramified cases 
depends upon the theory of the ring class field of K and is given in terms of the class 
number and genus number (Sect. 4). 

In the course of the proof, we need to clarify a point about the number of 
orientations of a curve. When p does not split in . O, Onuki [42] considered the 
set .SSpr

O of pairs .(E, ι) of a supersingular isogeny graph together with a primitive 
.O-orientation (meaning a K-orientation . ι such that .ι(K) ∩ End(E) = O) and the 
set .ρ(E𝓁𝓁(O)) of pairs .(E, ι) ∈ SSpr

O obtained by reducing an elliptic curve over 
. C with normalized complex multiplication by . O (where normalized means that 
.[α]∗ω = αω for the invariant differential . ω; see Sect. 2.3.) Onuki showed that these 
two sets are not always equal; sometimes .# SSpr

O = 2#ρ(E𝓁𝓁(O)). This raises the 
natural question of when this case occurs. In this chapter, we answer that it occurs 
if and only if p is inert in K . (In the ramified case, .# SSpr

O = #ρ(E𝓁𝓁(O)) exactly.)
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We prove this using the ring class field and the action of conjugation (Theorem 4.4) 
but note that the result is also proved using Deuring lifting in [25, Lemma 3.2]. 

We also explicitly find the in- and out-degrees of the vertices of all possible 
K-oriented .𝓁-isogeny graphs. The K-oriented graph is .(𝓁 + 1)-regular except at 
vertices corresponding to curves with extra K-automorphisms (i.e. automorphisms 
that preserve the orientation), where the out-degree may be slightly less than 
.𝓁 + 1. This is made explicit in Remark 2.7 and Proposition 2.11. In connection 
with this, we provide a new direct proof of the volcano structure of the graph and 
the count of ascending, descending and horizontal edges even in exceptional cases, 
in Proposition 2.15. 

The motivation for this chapter is prior work by the same authors, summarized in 
Sect. 8, in which the oriented volcano structure is used to navigate the supersingular 
.𝓁-isogeny graph [5]. In particular, given an initial vertex in the supersingular .𝓁-
isogeny graph and given an endomorphism of that curve, one asks to navigate to a 
target curve (typically .j = 1728). The endomorphism provides an orientation of the 
initial curve and hence a location in an oriented supersingular .𝓁-isogeny volcano. 
Then, using methods of determining ascending and descending directions, one can 
navigate the oriented volcano. The target curve must be given an orientation on the 
same volcano (algorithms are provided in [5]). From both curves, one ascends to 
the rim and hopes to connect the paths. Having found a path on an oriented volcano, 
one takes the image in the original supersingular .𝓁-isogeny graph. 

The algorithms provided in [5] explicitly relied on heuristics about oriented 
volcanoes. They also implicitly hinted at the sort of bijection given in our first 
theorem above. In Sect. 9 of the present chapter, we revisit the explicit heuristics 
of [5] and provide some partial results. In particular, we do the following. 

(1) We give an explicit bound on the distance from uniform of the distribution of 
endpoints of non-backtracking random walks in . G𝓁 from an initial set of vertices 
when .p ≡ 1 (mod 12) (Proposition 9.1). 

(2) We estimate the expected distance of any fixed vertex to a set of j -invariants of 
a given size (Corollary 9.2). 

(3) We fix an oriented volcano and bound the depth at which any j -invariant first 
occurs (Sect. 9.2). 

(4) We fix a j -invariant and consider all the possible orientations by a given field 
and the distribution of this collection of oriented curves on the various oriented 
volcanoes (Sect. 9.3). We are able to prove a result that differs slightly from the 
heuristic used in [5]. 

As an additional minor point of interest, Lemma 2.9 shows that the kernel of an 
endomorphism is fixed by an extra automorphism if and only if its field of definition 
lies in the field of definition of the automorphism. As a corollary, we can classify the 
behaviour of loops at .j = 0 and .j = 1728 in Corollary 2.13; this is a new method 
of proof, and slight generalization, of a known result [1, 36, 44].
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The topic of closed walks1 in the supersingular .𝓁-isogeny graph was first studied 
in [15], where it was observed that closed walks give endomorphisms, and so the 
splitting behaviour of p in various extensions controlled the existence of small 
cycles. The endomorphisms created by closed walks were studied in the thesis of 
Kohel [33] and further in [7], with the goal of understanding when such cycles 
are independent and generate an endomorphism ring. These sources also discuss 
the computation of the trace of a cycle. The neighbourhoods of 0 and 1728 are 
particularly intricate, and their loops and cycles are discussed in [1, 35, 36, 44, 58]. 
Cycles in the SIKE graph which pass through the secret key are discussed in [43]. 

Further back in the literature, Gross [28] considered counting endomorphisms of 
a fixed degree by computing the traces of matrices derived from certain modular 
forms of weight 2 for the group .𝚪0(N). Thus Gross counts closed walks of a 
different sort and in particular allows backtracking (which we do not). As the degree 
increases, the proportion of the count due to backtracking increases as well. We 
provide a comparison at the end of our extended example in Sect. 6. 

The study of K-orientations is in some sense as old as the study of optimal 
embeddings in quaternion algebras and has naturally appeared in the study of 
isogeny graphs, for example, in [37]. In the context of isogeny-based cryptography, 
the graph .GK,𝓁 was studied by Colò and Kohel in order to propose OSIDH, a new 
key exchange protocol [17] (see also [14]). Onuki considered the difference between 
.SSpr

O and .ρ(E𝓁𝓁(O)) [42]. In cryptography, the class group action on oriented curves 
has been used constructively [16], and the hardness of the group action problem has 
been considered both classically and quantumly [12, 56]; a new variation called 
the .O-uber isogeny problem appears in [20] (see also [14]). The volcano structure 
provides some algorithmic approaches to hard problems, which includes the recent 
work of the present authors [5] and related work [56]. Recent work also asks about 
the number of orientable curves [34]; see also [37]. Finally, specific orientations 
underlie the line of work in [23] and [20]. 

Outline of the Chapter Section 2 contains the background on oriented and unori-
ented supersingular .𝓁-isogeny graphs. In Sect. 3, we state and prove Theorem 1, 
and this section is the heart of the chapter. Section 4 settles the question of when 
.ρ(E𝓁𝓁(O)) = SSpr

O and discusses the action of conjugation on .SSpr
O. Section 5 

specifies exactly the number of rims associated with a given quadratic order, in 
terms of class and genus numbers. Section 6 provides an extended example of the 
main bijection of Theorem 1. Section 7 counts the number of isogeny cycles in . G𝓁

asymptotically, as well as exactly in terms of class numbers, and gives an explicit 
upper bound. Section 8 gives an overview of our previous work and how it motivates 
the work in this chapter, as well as the heuristics it depends upon. Section 9 partially 
addresses some of these heuristic questions by use of methods of expander graphs.

1 Often simply called cycles in the isogeny literature; we use the term closed walk to more 
accurately follow the graph theory literature. 
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2 Mathematical Preliminaries on Oriented Supersingular
𝓁-Isogeny Graphs and Their Volcanoes 

2.1 The Supersingular 𝓁-Isogeny Graph G𝓁

Let .𝓁 < p be distinct primes. We let . G𝓁 denote the supersingular .𝓁-isogeny graph 
over . Fp, defined as the directed graph whose vertices are isomorphism classes 
of supersingular elliptic curves over .Fp and whose directed edges are isogenies 
of degree . 𝓁 up to post-composition by an automorphism. The number .#G𝓁 of 
supersingular j -invariants over . Fp (see [50]) is 

.#G𝓁 =
| p

12

|
+

⎧
⎪⎪⎨

⎪⎪⎩

0 if p ≡ 1 (mod 12),

1 if p ≡ 5 or 7 (mod 12),

2 if p ≡ 11 (mod 12).

(2) 

Supersingular elliptic curves with j -invariants equal to 0 and 1728 have extra 
automorphisms, beyond the usual automorphisms . [±1]. Let .E0 : y2 = x3 − 1 and 
.E1728 : y2 = x3 − x with .j (E0) = 0, j (E1728) = 1728. The curve .E0/Fp is 
supersingular for any .p ≡ 2 (mod 3), and .E1728/Fp is supersingular for any . p ≡ 3
(mod 4). For the sake of this discussion, we assume these curves are supersingular. 
We provide their explicit endomorphism rings below, referenced from [41, 51]. 

The automorphism group for .E1728 is .Aut(E1728) = {[±1], [±i]}, where 
.[i](x, y) := (−x, iy) for .i ∈ Fp2 with .i2 = −1. Write . πp for the p-power Frobenius 
endomorphism: .πp(x, y) := (xp, yp). In .Bp,∞ := End(E1728) ⊗Z Q, we have  

. End(E1728) =
/
1, [i], 1 + πp

2
,
[i] + [i]πp

2

\
. (3) 

The automorphism group for .E0 is .Aut(E0) = {[±1], [±ζ3], [±ζ 2
3 ]}, where 

.[ζ3](x, y) := (ζ3x, y) with . ζ3 a root of .T 2+T +1 in . Fp2 . We let .[√−3] = 2[ζ3]+1. 
In .Bp,∞ := End(E0) ⊗Z Q, we have  

. End(E0) =
/

1,
−1 + [√−3]

2
, πp,

3 + [√−3] + 3πp + [√−3]πp

6

\
. (4) 

Lemma 2.1 Let .E ∈ {E0, E1728} and let .ϕ ∈ Aut(E) such that .ϕ /= ±[1]. If  
.ϕθ = θϕ for .θ ∈ End(E), then .deg θ ≥ p. 

Proof Let .η = [i] or .η = [√−3] depending whether .E = E1728 or .E = E0, 
respectively. The condition .ϕθ = θϕ implies that . θ must have the form . θ = sπp +
t (ηπp) where .s, t ∈ Q.
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For .E = E1728, using the .Z-basis for .End(E1728) in (3), we have . θ = mπp +
n([i]πp) where .m, n ∈ Z. Thus .deg θ = p(m2 + n2) ≥ p. 

For .E = E0, using the .Z-basis for .End(E0) in (4), we have . θ = m
2 πp − n

2 (ηπp)

where .m, n ∈ Z are of the same parity. Thus .deg θ = p
4 (m2+3n2). Since . m2+3n2 ≡

0 (mod 4), it follows that .deg θ ≥ p. ⨅⨆
The graph . G𝓁 has regular out-degree .𝓁 + 1 (the number of subgroups of . E[𝓁]

of size . 𝓁) [46]. It is very nearly an undirected graph, obtained by identifying each 
.𝓁-isogeny with its dual. The exception is that since isogenies are identified under 
post-composition with an automorphism, at curves with extra automorphisms, this 
identification may fail (see Fig. 3). Nevertheless, this issue occurs for edges adjacent 
to at most two vertices (.j = 0, 1728), so one often considers it an .(𝓁 + 1)-regular 
undirected graph for the purposes of spectral graph theory, without affecting the 
validity of the conclusions. Modulo this slight lie, or when .j = 0 and . j = 1728
are ordinary and hence absent from the graph (they are absent if and only if . p ≡ 1
(mod 12)), . G𝓁 is an .(𝓁+ 1)-regular Ramanujan graph. In particular, if its adjacency 
matrix has eigenvalues .𝓁 + 1 = λ1 ≥ λ2 ≥ · · · ≥ λn, then 

. max
i>1

|λi | ≤ 2
√

𝓁. (5) 

2.2 The Oriented Supersingular 𝓁-Isogeny Graph GK,𝓁

Let .𝓁 < p be distinct primes. Fix a supersingular elliptic curve .E/Fp. Then 
.End0(E) ∼= Bp,∞, where .Bp,∞ denotes the definite quaternion algebra ramified 
precisely at p and . ∞ (unique up to isomorphism). Let K be an imaginary quadratic 
field in which p does not split. This condition on p gives the existence of an 
embedding of K into . Bp,∞. Let . O denote an order in K and .hO the class number 
of this order. Let .ΔO denote its discriminant. An order . O of K is .𝓁-fundamental if 
its conductor is relatively prime to . 𝓁. 

Definition 2.2 (K-orientation) A K-orientation of E is an embedding . ι : K →
End0(E). 

Definition 2.3 (.O-orientation) A K-orientation .ι : K → End0(E) is an .O-
orientation if .ι(O) ⊆ End(E). Furthermore, we say that an .O-orientation is 
.O-primitive if .ι(O) = End(E) ∩ ι(K). 

Every K-orientation .ι : K → End0(E) is .O-primitive for a unique order . O of K . 
In the literature, for example, [37], one will find the closely related term optimal 

embedding, in the context of a maximal order . O of a quaternion algebra A, for an 
embedding .ι : K → A such that .ι(K)∩O = O. An optimal embedding corresponds 
to a primitive orientation via the Deuring correspondence. For the theory of optimal 
embeddings, see [55, Chapter 30].
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Definition 2.4 (K-oriented Elliptic Curve) A K-oriented elliptic curve is a pair 
.(E, ι), where E is an elliptic curve and . ι is a K-orientation of E. 

Isogenies of elliptic curves induce isogenies of oriented elliptic curves in the 
following sense: If .φ : E → E' is an isogeny and .ι : K → End(E) is a K-
orientation of E, then we define the unique induced orientation .φ∗ι on . E' for any 
.α ∈ K as follows: 

.(φ∗ι)(α) := 1

[deg φ]φ ◦ ι(α) ◦ -φ. (6) 

Definition 2.5 (K-oriented Isogeny) If .φ∗ι = ι', then we say that . φ : (E, ι) →
(E', ι') is an isogeny of K-oriented curves, also known as a K-oriented isogeny. 

Two K-oriented curves .(E, ι), (E', ι') are K-isomorphic if there exists an iso-
morphism .η : E → E' such that .η∗ι = ι'. Two K-oriented isogenies . φ : (E1, ι1) →
(E2, ι2) and .φ' : (E'

1, ι
'
1) → (E'

2, ι
'
2) are considered equivalent if there are K-

oriented isomorphisms . η and . η' so that the following diagram commutes: 

. 

(E1, ι1) 
φ 

η 

(E2, ι2) 

η 

(E1, ι1) 
φ 

(E2, ι2) (7) 

We will frequently abuse notation by writing a representative .(E, ι) or . φ in place of 
its equivalence class. 

An automorphism . ϕ of E is a K-automorphism of .(E, ι) if .ϕ∗ι = ι. This occurs 
if and only if .ϕ ∈ ι(K). 

Definition 2.6 (.GK,𝓁) The .𝓁-isogeny graph .GK,𝓁 of K-oriented supersingular ellip-
tic curves over . Fp is the directed graph whose vertices .(E, ι) are K-isomorphism 
classes of K-oriented supersingular elliptic curves over .Fp and whose edges are 
equivalence classes of K-isogenies of degree . 𝓁 between the given oriented curves. 

Remark 2.7 The only vertices of .GK,𝓁 with automorphism group larger than . {[±1]}
are .(E, ι) where either (i) E has j -invariant 1728 and .ι(i) ∈ End(E) or (ii) E has 
j -invariant 0 and .ι(ζ3) ∈ End(E). 

Proposition 2.8 The directed edges of .GK,𝓁 can be put into equivalence classes by 
making an isogeny equivalent to its dual isogeny. These classes are of size 1 or 2. 
The only self-dual edges are loops. By identifying isogenies with their duals, this 
graph can be drawn undirected. 

Proof With reference to (7), if . φ and . φ' are equivalent, then their duals are 
equivalent. Therefore an equivalence class consists of one directed edge and its dual 
or a single self-dual edge. ⨅⨆
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Although the number of .𝓁-isogenies originating at a supersingular curve is always 
.𝓁 + 1, some of these may be equivalent, so that in the graph .GK,𝓁, the out-degree 
may be strictly smaller. As usual, the culprits are the extra automorphisms, as in 
Remark 2.7. Before we state and prove the exact out-degree, we need a lemma. 

Lemma 2.9 Let E be a curve with extra automorphisms. Given a non-zero isogeny 
.φ : E → E', its kernel .ker φ is fixed by .Aut(E) \ {[±1]} if and only if .E ∼= E'. If we  
further assume that .deg φ < p, then .ker φ is fixed by .Aut(E) \ {[±1]} if and only if 
.E ∼= E' and . φ (up to post-composition with an isomorphism .E' → E) is an element  
in .Q(Aut(E)) ∩ End(E). 

Proof Let . ϕ be a non-integer automorphism of E. First, suppose .ker φ = ϕ ker φ. 
Then .ker φ = ker φϕ, so there exists a unique .η ∈ Aut(E') such that . φϕ = ηφ

by [50, III.4.11]. Then, working in .End(E) ⊗Z Q ∼= End(E') ⊗Z Q, the element 

.φϕ
-φ

[deg(φ)] = η ∈ Aut(E') ⊂ End(E') has the same minimal polynomial as 
.ϕ ∈ Aut(E) ⊂ End(E). The existence of non-integer elements in .Aut(E) and 
.Aut(E') with the same minimal polynomial gives .Aut(E) ∼= Aut(E'). Since 
.Aut(E) ∼= Aut(E') ⊋ {[±1]}, the automorphism group determines the isomorphism 
class of the curve and we have .E ∼= E'. 

Next, suppose .E ∼= E' via an isomorphism .λ : E' → E. In particular, . Aut(E) ∼=
Aut(E') ⊋ {[±1]}. Then, .λφ ∈ End(E) and .ker(λφ) = ker φ. By abuse of notation, 
we replace .λφ with . φ and may henceforth assume .φ ∈ End(E) in this case. The 
endomorphism . φ has the same minimal polynomial as .ϕ−1φϕ, and so up to some 
automorphism .η ∈ Aut(E), we have .ϕ−1φϕ = ηφ, and thus .ker φ = ker φϕ. 

Now, assume .deg φ < p and suppose .E ∼= E' and .ker φ is fixed by a generator . ϕ

of .Aut(E). Then .φ = ϕkφϕ for some integer .0 ≤ k < |Aut(E)|. By cancellation, 
we know .φ /= ±φϕ since .ϕ /= [±1], hence .ϕφ = φϕ or else .ϕφ = φϕ. For . ϕ = [ζ6]
(a primitive sixth root of unity), we have .k ∈ {1, 2, 4, 5}. If .k ∈ {1, 5}, then either 
.[ζ6]φ = φ[ζ6] or .[ζ6]φ = φ[ζ6]. Otherwise, if .k ∈ {2, 4}, then observe that . φ =
[ζ6]kφ[ζ6] = [ζ6]k([ζ6]kφ[ζ6])[ζ6] = [ζ6]2kφ[ζ6]2 = [ζ3]kφ[ζ3], so . [ζ3]φ = φ[ζ3]
or .[ζ3]φ = φ[ζ3]. Since .deg φ < p, Lemma 2.1 rules out the case that .ϕφ = φϕ. 
We are left to conclude that . φ commutes with an element . ϕ of .Aut(E) \ {[±1]}, 
which implies that .φ ∈ Q(ϕ) ⊆ End0(E). 

On the other hand, if .ker φ /= ker φϕ, then .φ /= ±ϕkφϕ for any k, so . φ does not 
commute with . ϕ, and hence .φ /∈ Q(Aut(E)). ⨅⨆
Definition 2.10 (Reduced Automorphism Group) Let . Aut'(E) := Aut(E)/[±1]
denote the reduced automorphism group of the elliptic curve E. 

Proposition 2.11 Let .(E, ι) be an oriented curve in .GK,𝓁 where . ι is an .O-
orientation. Then .(E, ι) has out-degree .𝓁 + 1, except at the oriented curves with 
extra K-automorphisms (those of Remark 2.7). In that exceptional case, the out-
degree is .(𝓁+1− s𝓁)/|Aut'(E)|+ s𝓁, where . s𝓁 is the number of . φ ∈ End(E)∩ ι(K)

of degree . 𝓁 up to post-composition by .Aut(E). In particular, the out-degree at .(E, ι), 
when .(E, ι) has extra K-automorphisms, is
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. 

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(𝓁 − 1)/2 + 2 O = Z[i] and 𝓁 splits in O(s𝓁 = 2)

(𝓁 + 1)/2 O = Z[i] and 𝓁 is inert in O(s𝓁 = 0)

2 O = Z[i] and 𝓁 = 2(s𝓁 = 1)

2(𝓁 − 1)/3 + 2 O = Z[ζ3] and 𝓁 splits in O(s𝓁 = 2)

2(𝓁 + 1)/3 O = Z[ζ3] and 𝓁 is inert in O(s𝓁 = 0)

3 O = Z[ζ3] and 𝓁 = 3(s𝓁 = 1).

Proof With reference to diagram (7), by taking .η ∈ Aut(E), the two equivalent 
K-oriented isogenies . φ and . φ' from .(E, ι) must satisfy .ι' = η∗ι = ι and . η ker φ =
ker φ'. The first equality implies .η ∈ ι(K). Hence .(E, ι) has out-degree .(𝓁 + 1) if 
.Aut(E) ∩ ι(K) = [±1]. If .Aut(E) ∩ ι(K) ⊋ [±1], the out-degree may be less than 
.(𝓁 + 1), and we investigate this case below. 

If .Aut(E) ∩ ι(K) contains non-trivial automorphisms, then it contains all of 
them, and .End(E) ∩ ι(K) = ι(OK) ⊇ Aut(E). The .𝓁 + 1 outgoing .𝓁-isogenies 
fall into equivalence classes according to whether their kernels are related by an 
extra automorphism. The kernel of an outgoing .𝓁-isogeny . φ from E is fixed by 
.η ∈ Aut(E) if and only if .φ ∈ End(E) ∩ ι(K) (as in the proof of Lemma 2.9, we  
may assume that .φ ∈ End(E) by post-composing with an isomorphism; we have 
assumed throughout the paper that .𝓁 < p). Let . S𝓁 be the set of equivalence classes 
of elements in .End(E) ∩ ι(K) of degree . 𝓁 up to pre-composition by .Aut(E), and 
put .s𝓁 = #𝓁. Note that .End(E) ∩ ι(K) = ι(OK), so .s𝓁 = 0, 1 or 2, depending on 
whether . 𝓁 is inert, ramified or split in .OK . By the above, a degree .𝓁-isogeny . φ is in 
. S𝓁 if and only if it is fixed by all .η ∈ Aut(E). Otherwise its kernel has an orbit of 
size .|Aut'(E)|. Thus the number of out-isogenies is .(𝓁+1−s𝓁)/|Aut'(E)|+s𝓁. ⨅⨆
Remark 2.12 As an immediate corollary, we obtain a new method of proof and 
generalization of a known result about the number of loops at a vertex [1, 36, 44]. 
Specifically, the previous works concerned only large p (the last two sentences of 
the next corollary). 

Corollary 2.13 Let .j ∈ {0, 1728} correspond to a supersingular curve over . Fp. 
Let .K = Q(ζ3),Q(i) for .j = 0, 1728, respectively. Let n represent the number of 
loops at the vertex of j -invariant j , in . G𝓁. Then 

. n = 1 +
(

ΔK

𝓁

)
+ k|Aut'(E)|,

for some .k ∈ Z. If  .4𝓁 < p, then the number of loops at .j = 1728 is exactly 

.1 +
(

ΔK

𝓁

)
. If .3𝓁 < p, then the number of loops at .j = 0 is exactly .1 +

(
ΔK

𝓁

)
. 

Proof Let . O be .Z[ζ3] or .Z[i] when .j = 0 or 1728, respectively. Whether . 𝓁 splits 
or ramifies or is inert determines the number of elements of .ι(O) of degree . 𝓁, up  
to automorphisms: two, one or zero, respectively. These elements are all loops 
on the vertex. All other loops fall into groups of size .|Aut'(E)|, as in the proof 
of Proposition 2.11. For the last two sentences of the statement, we revisit the
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endomorphism rings of the vertex (Sect. 2.1), to see that the smallest elements not 
in .ι(O) have norm .p/4 and .p/3, respectively. ⨅⨆

It is possible to compute k explicitly for any given value of . 𝓁 in terms of p, by  
reference to the endomorphism rings as described in the proof. 

The graph .GK,𝓁 consists of connected components, each with a volcano structure 
as pictured in Fig. 1. The rim vertices of any given volcano are K-orientations of 
supersingular elliptic curves which are .O-primitive for some fixed .𝓁-fundamental 
order . O of K . The oriented supersingular elliptic curves that appear at depths below 
the rim are primitively oriented by orders whose index in . O is given by increasing 
powers of . 𝓁: At depth 1 from the rim, the curves are primitively .(Z+ 𝓁O)-oriented, 
and in general, at depth k, the curves are primitively .(Z+ 𝓁kO)-oriented. The edges 
of the volcano can thus be classified according to whether they increase, decrease 
or preserve the depth as we move from domain to codomain. 

Definition 2.14 (Horizontal, Descending and Ascending Isogenies) Let . φ :
(E, ι) → (E', ι') be a K-oriented degree . 𝓁 isogeny. If . ι is a primitive .O-orientation 
and . ι' is a primitive .O'-orientation, then . φ is one of the following three types of 
isogeny: 

(1) . φ is horizontal if .O = O'. 
(2) . φ is descending if .O ⊋ O'. 
(3) . φ is ascending if .O ⊊ O'. 

The fact that each component has a volcano structure is the content of the 
following proposition; versions of this appear in various places in the literature 
[17, 42]. 

Proposition 2.15 Let .(E, ι) be such that . ι is .O-primitive. If . O is .𝓁-fundamental, 

then .(E, ι) has no ascending .𝓁-isogeny and .
(

ΔO
𝓁

)
+ 1 horizontal .𝓁-isogenies. 

Otherwise, .(E, ι) has one ascending .𝓁-isogeny and no horizontal isogenies. All 
other isogenies from .(E, ι) are descending. 

Proof This follows from [5, Proposition 4.8]. Write .O = Z[θ ] satisfying the 
hypotheses of that proposition. If . O is .𝓁-fundamental, then the norm of . θ is 
not divisible by . 𝓁. Then . θ acts to permute .E[𝓁] and therefore has two non-zero 
eigenvalues. By [5, Proposition 4.8], there are two horizontal isogenies if and only if 
these eigenvalues are distinct and defined over . F𝓁, i.e. . 𝓁 splits. If they are not distinct 
but defined over . F𝓁, there is one horizontal isogeny, i.e. . 𝓁 ramifies. Otherwise there 
are no horizontal isogenies. If . O is not .𝓁-fundamental, then the norm of . θ is divisible 
by . 𝓁 and there is a zero eigenvalue (but only one, since . 𝓁 does not divide . θ ). By [5, 
Proposition 4.8], this gives exactly one ascending isogeny. All other isogenies are 
descending. ⨅⨆

Let . O be an order in K . Every primitive .O-oriented curve .(E, ι) is on a volcano 
in . GK,𝓁. If . O is .𝓁-fundamental, then .(E, ι) is on the rim of this volcano. If . 𝓁 divides 
the conductor of . O, then the power of . 𝓁 dividing the discriminant of . O is referred 
to as the depth of the curve on this volcano.
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Proposition 2.16 A connected component of .GK,𝓁, when identifying .𝓁-isogenies 
with their duals, has at most one cycle, passing through the rim vertices. 

Proof The fact that there is at most one ascending isogeny from any vertex below 
the rim implies that there are no cycles below the rim. Restricting to the rim, we have 
a 2-regular graph, hence a union of cycle graphs. But since the graph is connected 
by assumption, it consists of at most one cycle. ⨅⨆

Therefore, we also use the term rim to refer to the undirected cycle graph that 
one obtains as a subgraph of .GK,𝓁 by restricting to the rim vertices and identifying 
.𝓁-isogenies with their duals. We call a rim directed if we choose a direction of 
traversal (disallowing backtracking). 

Remark 2.17 We pause briefly to justify the choice of equivalence on isogenies for 
.GK,𝓁 (which differs from the notion of equivalence in . G𝓁). In fact, when forming a 
graph whose vertices are isomorphism classes of any type of object, the graph is 
well defined if we choose the edges to be maps up to pre- and post-composition 
by isomorphism, as in (7). In other words, it is reasonable to require of our graph 
definition that, under any two sets of representatives for the vertices, and any set 
of object-wise isomorphisms between those sets of representatives, the resulting 
graphs should be canonically isomorphic. This requirement, when unravelled, is 
essentially the requirement than the maps be taken up to pre- and post-composition. 
Historically, the supersingular isogeny graph is not defined in this robust way, 
instead identifying isogenies as equivalent merely up to post-composition. This 
allows for the computational convenience of identifying kernels with isogenies 
and also allows for an identification between non-backtracking walks and cyclic 
isogenies. However, it results in certain non-canonical behaviours. These behaviours 
can be observed only in proximity to the curves with extra automorphisms (having 
j -invariant .j = 0 and .j = 1728), particularly the phenomenon described in 
the second paragraph of Sect. 3.2. The historical definition of the supersingular 
isogeny graph resulted in substantial difficulties arising from extra automorphisms 
in proving our main Theorem 3.2. 

2.3 The Sets SSpr O and ρ(E𝓁𝓁(O)) and the Class Group Action 

Having stratified each volcano into depths where the orientations are all primitive 
with respect to a fixed order, it is natural to consider the complete set of curves with 
such orientations. 

Definition 2.18 (.SSpr
O ) Let .SSpr

O denote the set of primitively .O-oriented isomor-
phism classes of supersingular elliptic curves, up to K-isomorphism. 

Here we recall the following conditions for the set .SSpr
O to be non-empty. 

Proposition 2.19 ([42, Proposition 3.2]) The set .SSpr
O is not empty if and only if p 

does not split in K and does not divide the conductor of . O.
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If . O is .𝓁-fundamental, then .SSpr
O is a union of volcano rims in .GK,𝓁. 

For the proof of our bijection in Sect. 3.3, we invoke the Deuring lifting theorem 
as outlined in [42, Section 3.2]. For this, we will need a number of definitions and 
lemmas about CM elliptic curves over number fields. 

There is a number field . L' (an extension of the ring class field L of . O) and a prime  
ideal . p above p in .OL' such that every elliptic curve with complex multiplication 
by . O has a representative over . L' with good reduction at . p [50, Section VII.5]. Fix 
such a choice. 

Definition 2.20 (.E𝓁𝓁(O)) Let .E𝓁𝓁(O) denote the set of isomorphism classes of 
elliptic curves over . L' with endomorphism ring isomorphic to . O and good reduction 
at . p. 

By the theory of complex multiplication, .#E𝓁𝓁(O) = hO. Write . [·]E : O →
End(E) for the isomorphism which is normalized so that .([α]E)∗ωE = αωE , where 
.ωE denotes the invariant differential of E [42, Section 2.3], [49, Prop. II.1.1]. There 
is a map given by reduction modulo . p: 

. ρ : E𝓁𝓁(O) → SSpr
O, E →׀ (Ẽ, ιE),

where .ιE : K → End0(Ẽ) is determined by its restriction .ιE : O → End(Ẽ) being 
the reduction modulo . p of the isomorphism .[·]E (in other words, . ιE(α) = [α]E
(mod p) for all .α ∈ O). In particular, from the normalization, it holds that 
.ιE(α)∗ω

Ẽ
= αω

Ẽ
by reduction modulo . p. 

The map . ρ is injective on .E𝓁𝓁(O), so that its image .ρ(E𝓁𝓁(O)) is a subset of 
.SSpr

O of size . hO. There is an action of the p-power Frobenius on .SSpr
O, given by 

.πp · (E, ι) →׀ (E(p), ι(p)), where .E(p) = πp(E) and .ι(p) = (πp)∗ι. 

Proposition 2.21 ([42, Proposition 3.3]) For all .(E, ι) ∈ SSpr
O, at least one of 

.(E, ι), .(E(p), ι(p)) belongs to .ρ(E𝓁𝓁(O)). 

As suggested by the above, surjectivity of . ρ may indeed fail: . # SSpr
O ∈

{hO, 2hO}. Theorem 4.4 describes when this failure occurs. 
We define an action of ideals of . O on oriented elliptic curves .(E, ι) ∈ SSpr

O. 

Definition 2.22 (Ideal Action on Oriented Elliptic Curves) Let . (E, ι) ∈ SSpr
O

for some order . O of K . Let . a be an integral ideal of . O coprime to p. Define the 
intersection: 

. E[ι(a)] :=
n

α∈a
ker(ι(α)).

This group defines an isogeny .φ(E,ι)
a : E → E/E[ι(a)]. The action of . a on .(E, ι) is 

defined as .a ∗ (E, ι) := (φ
(E,ι)
a (E), (φ

(E,ι)
a )∗ι).
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When clear from context, we will drop the superscript and just write . φa. Note that 
to define the action of the ideal . a, we require its norm to be coprime to p (see the 
proof of [42, Proposition 3.6]). 

Theorem 2.23 ([42, Theorem 3.4]) Assume that p does not split in K and p does 
not divide the conductor of . O. Then the ideal action of Definition 2.22 defines a free 
and transitive action of .Cl(O) on .ρ(E𝓁𝓁(O)). 

This action is the ‘same’ as that of the CM theory, in the sense that . ρ(σ ·(E, ι)) =
σ · (ρ((E, ι))) for .σ ∈ Cl(O) [42, Proof of Proposition 3.6]. 

Finally, we relate .SSpr
O to the volcanoes of .GK,𝓁. 

Definition 2.24 (.O-cordillera) A collection of volcanoes in .GK,𝓁. The collection 
of volcanoes whose rims are primitively oriented by . O is called the .O-cordillera. 

The set of vertices at the rim of the .O-cordillera is exactly the set .SSpr
O. 

Next, we slightly strengthen results of Colò-Kohel [17] and Onuki [42] to give an  
action on oriented isogenies by a direct product of the class group with Frobenius. 

Definition 2.25 (Action of Frobenius on Oriented Elliptic Curves) The two-
element group .〈πp〉 = {1, πp} generated by the Frobenius automorphism .πp of 
.Fp2 acts on .GK,𝓁 by 

. πp · (E, ι) = (E(p), ι(p)), πp · ϕ = ϕ(p),

where .ι(p) := (πp)∗(ι). 

For any isogeny . ϕ, we have .πp ◦ϕ(x, y) = ϕ(p)(xp, yp) = ϕ(p) ◦πp(x, y). Hence, 
one has 

. ι(p)(α) = (πp)∗(ι)(α) = 1

p
πp ◦ ι(α) ◦ -πp = 1

p
ι(α)(p) ◦ πp ◦ -πp = ι(α)(p).

Since .ϕ →׀ ϕ(p) gives an isomorphism .End(E) ∼= End(E(p)), this yields an action 
on .SSpr

O by .〈πp〉. In fact, it is an action on the graph .GK,𝓁, i.e. it preserves adjacency. 

Proposition 2.26 The actions described in Definitions 2.22 and 2.25 above com-
mute and hence give an action of .Cl(O) × 〈πp〉 on .SSpr

O. This action is transitive 
and its point stabilizers are either all trivial or all .〈πp〉. In particular, . # SSpr

O ∈
{hO, 2hO}. 
Proof We have .πp · ϕa · (E, ι) = (ϕa)

(p) · πp · (E, ι). To avoid confusion we 

momentarily use the more specific notation .ϕ(E,ι)
a to denote the isogeny . ϕa with 

domain .(E, ι) and kernel .E[ι(a)]. Then 

. ker((ϕ(E,ι)
a )(p)) = ker(ϕ(E,ι)

a )(p) = E[ι(a)](p) =
n

θ∈ι(a)

ker(θ)(p)
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Fig. 2 Here .p = 31, 𝓁 = 2 and .K = Q(
√−47). This figure shows the set .SSOK

which consists of 
two cycles. We denote by .(j, ιj ) the vertex with j -invariant j and orientation . ιj ; if the  j -invariant 
appears twice, the second orientation is denoted by . ιj,2. The notation . ιj denotes the conjugate 
orientation. Conjugation (Sect. 4) maps .(j, ιj ) to .(j, ιj ) and .(j, ιj,2) to .(j, ιj,2). On the other hand, 
. πp maps .(1728, ι1728) to .(1728, ι1728), .(2, ι2) to .(2, ι2,2) and .(4, ι4) to . (4, ι4,2)

=
n

θ∈ι(a) 
ker(θ(p) ) =

n

θ∈ι(p)(a) 

ker(θ) = E(p)[ι(p) (a)] 

= ker((ϕ(E(p) ,ι(p) ) 
a ).) 

The calculation above implies that .(ϕ(E,ι)
a )(p) = ϕ

(E(p),ι(p))
a . Thus, 

. πp · a · (E, ι) = a · πp · (E, ι).

So the action of .Cl(O) × 〈πp〉 on .SSpr
O is well defined. 

The restriction of this action to .Cl(O) acts freely and transitively on a subset of 
.SSpr

O which contains at least one of .(E, ι) or .(E(p), ι(p)) [42, Theorem 3.4], from 
which the rest of the statement follows. Transitivity implies that the stabilizers are 
all of the same size. ⨅⨆
Remark 2.27 One might expect to see the dihedral group, not a direct product. 
We will see the dihedral group coming from class field theory in Sect. 4, where we 
consider the action of conjugation on .SSpr

O. But in our definitions here, Frobenius 
acts on both curve and orientation. In other words, .SSpr

O has an action by a direct 
product and by a dihedral group, both extensions of the same action of .Cl(O) by 
.Z/2Z, but these are not necessarily the same. For an example of the action of 
Frobenius and the action of conjugation being different, see Fig. 2. 

2.4 A Lemma of Algebraic Number Theory 

We make explicit a small lemma from algebraic number theory that will be used in 
Sect. 7.



Orientations and Cycles in Supersingular Isogeny Graphs 41

Lemma 2.28 Let K be an imaginary quadratic field and let . O be an order in K 
with conductor f . Assume that . 𝓁 is a prime that does not divide f . Then . 𝓁 splits 
(ramifies and is inert, respectively) in . O if and only if . 𝓁 splits (ramifies and is inert, 
respectively) in the maximal order . OK . 

Proof By [18, Proposition 7.20], if . a is an .OK -ideal above . 𝓁 prime to f , then . a' =
a∩O is an .O-ideal above . 𝓁 with the same norm, and if . a' is an .O-ideal above . 𝓁 prime 
to f , then .a = a'OK is an .OK -ideal above . 𝓁 with the same norm. Furthermore, these 
maps are inverse to one another, giving a bijection between ideals of .OK coprime 
to f , and invertible ideals of . O. Therefore the splitting, ramification and inertia 
properties of . 𝓁 in .OK and in . O are the same. ⨅⨆

3 Bijection Between Oriented Volcano Rims and Isogeny 
Cycles in the Supersingular 𝓁-Isogeny Graph 

3.1 Statements of Results 

In this section, we give a bijection between ‘isogeny cycles’ (closed walks satisfying 
a non-backtracking and non-repeating condition; see below) on the supersingular 
.𝓁-isogeny graph and rims (up to conjugation) of the volcanoes in all oriented 
supersingular .𝓁-isogeny graphs. We first give our definition of isogeny cycles. 

Definition 3.1 (Isogeny Cycle) An isogeny cycle is a closed walk, forgetting 
basepoint, in . G𝓁 containing no backtracking (no consecutive edges compose to 
multiplication-by-. 𝓁, Definition 3.5) which is not a power of another closed walk 
(i.e. not equal to another closed walk repeated more than once). 

Isogeny cycles travelling the same vertices in opposite directions necessarily 
employ different directed edges and hence are considered different. 

We need a few more items of terminology. The term directed refers to the notion 
of direction of traversal. Each rim corresponds to two directed rims, since there 
are two possible directions of traversal. The conjugate of a rim R is obtained 
by taking each vertex .(E, ι) to .(E, ι) and each edge .φ : (E, ι) → (E', ι') to 
.φ : (E, ι) → (E', ι'). The conjugation of a rim is again a rim. Note that if 
.φ

(E,ι)
a : (E, ι) → (E', ι'), then .φ(E,ι)

a
: (E, ι) → (E', ι') since .E[ι(a)] = E[ι(a)]. 

So in particular, the direction of a rim (. E0, . E1 etc.) is preserved by conjugation, but 
the ideal whose action traverses the rim in that direction is conjugated. 

We now state our main theorem. For each integer .r > 2, define two sets: 

. Cr = { isogeny cycles in G𝓁 of length r}.

.Rr = {
directed rims R of size r in GK,𝓁 :K is an imaginary quadratic field

}
.
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Theorem 3.2 Let .r > 2. There is a bijection between . Cr and .Rr/ ∼, where . ∼
denotes identifying any rim with its conjugate. 

Sketch of Proof Theorem 3.2 will be proved in Sect. 3.3. At the highest level, this 
bijection is easy to describe: Given a rim .R ∈ Rr , forgetting orientations gives 
a cycle .C ∈ Cr . Conversely, given a cycle .C ∈ Cr passing through a curve E, 
composing its component isogenies in order, one obtains an endomorphism . θ ∈
End(E), which induces an orientation . ιθ . Lifting E to .(E, ιθ ), the isogenies of the 
cycle will give a rim in .GK,𝓁, where K is the quadratic field generated by the minimal 
polynomial of . θ . These two maps are inverse. 

However, the devil is in the details, especially the devil whose name is extra 
automorphisms. In particular, if . G𝓁 has no curves with extra automorphisms, the 
proof is much briefer. In what follows, we have endeavoured to clearly mark areas 
where we address extra automorphisms, so that at a first read, they can be skipped. In 
particular, if . G𝓁 has no extra automorphisms, the reader can entirely skip Sect. 3.4, 
and the word ‘safe’ (Definition 3.13) can be ignored. Section 3.2 should still be 
read, however, because its definitions and statements will be used in the proof of 
Theorem 3.2. 

3.2 Extra Automorphisms and ‘Arbitrary Assignment’ 

Before we proceed, we must discuss a subtlety concerning extra automorphisms 
(see the related Remark 2.17). In particular, the composition of the isogenies 
along a walk in . G𝓁 is not well-defined, because the isogenies themselves are 
only defined up to post-composition by an automorphism. In the case of the 
automorphisms .[±1], which commute with all the isogenies in the chain, this 
amounts to a single sign ambiguity. But extra automorphisms may wreak havoc: 
The endomorphism obtained by composing around a closed walk may not even 
have the same discriminant (and quadratic field) after a post-composition by an 
automorphism. 

This would appear to lampoon any hope of associating endomorphisms nicely 
with closed walks. However, the remedy to this issue is the following observation. 

Consider two walks that differ by replacing a segment .j1
φ−→ 0

ψ−→ j2 with . j1
[ζ k

3 ]φ−→
0

ψ[ζ−k
3 ]−→ j2 or .j3

φ−→ 1728
ψ−→ j4 with .j3

[i]φ−→ 1728
ψ[−i]−→ j4, where .[ζ3] and . [i]

are extra automorphisms associated with primitive third and fourth roots of unity, 
respectively. In each case, the first arrow is the same directed edge of . G𝓁, but the  
second arrow differs as an edge of . G𝓁. The composition of the walk, however, is 
unchanged. In fact, there are typically three distinct walks .j1 → 0 → j2 in . G𝓁 and 
three distinct resulting isogenies .j1 → j2, but there is no canonical identification 
between the elements of these two sets of size 3. One way to set a non-canonical 
identification is to consider the incoming isogeny .j1 → 0 to be a particular fixed 
(but arbitrary) representative of its equivalence class (recall that the equivalence
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E0 

E121 

ϕ[ζ3]ϕ[ζ2 3 ]ϕ ϕ̂ ϕ̂[ζ2 3 ] ϕ̂[ζ3] 

Fig. 3 This figure shows all the 2-isogenies between .j = 0 and .j = 121 for .p = 179. Dual pairs  
are indicated by arrows matching in style. The isogenies entering .j = 0 (upward in the picture) 
differ by post-composition by an automorphism: either .[±1], .[±ζ3] or .[±ζ 2

3 ]. Therefore they are 
represented by a single directed edge in . G𝓁. The downward arrows from .j = 0 to .j = 121 are 
represented by distinct directed edges in . G𝓁. The two walks .-ϕ[ζ3] ◦ ϕ (up on dashed and down on 
solid) and .-ϕ ◦ [ζ3]ϕ (up on dotted and down on dashed) give the same endomorphism of .j = 121, 
namely .-ϕ ◦ [ζ3] ◦ ϕ, despite being different walks in . G𝓁. In fact, the nine distinct closed walks 
of length 2 from 121 to 0 and back compose to only three distinct endomorphisms of .j = 121, 
namely .±[2], .±-ϕ ◦ [ζ3] ◦ ϕ or .±-ϕ ◦ [ζ 2

3 ] ◦ ϕ. Finally, notice that any walk of length 2 from . j = 0
to .j = 121 and back is considered backtracking according to Definition 3.5. The same is not true 
for walks of length 2 from j=121 to .j = 0 and back 

class consists of all the isogenies with the same kernel, i.e. up to post-composition 
by an automorphism). 

Definition 3.3 (Arbitrary Assignment) An arbitrary assignment is a choice of 
isogeny . φ, up to sign, from every equivalence class of isogenies represented by 
a directed edge of . G𝓁. 

There is no choice except when the codomain has extra automorphisms. In what 
follows, we shall assume that such a fixed arbitrary assignment has been made 
for every arrow entering .j = 0 or .j = 1728. This choice will affect the exact 
bijection we obtain in our main theorem, but not the fact that it is a bijection. 
Figure 3 is instructive as to the subtleties that may arise. 

The following lemma is now immediate. 

Lemma 3.4 Assume we have made an arbitrary assignment for . G𝓁. Then any closed 
walk in . G𝓁 results in a unique endomorphism (up to sign) by composition of its 
component isogenies in order. 

The endomorphism obtained by composing the isogenies of a cycle in order 
will simply be called the composition of the cycle. The fact that composition is 
well defined allows us to define a notion of backtracking without ambiguity around 
curves with extra automorphisms. 

Definition 3.5 (Backtracking Closed Walk) Given an arbitrary assignment on . G𝓁, 
two consecutive edges .• φ0−→• φ1−→• are said to be  backtracking if .φ1 ◦ φ0 = [𝓁], up  
to possible post-composition by an automorphism. A closed walk is considered 
to contain backtracking if any consecutive edges, including the last and first, are 
backtracking.
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This definition of backtracking is the same definition as [7, Definition 4.3], except 
those authors leave out the composition of the last and first steps, which is more 
appropriate in their context. Note that this definition is not captured by the sequence 
of vertices alone. To wit, see Fig. 3 for an example of two length-2 walks, one of 
which is backtracking and one of which is not backtracking, but which are taken to 
each other by an isomorphism of the graph fixing vertices. 

We also have a converse to Lemma 3.4. 

Lemma 3.6 Assume we have made an arbitrary assignment for . G𝓁. Consider an 
endomorphism .θ ∈ End(E) of .𝓁-power degree. If . θ is not divisible by . [𝓁], then 
there is a unique closed walk in . G𝓁 with composition . ϕθ , for  some  .ϕ ∈ Aut(E). 
Furthermore, the walk has no backtracking, and . ϕ is unique up to sign. 

Proof Since .[𝓁] ⍿ θ , the kernel .ker(θ) ∩ E[𝓁] has size . 𝓁. Define the isogeny 
.φ1 : E → E' corresponding to this subgroup (using the arbitrary assignment if 
applicable). Then any isogeny cycle which composes to . θ must factor through this 
isogeny; hence, this is the first step in the desired isogeny cycle: .θ = φ' ◦ φ1. Now  
take .ker φ' ∩ E'[𝓁] to find the next kernel and the map . φ2 so that .θ = φ'' ◦ φ2 ◦ φ1. 
Continuing, we obtain a closed walk in the .𝓁-isogeny graph composing to an isogeny 
with the same kernel as . θ . Which is to say, . ±θ , up to post-composition by an 
automorphism of E. But by construction, this walk is unique. It has no backtracking, 
since backtracking would produce a composition divisible by . [𝓁]. The same closed 
walk is obtained if we begin with . θ or a post-composition of . θ by an automorphism 
on E. Thus, by Lemma 3.4, the automorphism . ϕ of the statement is unique up to 
sign. ⨅⨆

Finally, there is one more small lemma we will require, which shows that any 
closed walk composing to a power of an endomorphism is a power of a closed walk. 

Lemma 3.7 Suppose we have made an arbitrary assignment for . G𝓁 and let . ι : K →
End0(E) be an .O-primitive orientation. Let .α = uβs for some .s > 1, .β ∈ O and 
some unit .u ∈ O. Assume that . 𝓁 does not divide . α and that a closed walk C of . G𝓁

composes to .±ι(α). Then .C = Cs
β , where . Cβ is  a closed walk of  . G𝓁 that composes 

to .±ι(β). 

Proof By Lemma 3.6, since . 𝓁 does not divide . β, there exists a unique closed walk 
. Cβ of .𝓁-isogenies composing to .ϕι(β) for some automorphism . ϕ of E. If  E has no 
extra automorphisms, then the proof is done. 

If E has extra automorphisms, however, then we slightly modify . Cβ . Change 
the initial edge . φ of .Cβ by replacing it with .φϕ−1 (having the same domain 
and codomain). Call this modified closed walk . C'

β . By the conventions of the 

arbitrary assignment (Definition 3.3), the composition around . C'
β is .ϕι(β)ϕ−1. The  

composition of .(C'
β)s is .ϕι(β)sϕ−1 = ϕι(u−1)ι(α)ϕ−1. But then we have closed 

walks C and .(C'
β)s , composing to .±ι(α) and .±ϕι(u−1)ι(α)ϕ−1, respectively. By the 

arbitrary assignment and Lemma 3.6, we can again modify the first edge of . (C'
β)s

to obtain . C' which composes to .±ϕι(u−1)ι(α). But then .C = C' by Lemma 3.6,
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and so .ϕ = ±ι(u) ∈ ι(O). Therefore .ϕ ∈ ι(O), in which case .(C'
β)s composes to 

.±ι(u−1)ι(α), and by Lemma 3.6, .C = (C'
β)s . ⨅⨆

3.3 Proof of Theorem 3.2 

In order to prove Theorem 3.2, it is easier to first discuss rims and isogeny cycles 
with a basepoint (a marked point). Let E be a fixed vertex of . G𝓁. We define the 
following sets: 

. RE,r =
{

directed rims of size r in GK,𝓁

passing through (E, ι)
: K is an imaginary quadratic field,

ι is a K-orientation on E

}
,

. IE,r =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(ι, l) :

ι : K → End0(E) a primitive O-orientation,
K is an imaginary quadratic field,
O is an 𝓁-fundamental order of K,

(𝓁) = ll̄ splits in O,

[l] has order r in Cl(O),

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

, and

. CE,r = {isogeny cycles of length r in G𝓁 starting and ending at E}.

Let . ∼ denote conjugation on elements of .IE,r , i.e. taking a pair .(ι, l) to . (ι, l). As  
described in Sect. 3.1, conjugation preserves the direction of the rim but conjugates 
the ideal whose action traverses the rim. We will continue to use the symbol . ∼ to 
denote conjugation of a rim. 

We assume a safe arbitrary assignment (Definition 3.13) has been made for . G𝓁. 
Depending upon this arbitrary assignment, we define the following maps: 

. 

IE,r/∼ RE,r/∼ 

CE,r 
(8) 

The goal is to show that the diagram commutes, where every map is a bijection. 
Then Theorem 3.2 will follow by ‘forgetting’ the basepoint. 

Disregarding conjugation for the moment, we first define maps 

.

IE,r RE,r .
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In Lemma 3.8, we show that these are inverse bijections and that they provide 
inverse bijections even after a quotient by the conjugation relation. In Lemma 3.9 
we will define . Θ and show it is a bijection. Lemma 3.10 will define . Ф and show it 
is a bijection. Finally, in Theorem 3.11, we show that the triangle in (8) commutes. 

Definition of .Ψ ' Consider a directed rim .R ∈ RE,r passing through .(E, ι). Denote 
by . O the order such that . ι is .O-primitive. Then . O is .𝓁-fundamental since .(E, ι) is 
at the rim. Moreover, the .O-ideal .(𝓁) splits and the .O-ideals above . 𝓁 have order 
r in .Cl(O) since .(E, ι) belongs to a rim of size r . The direction along the rim 
corresponds to the action of one of the ideals above . 𝓁, which we denote . l. Then . Ψ '
is defined as 

. Ψ ' : RE,r → IE,r , R →׀ (ι, l).

Definition of . Ψ On the other hand, consider .(ι, l) ∈ IE,r . The orientation . ι on E 
gives rise to a directed rim of size r passing through .(E, ι) by the consecutive action 
of .l. Let . Ψ send .(ι, l) to this directed rim in .RE,r , i.e. 

. Ψ : IE,r → RE,r , (ι, l) →׀ R = ((E, ι) →φl · · · ).

Lemma 3.8 The maps . Ψ and . Ψ ' defined above are inverse bijections. They also 
provide bijections 

IE,r/∼ RE,r/∼ , 

where . ∼ denotes equivalence between conjugates. 

Proof The fact that . Ψ and .Ψ ' are inverse to each other follows from their 
definitions. It is also clear that conjugate rims correspond to conjugate orientations 
(while fixing E and K). ⨅⨆
Definition of . Θ We now define a map . Θ from .CE,r to . IE,r . Let .C ∈ CE,r . Starting 
at the vertex E, this cycle composes into an endomorphism .±θ ∈ End(E). This  
endomorphism .±θ induces an orientation .ιθ : K → End0(E) on E (defined up 
to conjugation). Fixing a choice for . ιθ , let . O be the order for which . ιθ is primitive. 
Then . 𝓁 must split or ramify in . O because .θ ∈ O has norm . 𝓁r and is not divisible by . 𝓁

(since .C ∈ CE,r has no backtracking). If .φ(E,ιθ )
l

is equal to the first isogeny of the 
cycle C in its indicated direction, for a prime . l above . 𝓁, then define .Θ(C) := (ιθ , l). 

Lemma 3.9 The process described above gives a well-defined map . Θ : CE,r →
IE,r/∼ (in particular, the ideal . l indicated in the definition above exists). 

Proof Let .CE,r ∈ CE,r and let .θ ∈ End(E) be the composition of the edges in . CE,r

(unique up to sign). Let . α denote the preimage of . θ in K via . ιθ . The orientation . ιθ
is a primitive .O-orientation for exactly one order .Z[α] ⊆ O ⊆ Q(α). If .Z[α] has 
conductor divisible by . 𝓁, then . α has discriminant and norm divisible by . 𝓁, hence



Orientations and Cycles in Supersingular Isogeny Graphs 47

trace divisible by . 𝓁, so it is itself divisible by . 𝓁. But this is impossible because 
the isogeny cycle .CE,r has no backtracking. Hence .Z[α], and therefore . O, are .𝓁-
fundamental orders. 

Note that . α has norm . 𝓁r . We consider the factorization of . (𝓁) in . O. As mentioned 
in the definition of . Θ, . 𝓁 splits or ramifies, so .(𝓁) = ll. Then we can factor . (α), using  
its norm .(α) = (𝓁)t ls for some .t, s (up to possibly replacing . l with its conjugate). 
However, .t = 0 since . 𝓁 does not divide . α. Hence .s = r , by comparing norms. That 
is, .(α) = lr . 

This shows that . 𝓁 is represented by a class . [l] of order dividing r in . Cl(O). We  
will show it is of order exactly r. If not, then .ls = (β) ∈ O, so .α = uβs for some 
unit .u ∈ O. Then by Lemma 3.7, the cycle .CE,r is a power of a smaller cycle, a 
contradiction to the definition of isogeny cycle. 

Finally, since .(α) = lr , the kernel .E[l] is contained in .ker θ , and so . φl defined on 
.(E, ιθ ) is equal to the first isogeny of C in its direction of travel. 

Note that our only arbitrary choice is that of . ιθ in place of its conjugate, but as 
we map into .IE,r/∼, the other choice results in the same image element, and the 
map is well defined. ⨅⨆
Definition of . Ф Next we consider the map . Ф. Given a directed rim .R ∈ RE,r/∼, 
we get a walk in . G𝓁 by forgetting orientations. If there are no extra automorphisms 
on any curves of the rim, this is well defined up to a sign on the isogenies. If 
there are extra automorphisms, we must use the process in Sect. 3.4 to safely forget 
orientations. The resulting cycle will be denoted .Ф(R). Note that if R is conjugated, 
we obtain the same walk. This is clear when there are no extra automorphisms. 
When we use the process in Sect. 3.4, this follows from the observation that any 
valid set of representatives is again valid for the conjugate rim, in the proof of 
Proposition 3.14. 

Lemma 3.10 Let .R ∈ RE,r . Then .Ф(R) ∈ CE,r . 

Proof Let W be the walk obtained from R by forgetting the orientations. We need 
to show that W does not have backtracking and is not repeating smaller cycles. 
Let .(ι, l) = Ψ '(R) ∈ IE,r/∼. First, we show that the action of . l, which dictates 
the direction of R, cannot produce a backtracking path. Suppose the action of . l
produces a backtracking path .φ1, φ2. Then there is an endomorphism . ϕ of E such 
that .ϕ[𝓁] = φ2φ1 has the same kernel as . φl2 , namely .E[𝓁]. This implies .l2 = (𝓁), so  
.r = 2, a contradiction. 

Now suppose that the walk W in . G𝓁 repeats a smaller closed walk .k > 1 times. 
Let .φ ∈ End(E) be the composition of the smaller closed walk. Then .φ = φa for 
the ideal .a = lr/k , and .φk = φb where .b = lr = (β) for some .β ∈ O. Hence as an 
element of .End(E), .φk = ι(β), which implies that .φ ∈ ι(K). But then letting . α be 
such that .ι(α) = φ, we have .αk = β and .lr/k = (α). This contradicts the rim being 
of size r . Thus, the walk W in . G𝓁 cannot repeat a smaller walk .k > 1 times. ⨅⨆
Theorem 3.11 Given a safe arbitrary assignment for . G𝓁, we define maps . Ф and 
.Ф' := Ψ ◦ Θ as above. Then the sets .CE,r and .RE,r/∼ are in bijection under the 
inverse pair of maps . Ф and . Ф'.
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Proof We make a safe arbitrary assignment (Definition 3.13), to define the maps 
above. We will show that the two maps are inverse to each other. 

Suppose .C ∈ CE,r is taken to .[R] ∈ RE,r/∼ by . Ф'. If . θ is the composition of 
C, then R is the rim passing through .(E, ιθ ) (. R is the rim passing through .(E, ιθ ), 
respectively). In particular, .lr = (α) where .ιθ (α) = θ . Therefore, composing the 
isogenies around R results in the endomorphism . ±θ . By Lemma 3.6 (and using 
Proposition 3.14 in the case of extra automorphisms), the rim R maps to C when 
orientations are forgotten (i.e. under . Ф). 

Next, suppose .[R] ∈ RE,r/∼ is taken to .(ιθ , l) ∈ IE,r by . Ψ '. Let .C = Ф(R). 
Then C composes to . θ (using Proposition 3.14 in the case of extra automorphisms). 
Thus C maps to .(ιθ , l) ∈ IE,r under . Θ. ⨅⨆

The discussion so far relies on a choice of a basepoint E. We now prove the main 
theorem (Theorem 3.2) as a corollary to the basepointed version (Theorem 3.11). 

Proof of Theorem 3.2 Make a safe arbitrary assignment for . G𝓁 and use it to define 
the maps of diagram (8) as described above. 

There is a map .CE,r → Cr given by forgetting the basepoint of the isogeny cycle. 
There is also a map .RE,r/∼ → Rr/∼ given by forgetting the basepoint of the rim. 

Given .[R] ∈ Rr/∼, a basepoint can be chosen in r ways. For each such basepoint 
.(E, ι), we obtain .RE,ι ∈ RE,r , which we map to .CE,ι := Ф(RE,ι) ∈ CE,r via 
Theorem 3.11. We must show that the resulting .CE,ι are all equal when basepoints 
are forgotten. But the map . Ф to isogeny cycles is agnostic to the basepoint: This is 
clear for rims without extra automorphisms, as there are no choices to make, and is 
a consequence of Proposition 3.14 when there are extra automorphisms. 

Similarly, a given .C ∈ Cr corresponds to .Ci ∈ CEi,r for . Ei the i-th curve in 
the cycle. Each of these basepointed cycles gives a corresponding basepointed rim 
.Ri := Ф'(Ci) ∈ REi,r . We must show that the resulting . Ri are all equal, when 
basepoints are forgotten. Define .(ιi , li ) = Θ(Ci) ∈ IE,r . Define the composed 
endomorphism .θi ∈ End(Ei) for each . Ei . Then by construction, .ιi = ιθi

and . φi =
φ

(Ei,ιi )
li

. It suffices to show that all .(ιi , li ) give rise to the same rim. The . θi are related 

by .θi+1 = φiθiφ
−1
i . Thus, we obtain .ιi+1 = (φi)∗ιi . In particular, the orientations . ιi

are all associated with the same field K , and they are all primitive for the same order 
. O of K , since . φi is horizontal. Therefore .(Ei, ιi) and .(Ei+1, ιi+1) are elements of 
.SSpr

O connected by a horizontal isogeny . φi of degree . 𝓁, i.e. they are on the same rim. 

As for direction, by construction .φi = φ
Ei

li
for all i. Since . φi all indicate the same 

direction, the . li all indicate the same direction. ⨅⨆

3.4 Mapping from GK,𝓁 to G𝓁

We now deal with the one remaining item pushed aside during the proof: intricacies 
introduced by extra automorphisms when defining a map from rims to closed walks 
by forgetting orientations. One can hope to map any walk in . GK,𝓁 to a walk in . G𝓁 by
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forgetting orientations. However, isogenies in the oriented isogeny graph are taken 
up to pre- and post-composition by automorphisms (see (7)), so when mapping 
down to . G𝓁, there is a choice to be taken if the domain has extra automorphisms. 
Even more to the point, if we obtain a closed walk from a rim, by making the choice 
arbitrarily, we may end up with a closed walk whose composition does not lie in 
.ι(K). (Recall that in order to obtain a bijection, we hope to recover the rim from the 
isogeny cycle using this composition.) 

In this section, we sidestep this issue, with the help of a special type of arbitrary 
assignment, by showing that it is nevertheless possible to accomplish something 
more limited: to define a map from rims to isogeny cycles such that the resulting 
isogeny cycle has a composition in .ι(K). We emphasize that this is a non-issue (and 
this entire section can be skipped) if . G𝓁 has no curves with extra automorphisms. To 
be somewhat more precise, consider a rim R in .GK,𝓁. If we choose representatives 
of the vertices and edges (which are, a priori, only equivalence classes), then 
we can forget orientations to obtain a closed walk in . G𝓁. However, the choice 
of representatives must be made with care. First, the edges must belong to the 
arbitrary assignment: If not, then when composing around the rim before and after 
forgetting orientations, we may differ by a post-composition and hence may produce 
an endomorphism from the wrong quadratic field (which we will see momentarily 
in Example 3.12 below). Second, the choice of representatives must be consistent: 
When we traverse the entire rim, beginning at representative .(E, ι), we must return 
to representative .(E, ι) and not merely an isomorphic oriented curve. In the proof 
that follows, we spend the vast majority of our energy in showing that such a choice 
of representative exists and is unique. 

Example 3.12 An example demonstrates some of the problems the proof will need 
to overcome. Consider the example .p = 11 and .𝓁 = 3 where . G3 has two loops at 
.j = 1728. Recall the endomorphism ring of the curve with j -invariant . j = 1728
from Sect. 2.1. There are eight endomorphisms of degree .𝓁 = 3, namely 

. 
±1 ± πp

2
and

±[i] ± [i]πp

2
.

The first group have trace .±1 and the second group have trace 0. The endomor-
phisms 

. ± 1 + πp

2
, ±[i] + [i]πp

2

have the same kernel, which we denote . κ . This corresponds to one of the loops, and 
these four endomorphisms differ by post-composition by an automorphism (namely 
.±1,±[i]). The endomorphisms 

. ± 1 − πp

2
, ±[i] − [i]πp

2
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all have the same kernel, namely the image of . κ under . [i]. This corresponds to the 
second loop, and these four endomorphisms also differ from one another only by 
post-composition by an automorphism. 

If, in the arbitrary assignment, we choose . 1+πp

2 for the first loop and . 1−πp

2 for 

the second, then these endomorphisms generate orientations by .Z
[

1+√−11
2

]
. The  

endomorphisms .±([i] + [i]πp)/2 of trace zero generate orientations by .Z[√−3]. 
The graph .G

Q(
√−3),𝓁 has one rim in .SS

Z[√−3], namely the loop on the oriented 

curve .(E, ι), where E has j -invariant 1728 and .ι(
√−3) = [±√−3] (case (i) of 

Remark 2.7). Under this arbitrary assignment, there is no place to map this rim in 
such a way that the composition of the resulting loop will match the order . Z[√−3]
as desired. 

This motivates modifying Definition 3.3 so that the two loops must compose to 
endomorphisms from different fields K . In particular, we must be careful to choose 
the arbitrary assignment ‘in tandem’ for multiple edges between curves with extra 
automorphisms. This issue arises in larger cycles also. For an explicit example, 
consider .p = 11, and .Q(

√−23), which has a class group of size 3 generated by 
. l lying above .𝓁 = 2; the rim for the maximal order is of size 3 with j -invariants 
.1728, 1728, 0. We therefore make a special requirement on the arbitrary assignment 
which applies to this case. 

Definition 3.13 (Safe Arbitrary Assignment) An arbitrary assignment is said to 
be safe if it obeys the following rule: Whenever there is a collection of edges . E1 →
E2 related by precomposition by an automorphism of . E1 besides .[±1], we choose 
their representatives to be of the form .{±φϕ : ϕ ∈ Aut(E1)} for a fixed choice . φ. 

The rule in Definition 3.13 is automatically satisfied at . E1 and . E2 by any arbitrary 
assignment unless both . E1 and . E2 have extra automorphisms, and there are multiple 
edges between them. It is also clear that a safe arbitrary assignment is always 
possible. 

With regard to Example 3.12, note that . 1+πp

2 = −[i] 1−πp

2 [i], which violates 
Definition 3.13. This is the reason the example ‘fails’ the bijection. 

Proposition 3.14 Suppose a safe arbitrary assignment has been made for . G𝓁. There 
is a map from rims R of .GK,𝓁 to closed walks .C(R) in . G𝓁 with the following 
properties: 

(1) The curves and isogenies of .C(R) are representatives of the isomorphism 
classes of curves and isogenies of R, in the same order; in particular, there 
is a map .R → C(R) of directed graphs. 

(2) The composition . ±θ of .C(R) at vertex E in .C(R) corresponding to .(E, ι) in R 
gives rise to the orientation . ±ι in the sense that .θ = ι(α) for some .α ∈ K . 

Proof Defining the map. It is possible to define such a map as follows. Consider a 
rim R of length r , associated with an ideal . l above . 𝓁 in the associated .𝓁-fundamental 
order . O, with basepoint .(E0, ι0), written as follows:
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(E0, ι0) 
φ0 

(E1, ι1) 
φ1 

(E2, ι2) · · ·  (Er−1, ιr−1) 
φr−1 

(E0, ι0) .  

Write .φ := φr−1φr−2 · · ·φ1φ0 ∈ End(E). The result . φ depends on representative 
choices of the isomorphism classes of oriented curves .(Ei, ιi) and of the isogenies 
. φi shown above. We seek to choose such representatives so that 

(i) .φ∗ι0 = ±ι0. 
(ii) each . φi is chosen from the safe arbitrary assignment. 

Such a choice will be called a valid set of representatives during the course of this 
proof. With such a valid set of representatives, to define a map from rims to isogeny 
cycles, we then forget orientations to obtain an isogeny cycle in . G𝓁. This is now  
well-defined because of (ii) and will define the map referred to in the statement of 
the proposition. For any rim R, we will write .C(R) for the isogeny cycle which is 
its image. 

Facts About Valid Sets of Representatives. We will need a few facts about 
valid sets of representatives. First, we will show that if we have a valid set of 
representatives with respect to a basepoint .(E0, ι0), then it is also a valid set of 
representatives for any other .(Ei, ιi) in the cycle. In other words, for any k, we have  
.(φr−k · · ·φr−k+1)∗ιr−k+1 = ±ιr−k+1 (where indices are taken modulo r). To see 
this for . (E1, ι1), use .ι1 = (φ0)∗ι0 to compute the left-hand side, using the fact that 
.φ∗ι0 = ±ι0; repeat for . E2, . E3 etc. 

Let .α ∈ O be such that .lr = (α). Without causing confusion, we will write 
.φl : (Ei, ιi) → (Ei+1, ιi+1) for each i (this isogeny is defined up to isomorphism, 
by the convention that its kernel is .Ei[ιi(l)]). We will now prove that any valid set 
of representatives also satisfies 

(iii) .ker φi = ker φl = Ei[ιi(l)]. 
(iv) .φ = ±ι0(α). 

To prove this, observe that .ker φlr = Ei[ι0(α)] = ker ι0(α). In particular, .ι0(α) is 
K-isomorphic to . φlr . Furthermore, .(ι0(α))∗ι0 = ±ι0 because elements of . ι0(K)

commute. Next, since .φ∗ι0 = ±ι0 = (ι0(α))∗ι0 (by (i)), it must be that .φ = ±ι0(α), 
since this is the only pre-/post-composition . φ of .ι0(α) that continues to satisfy 
.φ∗ι0 = ±ι0. This implies that .ker φ = ker φlr and hence .ker φ0 = ker φl. Since 
the valid set of representatives is valid at each basepoint, we have . ker φi = ker φl

by the same reasoning. 
Claim: The map defined on a valid set of representatives satisfies require-

ments (1) and (2) of Proposition 3.14. By (iv), .φ = ±ι0(α). The composition 
of the isogeny cycle .C(R) is . ±φ, which demonstrates (2) at the vertex .(E0, ι0). 
Then (2) holds at the other vertices in R by the fact that a valid set of representatives 
is valid at each of the vertices of R. The fact that the map satisfies (1) is by definition. 

Proof outline. It remains to show that there is a set of representatives satisfy-
ing (i)–(ii) (i.e. it is a valid set of representatives) and that any such set leads to the 
same isogeny cycle (i.e. the map .R → C(R) given above is well defined). To do this, 
we will divide the possible rims into two cases: exceptional and non-exceptional.
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The exceptional case is the following: First, we assume every vertex of the rim has 
the same j -invariant with extra automorphisms, of which . ϕ is a non-trivial (./= [±1]) 
element, and then, defining . φ as above for any basepoint, we assume that no matter 
which vertex we start with as basepoint, we have .ker φ = ker φϕ. 

The map .R →׀ C(R) is well defined. Let us show that the map . R →׀ C(R)

is well defined in the non-exceptional cases. A priori, it may be that there are two 
choices of representatives satisfying (i)–(ii). Suppose so. Use primes (.ι', φ'

i etc.) to 
denote the second valid set of representatives. 

First note that if .(Ei, ι
'
i ) = (Ei,±ιi ) at any vertex, then the two choices of 

representatives must be the same. To see this, note that the vertex representative 
.(Ei,±ιi ) determines the kernel of . φi (by (iii)), which in turn determines . φi up 
to sign (by (ii)). Therefore .φ'

i = ±φi . But this implies that . (Ei+1, ι
'
i+1) =

(Ei+1,±ιi+1). Proceeding in this way, the two valid sets of representatives are 
the same. Hence the proof is complete if any curve in the rim has no extra 
automorphisms (in which case there is no choice for . ιi). 

Suppose that we have .ι'0 = ϕ∗ι0 for some non-trivial (not . ±1) automorphism 
.ϕ ∈ End(E0). In particular, . E0 has extra automorphisms. At the same time, . ι'1 =
η∗ι1 for some .η ∈ Aut(E1) (possibly trivial this time). These relationships entail 
that .φ'

0 = ηφ0ϕ
−1. By  (ii), . φ0 and . φ'

0 both belong to the safe arbitrary assignment, 
so .η = ±1 and hence .ι'1 = ±ι1; thus, we have reduced to the case in the previous 
paragraph. 

Existence of a valid set of representatives in non-exceptional cases. We 
use the safeness of the safe arbitrary assignment (Definition 3.13). Let . φ0 be the 
map with kernel .E0[ι0(l)] and post-composition determined by the safe arbitrary 
assignment. Then let .ι1 = (φ0)∗ι0. Continue in this manner around the entire rim. 
When we close the rim (reaching .(E0, ι0) again), we find that . φ∗ι0 = ϕι0ϕ

−1

for some automorphism . ϕ (since the rim closes, we must reach an oriented curve 
isomorphic to the initial oriented curve). If . E0 has no extra automorphisms, then 
the proof of this case is complete. Hence we are done if the cycle contains even one 
curve without extra automorphisms. 

Let us therefore restrict to the case that . E0 has extra automorphisms and so do 
all other curves in the rim. If item (i) fails, then there is a nontrivial automorphism 
.ϕ ∈ Aut(E0) so that .φ∗ι0 = ϕ∗ι0. Then 

. (φϕ−1)∗(ϕ∗ι0) = φ∗ι0 = ϕ∗ι0.

Thus, replacing isomorphism class representatives .(E0, ι0) with .(E0, ϕ∗ι0) and . φ0
with .φ0ϕ

−1, we recover (i). Provided that . φ0 and .φ0ϕ
−1 have different kernels, 

which they do when .E1 /∼= E0 (Lemma 2.9), then using the conventions of the 
safe arbitrary assignment (Definition 3.13), we have the freedom to replace . φ0
with .φ0ϕ

−1 without violating item (ii). 
Thus we are reduced to the case that all . Ei are isomorphic (assumed equal 

without loss of generality), and . φ0 and .φ0ϕ have the same kernel (for every choice 
of basepointing the rim). This is the exceptional case.
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Existence of a valid set of representatives in the exceptional case. Suppose we 
are in the exceptional situation described in the proof outline. That is, all vertices are 
isomorphic curves with extra automorphisms, and .ker φ = ker φϕ. Since . φ /= ±φϕ

(as in the proof of Lemma 2.9), we have .ϕkφ = ±φϕ for some integer k with 
.ϕk /= ±1. This means either .φϕ = ϕφ or .φϕ = ϕφ. Note that . φ commutes with . ϕ if 
and only if . ϕφ does, so commuting is independent of the safe arbitrary assignment. 

The above is true for . φ0 as well as . φ. But .𝓁 = N(φ0) < p, which by Lemma 2.1 
implies that . φ and . ϕ commute. The same argument applies to each . φi for which 
.ker φi = ker φiϕ. But if there is a . φi for which this is not true, we are out of the 
exceptional case. Hence every . φi commutes with . ϕ. 

Therefore we may suppose . φ commutes with . ϕ. Then .φ ∈ Q(ϕ). Regardless of 
the safe arbitrary assignment, the commutativity implies .φ∗ι = ι for the orientation 
.ι(ζ3) = ϕ or .ι(i) = ϕ for .j = 0 and .j = 1728, respectively. So suppose . φ is the 
arbitrary assignment. Then if R is a rim with .φl = φ (up to post-composition by an 
automorphism), then R is associated with the field .K = Q(ζ3) or .Q(i), respectively, 
and . φ provides a set of representatives satisfying (i)–(ii). Hence there is a valid set 
of representatives. ⨅⨆

We observe the following immediate corollary to Theorem 3.2. 

Corollary 3.15 Let .(j1, . . . , jn) be a finite sequence of j -invariants of supersingu-
lar elliptic curves in . G𝓁. Then the number of isogeny cycles in . G𝓁 on this ordered 
sequence of j -invariants is equal to the number of rims of .

U
K GK,𝓁 on this ordered 

sequence of j -invariants. 

In fact, an alternate approach to proving Theorem 3.2 would be to observe that 
it is indeed equivalent to this corollary. One could then break into cases based on 
the existence of extra automorphisms. In most cases, there are no double edges, and 
this is a bijection of singleton sets. 

3.5 An Undirected Version of the Main Bijection 

The arbitrary assignment also allows us to set up a bijection between walks and their 
‘duals’ (walking the same j -invariants backwards), despite the ambiguity at . j = 0
and .j = 1728. This means we can discuss the bijection between undirected rims 
and undirected isogeny cycles. 

Lemma 3.16 Assume we have made a safe arbitrary assignment for . G𝓁. Let 
.(j0, j1, . . . , jn) be a sequence of j -invariants for a closed walk in . G𝓁 (where . ji is 
adjacent to .ji+1 and . jn to . j0). Then the closed walks through this ordered list of j -
invariants can be paired with the closed walks through the list . (jn, jn−1, . . . , j1, j0)

(i.e. going backwards) in such a way that the pair of endomorphisms obtained from 
each pair of walks (by composition) is a pair of dual endomorphisms.
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Fig. 4 An example of an isogeny cycle that is a barbell (Definition 3.19). If we walk in the 
direction of the arrows from . E0, we obtain .ψ-ϕ1 · · · -ϕnψ

'ϕn · · ·ϕ1. If we walk the cycle backwards 
(as defined in Lemma 3.16), we get .-ϕ1 · · · -ϕn

-ψ 'ϕn · · ·ϕ1-ψ . If we ignore the basepoint and have 
.ψ = -ψ and .ψ ' = -ψ ', then these are the same cyclic sequence of arrows, in which case this is a 
barbell 

Proof Each walk .φ0, φ1, . . . , φn with composition . θ has a ‘dual walk’ obtained 
by replacing the individual isogenies with their duals and reversing the order: the 
walk .-φn, -φn−1, . . . , -φ0. This results in a walk on the same vertices backwards. If 
the walk does not pass through .j = 0 or .j = 1728, this dual walk gives the dual 
endomorphism under composition (up to sign). The difficulty arises when choosing 
a dual for an outgoing edge .φi : Ei → Ei+1, where . Ei has j -invariant 0 or 1728, 
in which case the dual .-φi : Ei+1 → Ei may not be in the safe arbitrary assignment, 
and we are forced to use instead .ϕ-φi : Ei+1 → Ei for some .ϕ ∈ Aut(Ei). In this  
case the endomorphism obtained by composition is no longer .±-θ because of the 
intervening . ϕ between . -φi and . -φi−1. However, this can be adjusted by choosing an 
appropriate replacement for . -φi−1 : Ei → Ei−1 from among the available isogenies 
in the safe arbitrary assignment from . Ei to .Ei−1, which differ by precomposition 
by an automorphism. In other words, we can obtain the composition . -φi−1-φi as 
. -φi−1ϕ

−1ϕ-φi . In this way, we can obtain a dual path whose composition according 
to the safe arbitrary assignment is . ±-θ . Since this process can be performed in both 
directions (from clockwise paths to counterclockwise and vice versa), inversely (by 
Lemma 3.6), the statement is proved. ⨅⨆

The preceding lemma allows us to define, for any closed walk, its backward walk. 

Lemma 3.17 If . R is the conjugate of R, then .Ф(R) and .Ф(R) are backward 
isogeny cycles of each other. 

Proof The rim . R consists of the set of edges and vertices traversed backward, where 
an isogeny is replaced with its dual. From the proof of Lemma 3.16, this results in 
the backward isogeny cycle of .Ф(R). ⨅⨆
Corollary 3.18 There is a bijection between undirected rims of length r of .GK,𝓁 for 
all K , and undirected isogeny cycles of length r in . G𝓁. 

Definition 3.19 A closed walk in . G𝓁 is called a barbell if traversing it in the 
opposite direction as in Lemma 3.16 results in the same walk, up to a choice of 
basepoint. 

An example is shown in Fig. 4, justifying the name of ‘barbell’.
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Lemma 3.20 Barbells necessarily involve at least two loops and have an even 
number r of vertices and edges. The total number of barbells having r edges is 
at most .#G𝓁(𝓁 + 1)𝓁(r−2)/2. 

Proof Any barbell traverses a palindromic sequence of vertices of the following 
form: 

. j0, j1, . . . , jn−1, jn, jn, jn−1, . . . , j1, j0.

In particular, the ‘turnaround’ points must be loops, because otherwise they would 
involve backtracking. This implies that the number of edges and vertices is even. 
The count follows by counting the number of walks of length .(r − 2)/2 between 
two loops and bounding the number of loops by the number of edges of the graph. 

⨅⨆
The above bound on the number of barbells is far from tight. There are 

congruence conditions modulo p depending on . 𝓁 which can rule out loops in . G𝓁

and hence rule out the existence of barbells. (These conditions can be worked out 
by considering the specialization of the modular polynomial .Ф𝓁(x, x) mod p and 
choosing p such that the roots are not supersingular.) 

Theorem 3.21 Under the bijection of Theorem 3.2, the self-conjugate rims in . GK,𝓁

are in bijection with the barbells in . G𝓁. 

Proof If R is a self-conjugate rim, then conjugation returns the same rim traversed 
in the opposite direction. Hence .Ф(R) must be a barbell. Conversely, if R is a rim 
such that .Ф(R) is a barbell, then the rim . R' directed in the opposite direction maps 
to .Ф(R), the cycle .Ф(R) traversed in the opposite direction. Hence . Ф(R) = Ф(R')
and therefore R is self-conjugate. ⨅⨆

4 Supersingular Curves Oriented by O 

This section answers the question of when .SSpr
O = ρ(E𝓁𝓁(O)). Its purpose is to 

prepare for the next section, where we discuss the fibre sizes of the map taking a 
rim to its corresponding quadratic order. In particular, we wish to understand the 
action of conjugation on .SSpr

O. 
Let p be inert or ramified in K , and let . O be an order of K . In this section, 

we study the set .SSpr
O in greater detail, using class field theory. In particular, 

Theorem 4.4 characterizes when .ρ(E𝓁𝓁(O)) = SSpr
O, which holds precisely when 

p ramifies in K . This also characterizes the scenario when conjugation takes 
.ρ(E𝓁𝓁(O)) back to itself. 

Let .K = Q(β) be an imaginary quadratic field of discriminant .ΔK with a 
distinguished root . β of a fixed minimal polynomial .fK(x) generating . K/Q. Let  
. O be an order of K . Let .L/K be the ring class field of . O. By the general theory



56 S. Arpin et al.

of class fields, the field L has Galois group .Gal(L/Q) ∼= Cl(O) ⋊ 〈τ 〉, where 
.Cl(O) ∼= Gal(L/K), and . τ is the non-trivial automorphism of .K/Q, and where 
.στ = τσ−1 for any .σ ∈ Cl(O) [18, Lemma 9.3]. Let .HO(x) be the Hilbert class 
polynomial (sometimes called the ring class polynomial) of the order . O. Define 

. LK := {j ∈ L : HO(j) = 0}, LQ := {(j, α) ∈ L × K : HO(j) = 0 = fK(α)}.

The Galois groups .Gal(L/K) and .Gal(L/Q) act freely and transitively on . LK

and . LQ, respectively, via .j →׀ jσ and .(j, α) →׀ (j, α)σ = (jσ , ασ ). We have  
.#LK = hO = # Gal(L/K) and .#LQ = 2hO = # Gal(L/Q). 

It is well known that .LK is in bijection with .E𝓁𝓁(O), the isomorphism classes 
of elliptic curves over . C with complex multiplication by . O, by the map . j →׀ E(j)

taking a j -invariant to its isomorphism class of curves. (We will abuse notation by 
denoting an element of .E𝓁𝓁(O) as a curve E without equivalence class brackets 
. [E].) This endows .E𝓁𝓁(O) with an action of .Gal(L/K). 

We now give an analogous result for . LQ. Given .E ∈ E𝓁𝓁(O), there are two 
isomorphisms .ι : O → EndC(E) that differ by conjugation. Denote these by . ιE and 
. ιE , where . ιE is normalized so that .ιE(α)∗ωE = αωE for the invariant differential 
.ωE of E and any . α ∈ O. Let .E𝓁𝓁∗(O) denote the set of cardinality .2hO of pairs 
consisting of a curve from .E𝓁𝓁(O) together with one of the two orientations: 

. E𝓁𝓁∗(O) := {(E, ι) : E ∈ E𝓁𝓁(O), ι : O ∼−→ End(E)}.

Proposition 4.1 There is a bijection of . LQ with .E𝓁𝓁∗(O) via 

. (j, δ) →׀
(

E = E(j),

{
ιE if δ = β

ιE if δ = β

)
.

This endows .E𝓁𝓁∗(O) with an action of .Gal(L/Q). 

The bijection is evidently non-canonical; we could make the opposite choice for . ιE . 
Choose a finite extension .L'/L such that there is a prime . p of . L' above p for 

which all curves in .E𝓁𝓁(O) have good reduction at . p. Let . ρp denote reduction 
modulo . p, and put .Ẽ = ρp(E) for brevity. Reduction provides a map 

. ρ : E𝓁𝓁∗(O) → SSpr
O given by

(E, ιE) →׀ (Ẽ, ιE mod p), and (E, ιE) →׀ (Ẽ, ιE mod p).

There is a natural embedding of .E𝓁𝓁(O) in .E𝓁𝓁∗(O) given by .E →׀ (E, ιE) (i.e. 
choosing the normalized isomorphism), and to ease notation, we will consider 
.E𝓁𝓁(O) a subset of .E𝓁𝓁∗(O). Consider the following diagram:
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Cl(O) ∼= Gal(L/K) Gal(L/Q) ∼= Cl(O) ⋊ 〈τ〉

LK

|
LQ

|
E𝓁𝓁(O) 

ρ 

E𝓁𝓁∗(O) 
ρ 

ρ (E𝓁𝓁(O)) SSpr O 

The actions of the Galois groups shown are free and transitive. The inclusion map 
.E𝓁𝓁(O) →ͨ E𝓁𝓁∗(O) is equivariant with respect to the action of . Gal(L/K) ⊆
Gal(L/Q). 

In the vertical arrows of the lower half of the diagram, we see reduction modulo . p. 
The square in this portion commutes. The descending arrow on the left is a bijection. 

First, we consider the easier unramified case and show that .ρp(E𝓁𝓁(O)) /= SSpr
O. 

The map .(E, ι) →׀ (E, ι) on .SSpr
O will be called conjugation. 

Proposition 4.2 Let p be inert in K . Then the two isomorphism classes of .O-
oriented curves represented by .(E, ι) and .(E, ι) cannot both belong to .ρp(E𝓁𝓁(O)), 
so .ρp(E𝓁𝓁(O)) /= SSpr

O, in which case .2#ρp(E𝓁𝓁(O)) = # SSpr
O. 

Proof Since p is unramified, there exists .α0 ∈ O such that .ι(α0 − α0) is separable. 
Suppose .E1, E2 ∈ E𝓁𝓁(O). Then there are isomorphisms .[·]Ei

: O → End(Ei), 
where we use the normalization of Sect. 2.3, namely we choose the isomorphisms 
so that .[α]∗Ei

ωEi
= αωEi

for all .α ∈ O. With notation as in Sect. 2.3, suppose that 

the reduction .(Ẽ1, ιE1) of .(E1, [·]E1) modulo . p is in the isomorphism class of . (E, ι)

and the reduction .(Ẽ2, ιE2) of .(E2, [·]E2) is in the isomorphism class of .(E, ι). 
Let us first assume for simplicity that .(Ẽ1, ιE1) = (E, ι) and .(Ẽ2, ιE2) = (E, ι), 

in which case the proof is more transparent. Then, as discussed in Sect. 2.3, the  
normalization is preserved by reduction, which is to say, 

. ι(α)∗ωE = αωE = ι(α)∗ωE

for all .α ∈ O. But then 

. ι(α)∗ωE = ι(α)∗ωE = ι(α)∗ωE,

for all .α ∈ O, which implies .ι(α − α)∗ωE = 0 for all . α, a contradiction for . α = α0
since .ι(α0 − α0) is separable. 

In general, however, the map . ρ is only defined on isomorphism classes, 
prompting a certain amount of bookkeeping. In particular, assume that . (Ẽ1, ιE1) =
(φ1E, φ1ιφ

−1
1 ), and .(Ẽ2, ιE2) = (φ2E, φ2ιφ

−1
2 ), where .φi : E → φiE, .i = 1, 2, are  

isomorphisms. Then for all .α ∈ O,
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. αωE = αφ∗
2ωφ2E = φ∗

2αωφ2E = φ∗
2 (φ2ι(α)φ−1

2 )∗ωφ2E = ι(α)∗φ∗
2ωφ2E

= ι(α)∗ωE = ι(α)∗ωE,

and by a similar computation, .ι(α)∗ωE = αωE . The rest of the proof is as before. 
⨅⨆

Next we consider the ramified case, where we show that .ρp(E𝓁𝓁(O)) = SSpr
O. 

Proposition 4.3 Suppose p is ramified in K . Then the action of .Gal(L/Q) on . LQ

induces an action on .SSpr
O. Under this action, . τ acts by conjugation, i.e. . τ · (E, ι) =

(E, ι). 

Proof Define an action on .SSpr
O by .Cl(O) as in Definition 2.22, and by .〈τ 〉 as . τ ·

(E, ι) = (E, ι). Let .P = p∩L be the restriction of . p to L. Since p is ramified in K , 
. τ is in the inertia group of . P, which implies that .jτ ≡ j (mod P) and hence also 
modulo . p, where .j = j (E). Thus 

. ρp(τ · (Ej , ι)) = ρp((Ejτ , ι)) = (Ejτ mod p, ι mod p) = (Ej mod p, ι mod p)

= τ · (Ej mod p, ι mod p) = τ · ρp((Ej , ι)).

The map . ρ is also known to satisfy .ρp(σ · (E, ι)) = σ · (ρp((E, ι))) for . σ ∈ Cl(O)

[42, Proof of Proposition 3.6]. Therefore, the actions described on . SSpr
O give a well-

defined action of .Gal(L/Q) with respect to which . ρ is equivariant. ⨅⨆
Theorem 4.4 The prime p ramifies in K if and only if .ρp(E𝓁𝓁(O)) = SSpr

O if and 
only if conjugation takes .ρp(E𝓁𝓁(O)) to itself. 

Proof If .ρp(E𝓁𝓁(O)) = SSpr
O, then p ramifies by Proposition 4.2. Conversely, if p 

ramifies in K , then there is some .θ ∈ ι(O) ⊆ End(E) such that .θ2 = −np for some 
integer n coprime to p. The endomorphism . θ is a horizontal isogeny with respect to 
. O (as an element of .ι(O)). Furthermore, . θ must factor as 

. E
πp−→ E(p) φ−→ E,

where . φ is of degree n and separable. But since .θ ∈ ι(O), .θ∗ι = ι and we have the 
following chain of K-oriented isogenies: 

. (E, ι)
πp−→ (E(p), ι(p))

φ−→ (E, ι).

The maps shown above are horizontal isogenies (. πp is horizontal and so is . θ ; hence 
. φ is also). We wish to show that . φ represents the action of an element of . Cl(O), up  
to multiplication by an integer. We can factor n into prime powers and prove it for 
each one, so without loss of generality, we assume that n is a prime power . qk , for  
.q /= p.
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The map . φ is given by a path in the oriented q-isogeny graph determined by 
successive kernels, and as it is horizontal, this path must have as many descending 
as ascending steps. Using the volcano structure of the graph, all the ascending 
and descending edges can be paired up into consecutive pairs .φ2 ◦ φ1, where . φ1
descends and . φ2 ascends. Furthermore, .φ2 = ϕ1-φ1ϕ2 for some automorphisms 
.ϕ1, ϕ2. Then .ϕ−1

1 φ2φ1 = -φ1ϕ2φ1 has trace and norm divisible by q; hence it is 
divisible by . [q]. So .φ2φ1 = ϕ[q] for some automorphism . ϕ. Since we only care 
about . φ up to multiplication by an integer, we can replace .φ2φ1 with . ϕ, which 
is horizontal. Repeating this process leaves a purely horizontal path, which must 
therefore represent an action of an element of .Cl(O) (since .q /= p, .Cl(O) acts 
on .SSpr

O, so any horizontal q-isogeny is the action of an element of the class 
group). It follows that .(E(p), ι(p)) ∈ Cl(O) · (E, ι), which in turn implies that 
.ρp(E𝓁𝓁(O)) = SSpr

O by [42, Propositions 3.3 and 3.4]. 
Finally, we show that .ρp(E𝓁𝓁(O)) = SSpr

O if and only if conjugation takes 
.ρp(E𝓁𝓁(O)) to itself. Since p is ramified, by Proposition 4.3, the action of . Gal(L/Q)

is defined on .SSpr
O and . τ acts by conjugation, fixing the j -invariant .j (E) modulo . p. 

First, note that if .(E, ι) and .(E, ι) are related by an element of the class group, then 
the entire orbit .Cl(O) · (E, ι) consists of elements related to their conjugates by 
the class group, and therefore, conjugation takes .ρp(E𝓁𝓁(O)) into itself. Therefore 
conjugation takes .ρp(E𝓁𝓁(O)) to itself or else maps it to .SSpr

O \ρp(E𝓁𝓁(O)). We  
know that .#ρp(E𝓁𝓁(O)) = hO, and .# SSpr

O ∈ {hO, 2hO} (Sect. 2.3). But . # SSpr
O =

2hO if and only if .ρp : E𝓁𝓁∗(O) → SSpr
O is an isomorphism if and only if 

.Gal(L/Q) acts freely and transitively on .SSpr
O (calling upon Proposition 4.3 again). 

But .ρp(E𝓁𝓁(O)) forms one .Cl(O)-orbit, so the only way the action can be free and 
transitive is if conjugation takes .ρp(E𝓁𝓁(O)) outside itself. ⨅⨆

5 Isogeny Cycles and Their Associated Orders 

The following theorem describes a way to relate isogeny cycles in . Cr to imaginary 
quadratic orders. Define 

. Ir =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

imaginary quadratic orders O :

p does not split in the field containing O
p does not divide the conductor of O

O is an 𝓁-fundamental order,
(𝓁) = ll̄ splits in O,

and [l] has order r in Cl(O).

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

These are exactly the orders for which .SSpr
O is non-empty, and the permutation on the 

vertices arising from the action of a prime ideal in . O above . 𝓁 has a decomposition 
consisting of cycles of length r only. The following theorem describes how often 
each order in . Ir is obtained from an isogeny cycle in . G𝓁 via the bijection of
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Theorem 3.2. If  p is inert, one expects to obtain .2hO/r directed isogeny cycles of 
size r which give rise to an order . O, since .# SSpr

O = 2hO and the rims are identified 
in pairs by conjugation, and given a direction. However, in the case that p ramifies 
in the field K containing . O, the exact count may differ from this. 

Let . O be a quadratic order with fraction field K . Let .L/K be the ring class field 
of . O. Let .gO be the number of genera in . Cl(O). Let .σ𝓁 := Frob𝓁 ∈ Gal(L/K) have 
order r . Define .C𝓁 := 〈σ𝓁〉 (so .#C𝓁 = r). 

Theorem 5.1 Let .r > 2. The map .Rr → Ir which takes a rim to the order . O
with respect to which all its vertices are primitively .O-oriented as in the bijection 
of Theorem 3.2 has fibres of size .2hO/r or .4hO/r , depending on whether or not p 
ramifies in the field K containing . O, respectively. The map factors through .Rr/∼, 
so the induced map .Cr → Ir has a fibre of size .∈O,𝓁hO/r over . O for some . 1 ≤
∈O,𝓁 ≤ 2. Furthermore, 

(1) Suppose p is inert K . Then .∈O,𝓁 = 2. 
(2) Suppose p ramifies in K . Then there are two possibilities: 

(a) There are no self-conjugate rims in .ρ(E𝓁𝓁(O)). Then .∈O,𝓁 = 1. 
(b) There are self-conjugate rims in .ρ(E𝓁𝓁(O)), in which case r is even, and 

. ∈O,𝓁 := 1 + rgO
2hO

.

In this case, .1 < ∈O,𝓁 ≤ 2. 

The following commutative diagram illustrates the theorem: 

. 

Cr 

∼= 

T hm.3.2 
Rr/∼ Rr 

fibres 
of size 
1 or 2  

fibres of size 
2hO/r 

or 
4hO/r 

Ir 
(9) 

Proof Define a map .Rr → Ir taking a rim to the associated order as described in 
the statement of the theorem. The size of the fibre above . O is .2# SSpr

O /r (the factor 
of 2 arises because rims are directed), which is .2hO/r or .4hO/r in the ramified and 
inert cases, respectively, by Theorem 4.4 (the conditions on p in the definition of . Ir

imply .SSpr
O is nonempty by Proposition 2.19). Since a conjugate rim is associated 

with the same order as the original, the map factors through .Rr/∼. The fibres of 
.Rr → Rr/∼ are of size 1 or 2 (depending upon whether the rim in question was 
self-conjugate). 

In the inert case, .# SSpr
O = 2hO by Theorem 4.4. The fibres of .Rr → Rr/∼ are 

uniformly of size 2 for rims in .SSpr
O (since conjugation swaps .ρ(E𝓁𝓁(O)) and its
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complement in .SSpr
O by Theorem 4.4). The map .Rr → Ir has a fibre of size . 4hO/r

over . O. Hence the map .Cr → Ir has a fibre of size .2hO/r above . O. 
Now we consider the ramified case. Call upon the conventions and set-up of 

Sect. 4. Let .G = Gal(L/Q). We consider the stabilizers .StabG((E, ι)) of elements 
of .SSpr

O. All stabilizers are of size 2 since .#G = 2hO = 2# SSpr
O by Theorem 4.4, 

and no stabilizers are contained in .Cl(O) (whose action is free). Therefore, for some 
. (E, ι), we have .StabG((E, ι)) = {id, στ }, for some .σ ∈ Cl(O) ∼= Gal(L/K). The  
set of stabilizers is the orbit of .StabG((E, ι)) under conjugation by elements of 
.G ∼= Cl(O) ⋊ 〈τ 〉. For .η ∈ Cl(O), we have  

. η StabG((E, ι))η−1 = {id, ηστη−1} = {id, η2στ }.

Also .τ StabG((E, ι))τ−1 = {id, τσ } .= {id, σ−2στ }. Thus, the nontrivial 
elements of the stabilizers, taken together, form a set .Cl(O)2στ . Set the notation 
.Gσ := Cl(O)2σ . Then .σ ∈ Cl(O) \Cl(O)2, as . τ does not stabilize any pairs .(E, ι). 
Hence .Gσ is a non-principal genus of .Cl(O). 

An element .(E, ι) is in the same .𝓁-isogeny rim as its conjugate .(E, ι) if and only 
if .σk

𝓁 τ ∈ StabG((E, ι)) for some integer k if and only if . C𝓁τ ∩ StabG((E, ι)) =
C𝓁τ ∩ Gσ τ /= ∅. If .C𝓁 ∩ Gσ = ∅, then there are no stabilizers intersecting . C𝓁τ , so  
there are no self-conjugate rims. Since .ρ(E𝓁𝓁(O)) is taken to itself by conjugation, 
in this case all rims pair up in conjugate pairs. Therefore the fibres are of size .hO/r . 

Suppose there are self-conjugate rims, in which case .σk
𝓁 ∈ Gσ for some integer k. 

Then k must be odd, as otherwise .σk
𝓁 ∈ Gσ ∩Cl(O)2 = ∅. It follows that .σ𝓁 ∈ Gσ . A  

similar argument forces r to be even, as otherwise .σ𝓁 = σ r+1
𝓁 ∈ Gσ ∩ Cl(O)2 = ∅. 

There are .#Gσ = #Cl(O)2 = hO/gO distinct stabilizers, of which . #Gσ ∩ C𝓁

belong to elements in the same rim as their conjugates. By the same logic as before, 
using the fact that r is even, the intersection of .Gσ with . C𝓁 consists of the odd 
powers of . σ𝓁 and is therefore of size .#C𝓁/2 = r/2. Since all rims are the same size, 
this means the proportion of rims which are self-conjugate is 

. c := r/2

#Cl(O)2
= rgO

2hO
.

This represents the proportion of rims (equivalently, of vertices) of .SSpr
O that are 

self-conjugate. This proportion is the same when we restrict to .ρ(E𝓁𝓁(O)). 
The proportion .1−c of non-self-conjugate rims is double-counted when we wish 

to count .𝓁-isogeny cycles in . G𝓁, so we have  

. ∈O,𝓁 = 2c + (1 − c) = 1 + c.

For the final inequality, note that in the ramified case, the fibres of .Rr → Ir are of 
size .2hO/r and reference diagram (9). ⨅⨆
Example 5.2 The following example illustrates the most complicated type of fibre. 
Consider . G𝓁 with .p = 241, .𝓁 = 11 and the quadratic order . O of discriminant .−4p,
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namely .O = Z[√−p]. Since p ramifies, .SSpr
O = ρ(E𝓁𝓁(O)) by Theorem 4.4. Let  

.r = 4. The class group of . O is cyclic of order 12. Therefore, there are .12/4 = 3 rims 
of size 4 in .SSpr

O under the action of a prime ideal . l in . O above . 𝓁. That means six 
directed rims. Using an isomorphism .(Cl(O), ·) ∼= (Z/12Z,+) which takes . σ𝓁 of 
order 4 to the element 3, we have .Cl(O)2 = {0, 2, 4, 6, 8, 10} and .C𝓁 = {0, 3, 6, 9}. 
So .1/3 of the elements of .Cl(O)2 are in . C𝓁. This implies that .1/3 of the total directed 
rims are self-conjugate: two of the six (one of the three undirected rims). Using the 
formula of Theorem 5.1, with .gO = 2, we obtain 

. ∈O,𝓁 = 1 + 4 · 2

2 · 12
= 4

3
,

which gives a fibre size of .
4
3 · 12

4 = 4 for the map .C4 → I4 above . O. In other words, 
there should be four directed isogeny cycles of size 4 (equivalently, two undirected 
isogeny cycles) in .G11 which give rise to . O. 

The set .ρ(E𝓁𝓁(O)) has three undirected length 4 isogeny cycles: . (64, 93, 216,

240) (twice, conjugate to one another) and .(8, 8, 28, 28) (self-conjugate). The 
subgraph of .G11 of .Fp-points is shown in Fig. 5, where we observe that there is 
only one 4-cycle through .(964, 93, 216, 240), and that .(8, 8, 28, 28) collapses to a 
‘barbell shaped’ isogeny cycle. The commutative diagram (9), if labelled with the 
(undirected) elements above .Z[√−p], looks something like the following (please 
compare to Fig. 5): 

◦ 
◦ 

Z[√−p] 

6 An Extended Example 

In this section, we give an example that demonstrates our bijection (Theorem 3.2). 
We choose .p = 179, 𝓁 = 2, and we consider .r = 3, 4, 5 and 6. Computing the set 
.Rr involves first finding all .𝓁-fundamental imaginary quadratic orders . O such that 
. O embeds into .Bp,∞, the ideal .(𝓁) = ll̄ splits in . O and . [l] has order r in . Cl(O). A  
complete list of such orders . O and prime ideals . l, l̄ can be calculated as follows: 

(1) List all representations of . 𝓁r by norm forms of sufficiently small discriminant. 
(2) Each representation gives rise to an imaginary quadratic element . α such that 

.N(α) = 𝓁r (up to sign and conjugation).
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Fig. 5 An illustration of Example 5.2 with .p = 241, .𝓁 = 11 and .O = Z[√−p], for which  
.hO = 12. On the left, the rims of .GQ(

√−p),11 drawn in such a way that conjugation is a mirror 
symmetry through the dotted line. On the right, the subgraph of .Fp-vertices of . G11

(3) Check the splitting behaviour of p in .Q(α), discarding . α if p splits in .Q(α). 
(4) Consider all .𝓁-fundamental orders in .Q(α) that contain . α and check whether 

the ideal class . [l] has order r in .Cl(O), obtaining a list . Lr of desirable orders 
. O. 

As an example, consider representing .23 = 8. We need only check discriminants 
. Δ with .|Δ| ≤ 4 · 8 = 32. We find two representations: .12 + 31 · 12 = 4 · 8 and 
.32 + 23 · 12 = 4 · 8. These gives rise to two possible . α up to conjugation and sign: 

. 
±1 ±√−31

2
,
±3 ± √−23

2
.

However, 179 splits in .Q(
√−23) and not in .Q(

√−31). Hence we discard the 

second . α. We find that .l =
(

2, 1+√−31
2

)
is not principal and .l3 = (α). Hence 

.L3 =
{
Z

[
1+√−31

2

]}
. 

Each element . α corresponds to an orientation . ια (up to conjugation), which gives 
a rim (up to conjugation and direction), as in the map . Θ of Lemma 3.9. Such a list 
therefore gives the number of undirected rims: .#Lr = 1

2 #(Rr/∼). 
Theorem 3.2 concerns directed isogeny cycles and rims, but in this example we 

will ignore the issue of direction, which is allowed by Corollary 3.18. Therefore, we 
use . Lr as a proxy for .Rr/∼ for computational purposes. We compare . Lr with . Cr , 
verifying the bijection theorem. 

For each .r ∈ {3, 4, 5, 6}, we compute the set . Cr on the supersingular 2-isogeny 
graph by reference to Fig. 5 showing . G2. We will actually consider . C'

r , the set of  
isogeny cycles of . Cr but forgetting direction, allowed by Corollary 3.18. Then we 
determine the associated endomorphisms by composing around the cycles as in the
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Table 1 Cycles of lengths three through six, with the associated endomorphisms to which the 
cycles compose. The two cycles labelled with an asterisk . ∗ are not fully specified by giving their 
j -invariants. However, as discussed in Sect. 3.2, the bijection between these two cycles and the 
two associated . α is not canonical, but if we choose a safe arbitrary assignment, we can make a 
non-canonical bijection. So there is no reason to specify which cycle is which in the table here 

Isogeny cycle Figure Length Endomorphism Order Class number 

.(j3, j3, 171) Fig. A 3 .
±1±√−31 

2 .Z

[
1+√−31 

2

]
3 

.(61, j1, 140, j1) Fig. A 4 .
±5±√−39 

2 .Z

[
1+√−39 

2

]
4 

.(22, j2, j3, j3, j2) Fig. A 5 .
±9±√−47 

2 .Z

[
1+√−47 

2

]
5 

.(22, j2, j1, 140, j1, j2) Fig. B 6 .
±13±√−87 

2 .Z

[
1+√−87 

2

]
6 

.(140, j1, j2, j3, 171, 120) Fig. C 
6 .

±5±√−231 
2 

.Z

[
1+√−231 

2

]
12 

.(140, j1, j2, j3, 171, 120) Fig. D 

.(0, 121, 112, 35, 112, 121)∗ Fig. E 6 .
±3±√−247 

2 .Z

[
1+√−247 

2

]
6 

.(22, j2, j3, 171, j̄3, j̄2) Fig. F 
6 .

±1±√−255 
2 

.Z

[
1+√−255 

2

]
12 

.(0, 121, 112, 35, 112, 121)∗ Fig. E 

.(61, j1, j2, 22, j2, j1) Fig. G 6 .
±11±3

√−15 
2 .Z

[
3
(

1+√−15 
2

)]
6 

map . Θ; we do this by computing the trace of the composed endomorphism . θ using 
the formulas .θ +-θ or .1 + deg(θ) − deg(1 − θ)  in SageMath [53]. 

For example, there is only one isogeny cycle of length 3 (in the sense of 
Theorem 3.2, but ignoring direction) in . C'

3 for . G2, namely .(j3, j3, 171). Composing 
around the triangle, one finds an endomorphism of trace . ±1. Since the endomor-
phism has norm 8, it has minimal polynomial .x2 ± x + 8 and hence is of the form 

.
±1±√−31 

2 . This generates an order with class number 3 (the class numbers were 
computed with SageMath). 

In Table 1, we give the lists . C'
r , and . Lr and put them in correspondence. This 

represents the first row of the table which puts .C'
3 = {(j3, j3, 171)} and . L3 ={

Z

[
1+√−31 

2

]}
(as a proxy for .R3/∼ modulo direction) in bijection. 

The table also verifies Corollary 7.3. In our case, we have observed no fields 
ramified at p, so .∈O,𝓁 = 2. We compute 

.2 = 2#C'
3 = #C3 = 

2 

3 
h

(
Z

)
1 +√−31 

2

])
= 

2 

3 
· 3 = 2. 

2 = 2#C'
4 = #C4 = 

2 

4 
h

(
Z

)
1 +√−39 

2

])
= 

2 

4 
· 4 = 2. 

2 = 2#C'
5 = #C5 = 

2 

5 
h

(
Z

)
1 +√−47 

2

])
= 

2 

5 
· 5 = 2. 
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14 = 2#C'
6 = #C6 = 

2 

6

(
h

(
Z

)
1 + √−87 

2

])
+ h

(
Z

)
1 +√−231 

2

])
+ 

h

(
Z

)
1 + √−247 

2

])
+ h

(
Z

)
1 + √−255 

2

])
+ 

h

(
Z

)
3 

1 +√−15 

2

]))

= 
2 

6 
· (6 + 12 + 6 + 12 + 6) = 14. 

This verifies Corollary 7.3 in this example. 

The Cycle .(0, 121, 112, 35, 112, 121) The case of the j -invariant cycle 
.(0, 121, 112, 35, 112, 121) in Fig. 6(E) is particularly interesting. This sequence 
of j -invariants forms a 6-cycle in 12 possible ways, as follows. There are 4 ways 
to travel from 112 to 35 and back. There are 3 ways to travel from 121 to 0 and 
back, producing three distinct endomorphisms of .j = 121 (but not canonically), 
each composing to one of . ±2, .±-ϕ ◦ ζ3 ◦ ϕ or .±-ϕ ◦ ζ 2 

3 ◦ ϕ, as described in Fig. 3. 
Thus, one endomorphism is backtracking and the other two are duals of each other. 
The isogenies from 112 to 35 each have a dual: Hence two of the 2-cycles from 
112 to 35 and back are backtracking (obtained by pairing an isogeny with its dual). 
There are therefore two non-backtracking 2-cycles to choose from among the four 
ways to travel from 112 to 35 and back. These two non-backtracking 2-cycles are 
actually duals of each other and are obtained by simply changing the direction 
of traversal. If the traces of the paths that include backtracking are computed, we 
obtain the associated endomorphisms . ±8, .4(±1 ± √−3) and .2(±1 ± √−15), all  
of which are divisible by 2. This leaves exactly four non-backtracking 6-cycles on 
the j -invariants .(0, 121, 112, 35, 112, 121), coming in pairs obtained by changing 
the direction of traversal. These two pairs give the two endomorphisms listed in 
Table 1. 

The Cycle .(61, j1, j2, 22, j2, j1) Another interesting cycle is . (61, j1, j2, 22, j2, j1) 
in Fig. 6(G). This cycle corresponds to an element generating the non-maximal order 

.O3 := Z
[
3
(

1+√−15 
2

)]
. That element also exists in the order .O1 := Z

[
1+√−15 

2

]
. 

How do we know which order the volcano rim corresponds to? The easiest answer 
is that only the class number of .O3 is divisible by 6. However, even without that 
observation (sometimes several class numbers may be divisible by the correct 
integer r), we can observe that the orientation . ι given by the endomorphism on any 
of the j -invariants on the cycle is .O3-primitive, not .O1-primitive. This can be seen 

because if .End(E) contained . 1+
√−15 
2 , which has norm 16, then this element would 

be realized as a 4-cycle from E, which it is not. (The curves .j2, j2 and 22 have no 

4-cycle. The curves 61, . j1 and . j1 have the 4-cycle associated with .±5±√−39 
2 .) The 

moral of this observation is that each cycle can only arise from a single quadratic 
order, as dictated by Theorem 3.2. 
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Fig. 6 Figure (A) is the supersingular 2-isogeny graph . G2 over . Fp2 , where .p = 179. Here . j1 = 
64i + 5, j2 = 99i + 107, j3 = 5i + 109, where  i denotes a square root of .−1 in .Fp2 . Figures 
(B)–(G) are the isogeny cycles of length 6 as listed in Table 1. There are two distinct isogeny cycles 
included in (E), both sharing the same sequence of vertices 

Repeating j -invariants A final remark is the observation that repeating j -
invariants in a cycle can only happen when the discriminant is large with respect to 
the prime. This is a consequence of a result by Kaneko which gives the necessary 
condition .| disc(O)| ≥  p [30, Theorem 2’]. In our case, we do get a cycle with 
repeating j -invariants, but the associated discriminants are quite large at .−247 and 
.−255, both bigger in absolute value than the prime .p = 179. 

Comparison with Gross [28] Working with the same example, Gross counts 
cycles of length .log𝓁(m) in the supersingular .𝓁-isogeny graph . G𝓁 via the formula 
provided in [28, Proposition 1.9]. In the first row of Table 1, we count one isogeny 
cycle of length 3 in the 2-isogeny graph, namely .(j3, j3, 171) arising from the order 
of discriminant .−31. Gross counts nine via the formula [28, Proposition 1.9]. In 
particular, six of this count come from the order of discriminant .−31. The 3-cycle 
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.(j3, j3, 171), which we count once, is counted six times by Gross because it is a 
valid 3-cycle starting at any of .j3, 171, j3, in either direction. Two more of Gross’s 
count come the order of discriminant .−16. The cycle corresponding to the order 
of discriminant .−16 is necessarily (22, 1728, 1728). This cycle is only without 
backtracking when we start at 22, so Gross counts it once in each direction. We do 
not count this cycle, as it contains backtracking as soon as we forget the basepoint. 
The last one of Gross’s count comes from the order of discriminant . −4, as 1728 has 
an endomorphism of degree 8 corresponding to composing the loop at 1728 three 
times, with appropriate automorphisms in between to avoid backtracking. 

7 Counting Isogeny Cycles in G𝓁

Theorem 5.1 makes possible explicit formulas for the number of isogeny cycles of 
length r in the .𝓁-isogeny graph . G𝓁. In this section, we do the following: 

1. Theorem 7.1 uses spectral graph theory to give an asymptotic for the expected 
number of length r isogeny cycles, and this estimate is compared to empirical 
data in Fig. 7. The use of spectral graph theory requires us to restrict to . p ≡ 
1 (mod 12), but for any large enough p we still expect the estimates of this 
theorem to hold. 

2. Corollary 7.3 gives an explicit formula for the number of length r isogeny 
cycles in terms of class numbers of certain quadratic orders, and Theorem 7.4 
reformulates this as a sum over these class numbers with simpler conditions on 
which quadratic orders to include. 

3. Theorem 7.4 enables an explicit upper bound on the length r isogeny cycle 
count, given in Corollary 7.7. Unfortunately a lower bound would seem to be 
connected to an open problem in number theory (Remark 7.8). 

Fig. 7 A semilog plot of cycle counts for . G𝓁 for .p = 3361 and .𝓁 = 2 (green squares, lower graph) 
and for .p = 3229 and .𝓁 = 3 (red circles, upper graph). The black curves upon which the data 
points appear to sit are .𝓁x /(2x). The blue lines above the data in each case indicate the dominant 
term of Corollary 7.7, indicating our proved upper bound. On the left, the full data. On the right, a 
close-up of the behaviour for small cycle sizes. The graphs were generated in part using code from 
[4] 
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7.1 Asymptotic Number of Isogeny Cycles 

It is a standard fact that for .(𝓁 + 1)-regular Ramanujan graphs, the number of 
basepointed non-backtracking closed walks of length r (where the non-backtracking 
condition does not rule out entering the final vertex along the initial edge of the 
walk) is 

. (𝓁 + 1)𝓁r−1 + #G𝓁 O
(
r(𝓁 + 1)r/2

)
, 

where the implied constant does not depend on .#G𝓁. This follows, for example, 
from [19, Theorem 1.4.6]; Some details are provided at [8]. If we disallow entering 
the final vertex along the initial edge and then forget basepoints, then one would 
heuristically expect this to become 

.𝓁r /2r + #G𝓁 O
(
(𝓁 + 1)r/2

)
. (10) 

For small r , estimating the number of graph-theoretic r-cycles is similar (recall 
that a cycle allows no repeated edges or vertices); this is because random d-regular 
graphs on n vertices have on average .(d − 1)r /2r such r-cycles [9, Theorem 2]. In 
our case, this would give .𝓁r /2r . The number of r-cycles in some Ramanujan graphs, 
including LPS graphs, but not supersingular graphs, has been analysed, and these 
graphs appear to behave as random graphs [54]. 

In what follows, we give a brief proof of an asymptotic version of (10). 

Theorem 7.1 Let .p ≡ 1 (mod 12). Let . G𝓁 be the supersingular .𝓁-isogeny graph 
over . Fp and let .#G𝓁 denote its number of vertices. The number of non-backtracking 
closed walks of length r in . G𝓁, taken up to order of traversal and starting point, 
asymptotically approaches .𝓁r /2r as .r → ∞. Thus, the number of isogeny cycles in 
. G𝓁 is also asymptotically .𝓁r /2r as .r → ∞. 

Before giving a formal proof, we give a heuristic description. Choose one of . #G𝓁

initial vertices . j0. Label its .𝓁 + 1 neighbours .j1, j2, . . . , j𝓁+1. Choose one of these 
neighbours for the first step, say . j1 (relabelling without loss of generality). Consider 
the .𝓁r−1 non-backtracking length .r − 1 walks that could follow the edge .j0 → j1. 
Such a walk provides a non-backtracking closed walk of length r through . j0 → j1 
if and only if the walk terminates at . j0 via one of .j2, . . . , j𝓁+1. The probability of 
this termination vertex . j0 should be expected to be .1/#G𝓁. However, only . 𝓁 of the 
.𝓁 + 1 incoming edges reach . j0 via one of .j2, . . . , j𝓁+1. Finally, we obtain a typical 
closed non-backtracking walk of length r exactly 2r times in this way since there 
are r choices of initial vertex and two directions. Hence the number of closed non-
backtracking walks of length r should be obtained by combining the steps in the 
outline above: 

.#G𝓁(𝓁 + 1)𝓁r−1(1/#G𝓁)(𝓁/(𝓁 + 1))/2r = 𝓁r /2r. 



Orientations and Cycles in Supersingular Isogeny Graphs 69 

Proof of Theorem 7.1 The natural object for studying non-backtracking walks is a 
Markov chain on the non-backtracking matrix B, which is the adjacency matrix of 
an auxiliary graph . G' whose vertices are the directed edges of . G𝓁 and whose edges 
indicate adjacency between edges of . G𝓁 that respects the directedness and does not 
backtrack. In other words, the matrix is a scaling of the transition probability matrix 
of a non-backtracking random walk on the directed edges of . G𝓁. In particular, the 
entries of . Br give the number of non-backtracking walks of length .r + 1 that start 
and end on certain edges. This is studied in [31], where it is shown that this Markov 
chain converges to a uniform stationary distribution (the mixing property). There are 
.#G𝓁(𝓁+1) directed edges in . G𝓁. Choose one of these as the initial directed edge of a 
walk, originating at a vertex which we may call . j0. From that point, take a random 
non-backtracking walk of length .r − 1 (there are .𝓁r−1 of these). Then we have 
created a closed non-backtracking walk if and only if we end on one of the . 𝓁 edges 
that are directed into . j0 without backtracking the initial edge. The mixing property 
implies that the probability of ending on of these . 𝓁 incoming edges is asymptotically 
.𝓁/(#G𝓁(𝓁 + 1)). Therefore, asymptotically, we obtain 

. #G𝓁(𝓁 + 1)𝓁r−1
(

𝓁

#G𝓁(𝓁 + 1)

)
= 𝓁r 

total non-backtracking closed walks with a direction and a basepoint. Most of 
these can be directed in two ways and a basepoint can be chosen in r ways. 
The exceptions, namely the barbells (Definition 3.19) are those closed walks that 
involve the same edges when the direction is reversed. These exceptions are rare 
enough (Lemma 3.20) that they do not affect the asymptotic. Finally, isogeny 
cycles are those non-backtracking closed walks which are not powers of smaller 
non-backtracking closed walks; this requirement clearly also does not affect the 
asymptotic. ⨅⨆
Remark 7.2 In Theorem 7.1, we restrict to .p ≡ 1 (mod 12) because the graph 
theory involved requires an .(𝓁 + 1)-regular graph. We have remarked at length the 
difficulties which arise when vertices .j = 0, 1728 appear in . G𝓁. However, these 
issues are very localized – the .(𝓁 + 1)-regularity of the graph may only be affected 
at vertices adjacent to .j = 0, 1728. For .p ⪢ 𝓁, this is a very small number of 
potential deviations from regularity, and we do not expect the estimates provided 
here to be greatly affected. 

By reference to [31] and [2], the mixing rate of the Markov chain could be used 
to analyse the rate of convergence of the asymptotic and make this theorem more 
precise. 

The proof of Theorem 7.1 lends itself to computation: Using powers of the non-
backtracking matrix, we can compute the number of isogeny cycles in . G𝓁, at least 
up to the issue of barbells. Figure 7 shows some data collected in SageMath for the 
number of non-backtracking closed walks of length r on some small supersingular 
.𝓁-isogeny graphs chosen to avoid loops (so . G𝓁 is .(𝓁+1)-regular without any barbells) 
and its agreement with the asymptotic. 
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7.2 Counting Isogeny Cycles with Class Numbers 

A corollary to Theorems 3.2 and 5.1 counts cycles exactly as a sum of class numbers 
of certain quadratic orders. 

Corollary 7.3 Let .r >  2 be fixed and consider primes .𝓁 /= p. Let . Ir be as in 
Theorem 5.1. 

Let .cr = |Cr | denote the number of directed isogeny cycles of length r . Then 

. cr = 
1 

r

E

O∈Ir

∈O,𝓁hO, 

where .∈O,𝓁 is as defined in Theorem 5.1. In particular, .1 ≤ ∈O,𝓁 ≤ 2 and . ∈O,𝓁 = 2 
if p is inert in the quadratic field containing . O. If  .𝓁r < p, then .∈O,𝓁 = 2 for all 
.O ∈ Ir . 

Proof This follows from Theorems 3.2 and 5.1. The cycles . Cr of length r in . G𝓁 are 
in bijection with .Rr/∼. Each .[R] then maps to some order .O ∈ Ir . Summing the 
elements in . Ir weighted by the fibre sizes counts . #Cr . The fibre sizes are given in 
Theorem 5.1. ⨅⨆

On the graph side, it is clear that this count is finite. On the side of ideal 
classes, finiteness of . Ir follows from the observation that if .ord([l]) = r , then 
. 𝓁r is represented by the norm form of the quadratic field. For sufficiently large 
discriminant, this representation is impossible except as .𝓁r = (𝓁r/2)2 if r is even; but 
in this case, . 𝓁 is ramified. This observation can be turned into a counting argument 
based on quadratic residues. 

Theorem 7.4 Assume .p >  2. For any positive integer N , define 

. Q(N) = 

⎧ 
⎪⎨ 

⎪⎩ 
0 < x  <  2𝓁N/2 : 

x /≡ 0 (mod 𝓁), 
x2 − 4𝓁N is not a quadratic residue modulop, 

and has valuation ≤ 1 atp 

⎫ 
⎪⎬ 

⎪⎭ 
, 

and 

. QN =
E

x∈Q(N)

E

f 2|(x2−4𝓁N )

∈O,𝓁 h

(
x2 − 4𝓁N 

f 2

)
, 

where .h(D) denotes the class number of the order of discriminant D. Let . cN , .N ≥ 3, 
be as in Corollary 7.3. Then there are values for . c1 and . c2 such that 

.

E

r|N 
rcr = QN, cN = 

1 

N

E

r|N 
μ(r)QN/r . 
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Proof Let .r ≥ 3. Recall from Theorems 3.2 and 5.1 that we have maps 

. Cr −→ Rr/∼ −→ Ir . 

The first map is a bijection, and the second map has fibre sizes .∈O,𝓁hO/r above . O, 
as described in Theorem 5.1. Using the fibre sizes, we obtain 

. cN = 
1 

N

E

O∈IN

∈O,𝓁hO. 

Then 

. 
E

r|N 
rcr =

E

O∈Ur|N Ir

∈O,𝓁hO. 

By definition, .O ∈ U
r|N Ir if and only if there exists an imaginary quadratic integer 

.α ∈ O, not divisible by . 𝓁, such that .N(α)  = 𝓁r , p does not split in .Q(α), and . 𝓁 is 
invertible and splits in . O. Since these properties of . α are invariant up to conjugation 

and sign, we can write .α = x+√
Δ

2 , where . Δ is the discriminant of the order .Z[α], 
and .x ≥ 0. The condition that . α has norm . 𝓁N is equivalent to .x2−Δ = 4𝓁N . The fact 
that . α is imaginary is equivalent to .0 > Δ = x2 − 4𝓁N , or equivalently, .x <  2𝓁N/2. 
Next we show that the prime . 𝓁 is invertible and splits in .Z[α] if and only if . x /≡ 0 
(mod 𝓁). To that end, invertibility is equivalent to the condition that . 𝓁 does not divide 
the conductor of .Z[α], which is equivalent to .x /≡ 0 (mod 𝓁) (since .x2−Δ = 4𝓁N ), 

and if these equivalent conditions hold, then .1 = (
Δ
𝓁

) =
(

x2−4𝓁N

𝓁

)
, which holds if 

and only if . 𝓁 splits in the maximal order containing . O (by Lemma 2.28). The prime 
p does not split in this maximal order if and only if .x2 − 4𝓁N is not a quadratic 
residue modulo p. Finally, . α is not divisible by . 𝓁 if and only if . 𝓁 does not divide 
. Δ. To conclude then, .O ∈ U

r|N Ir if and only if .ΔO = x2 − 4𝓁N for . x ∈ Q(N) 
of the theorem statement. Note that each . O corresponds to one .ΔO, which in turn 
corresponds to one value of x. Therefore, 

. 
E

r|N 
rcr =

E

O∈Ur|N Ir

∈O,𝓁hO =
E

x∈Q(N)

E

f 2|x2−4𝓁N

∈O,𝓁h

(
x2 − 4𝓁N 

f 2

)
= QN. 

Calling upon Möbius inversion, we have proved the theorem. ⨅⨆
Remark 7.5 The key observation we make here—that small cycles arise from a 
combination of splitting behaviour between p and . 𝓁—is used in [15, Section 5.3.4] 
to eliminate small cycles by use of congruence conditions on p. 

The advantage of Theorem 7.4 is that in contrast to the sum of class numbers 
in Corollary 7.3, we obtain a sum of class numbers that has no conditions on the 
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class groups. The condition on the order of . [l] present in Corollary 7.3 is removed 
when summing over .x ∈ Q(N), since .QN is entirely given in terms of ‘elementary’ 
conditions, namely Legendre symbols and valuations at p and . 𝓁. 

Example 7.6 We illustrate the theorem and its proof with the example of Sect. 6, 
where .𝓁 = 2 and .p = 179. We have, from Table 1, the directed isogeny cycle counts 

. c3 = 2, c4 = 2, c5 = 2, c6 = 14. 

Using Sage to compute .Q(N), we obtain, showing the data as tuples . (x, x2 − 
4𝓁n , hx2−4𝓁n), 

. Q(1) = ∅,Q(2) = {(1, −15, 2)},Q(3) = {(1,−31, 3)}, 
Q(4) = {(5,−39, 4), (7,−15, 2)},Q(5) = {(9, −47, 5)}, 

. Q(6) = {(1,−255, 12), (3,−247, 6), (5, −231, 12), (11,−135, 6), (13,−87, 6), 

(15,−31, 3)}. 

Observe that the last tuple .(15,−31, 3) in .Q(6) corresponds to . α = ±15±√−31 
2 = 

±
(

1±√−31 
2

)2 
. The element .β = ±1±√−31 

2 corresponds to the unique 3-cycle in 

Table 1. Note that .Z[α] =  Z[β] =  O
Q(

√−31). Accordingly, . α corresponds to the 
3-cycle repeated twice. 

The fourth tuple .(11,−135, 6) in .Q(6) corresponds to . α = ±11±3
√−15 

2 =
(±1±√−15 

2

)3 
. The element .±1±√−15 

2 corresponds to the 2-cycle .(112, 35). In this  

case, .Z[β] =  O
Q(

√−15), but .Z[α] is a suborder of .Z[β] of conductor 3. Thus, 
. α corresponds to two different types of 6-cycles: the 2-cycle repeated three times 
(therefore not an isogeny cycle), and also an isogeny cycle of size 6, as in Table 1. 

Therefore, 

.Q1 = 0, 

Q2 = 2h

(
Z

)
1 +√−15 

2

])
= 4, 

Q3 = 2h

(
Z

)
1 +√−31 

2

])
= 6, 

Q4 = 2h

(
Z

)
1 +√−15 

2

])
+ 2h

(
Z

)
1 +√−39 

2

])
= 4 + 8 = 12, 
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Q5 = 2h

(
Z

)
1 +√−47 

2

])
= 10, 

Q6 = 2h

(
Z

)
1 +√−255 

2

])
+ 2h

(
Z

)
1 + √−247 

2

])
+ 

2h

(
Z

)
1 + √−231 

2

])
+ 2h

(
Z

)
1 +√−15 

2

])
+ 

2h

(
Z

)
3 

1 +√−15 

2

])
+ 2h

(
Z

)
1 +√−87 

2

])
+ 

2h

(
Z

)
1 + √−31 

2

])
= 24 + 12 + 24 + 4 + 12 + 12 + 6 = 94. 

Recall that for the Möbius function, .μ(1) = 1, .μ(2) = −1, .μ(3) = −1, . μ(4) = 
0, .μ(5) = −1, .μ(6) = 1. So the sum .S(N) := 1 

N

E
r|N μ(r)QN/r  takes on the 

following values, which we can verify to match . cN for .3 ≤ N ≤ 6: 

. S(1) = Q1 = 0, S(2) = 
1 

2 
(Q2 − Q1) = 2, S(3) = 

1 

3 
(Q3 − Q1) = 2 = c3, 

. S(4) = 
1 

4 
(Q4 − Q2) = 2 = c4, S(5) = 

1 

5 
(Q5 − Q1) = 2 = c5, 

. S(6) = 
1 

6 
(Q6 − Q3 − Q2 + Q1) = 14 = c6. 

We briefly confirm that the conclusion of Theorem 7.4 is in heuristic agreement 
with Theorem 7.1. Heuristically, we expect .#Q(N) ≈ 𝓁N/2. Estimating the inner 
sum in .QN with a Hurwitz class number heuristically of size . 

√
4𝓁N − x2 (ignoring 

log factors), we have 

. QN ≈
⎿2𝓁N/2⏌E

x=1

/
4𝓁N − x2 ≈

f 2𝓁N/2 

1

/
4𝓁N − x2 dx ≈ 𝓁N , 

from which follows .cN ≈ 𝓁N /N as expected. In fact, a rigorous upper bound of 
magnitude .𝓁N log N on . cN is given in Corollary 7.7, whose proof is based on this 
rough idea. 
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Corollary 7.7 With the notation of Theorem 7.4, 

. QN < BN := 
2 

3 
(eγ log log(2𝓁N/2) + 7/3) log(4𝓁N )(π𝓁N + 2𝓁3N/4) 

and 

. cN < 
BN 
N 

+
(

eγ log log N + 7/3 − 
1 

N

)
BN/2 

< 
2πeγ log(4𝓁) 

3
𝓁N (log N+ log log(2

√
𝓁)+7/3)+O(𝓁3N/4 log N)  as N → ∞, 

where .γ = 0.577 . . .  is the Euler–Mascheroni constant. 

Proof For brevity, put .X = ⎿2𝓁N/2⏌. For our bound, we simply ignore all the 
conditions on x imposed by membership in the set .QN of Theorem 7.4 and use 
.∈O,𝓁 ≤ 2. That is, we upper-bound .QN by .Q'

N ≥ QN , where 

. Q'
N = 2 

XE

x=1

E

f 2|x2−4𝓁N 

h

(
x2 − 4𝓁N 

f 2

)
. 

Fix an integer x with .0 ≤ x ≤ X and write .4𝓁N − x2 = y2d for positive integers 
.d, y with d square-free. For any imaginary quadratic order . O of discriminant . Δ, we  
have .hO < (

√|Δ| log |Δ|)/3 by [39, Equation (8.11)], so 

. 
E

f 2|(x2−4𝓁N ) 

h

(
x2 − 4𝓁N 

f 2

)
< 

1 

3

E

f 2|(x2−4𝓁N ) 

√
4𝓁N − x2 

f 
log

(
4𝓁N − x2 

f

)

< 
1 

3 
log(4𝓁N )

E

f 2|y2d

/
y2d 
f 

= 
1 

3 
log(4𝓁N )

/
y2d

E

f |y 

1 

f 

= 
1 

3

/
4𝓁N − x2 log(4𝓁N ) 

σ(y)  
y 

, 

where .σ(·) denotes the sum of divisors function. It is known (see [3, Exercise 3.9 
(a)] for example) that .σ(n)ϕ(n) ≤ n2 for all .n ≥ 1, where .ϕ(·) is Euler’s totient 
function. By [48, Theorem 15], we have 

. 
n 

ϕ(n) 
< eγ log log n + 

2.50637 

log log n 
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for all . n ≥ 3. If .y ≥ 19, then 

. 
2.50637 

log log y 
≤ 

2.50637 

log log(19) 
< 

7 

3 
, 

so .y = /
(4𝓁N − x2)/d < 2𝓁N/2 yields 

. 
σ(y)  

y 
≤ 

y 
ϕ(y) 

< eγ log log y + 
2.50637 

log log(y) 
< eγ log log(2𝓁N/2) + 

7 

3 
. 

Simple numerical verification shows that .σ(y)/y  ≤ 7/3 for .1 ≤ y ≤ 18 (the largest 
value is .σ(12)/12 = 7/3), so this upper bound holds for all .y >  0. It follows that 

. 
E

f 2|x2−4𝓁N 

h

(
x2 − 4𝓁N 

f 2

)
< 

1 

3 
(eγ log log(2𝓁N/2) + 7/3) log(4𝓁N )

/
4𝓁N − x2. 

It remains to bound .
EX 

x=1 

√
4𝓁N − x2. Since .f (x)  = 4𝓁N − x2 is monotonically 

decreasing, we have 

. 

XE

x=1

/
4𝓁N − x2 ≤

f X 

0

/
4𝓁N − x2 dx = 

1 

2 
X
/

4𝓁N − X2 + 2𝓁N arcsin

(
X 

2𝓁N/2

)
. 

Now .2 arcsin(X/2𝓁N/2) ≤ 2 arcsin(1) = π . Furthermore, . 0 ≤ 2𝓁N/2 − X <  1 
and .0 < 2𝓁N/2 + X <  4𝓁N/2, so  

. 
1 

2 
X
/

4𝓁N − X2 = 
1 

2 
X
/

(2𝓁N/2 − X)(2𝓁N/2 + X) < 
1 

2 
2𝓁N/2

/
4𝓁N/2 = 2𝓁3N/4. 

It follows that .Q'
N < BN where 

. BN = 
2 

3

(
eγ log log(2𝓁N/2) + 7/3

)
log(4𝓁N )(π𝓁N + 2𝓁3N/4). 

Next, we bound . cN . The quantity .BN is monotonically increasing as a function of 
N , so .QN/r  < BN/r  ≤ BN/2 for all divisors r of N with .r ≥ 2. Thus, 

.cN = 
1 

N 

⎛ 

⎝QN +
E

1<r|N 
μ(r)QN/r  

⎞ 

⎠ ≤ 
1 

N 

⎛ 

⎝QN +
E

1<r|N 
QN/r  

⎞ 

⎠ 

< 
1 

N

(
BN + (σ (N) − 1)BN/2

)
. 
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Since .N ≥ 3, we can bound .σ(N)  as before, i.e. .σ(N)  <  N(eγ log log N + 7/3), 
to obtain 

. cN < 
1 

N

(
BN + (N(eγ log log N + 7/3) − 1)BN/2

)

= 
BN 
N 

+
(

eγ log log N + 7/3 − 
1 

N

)
BN/2. 

The asymptotic bound on .cN is obtained by bounding the quantity .2𝓁N/2 in the 
double log by .(2

√
𝓁)N . ⨅⨆

Remark 7.8 The proof of Corollary 7.7 simply ignores the restriction that p should 
not split and . 𝓁 should split in any of the orders under consideration. If we wish 
to prove a lower bound, these restrictions must be addressed. There is a widely 

believed heuristic that a Legendre symbol .
(

f (x)  
p

)
should take values .±1 with equal 

probability, independent of the size of x. However, known bounds on the smallest 
x for which a polynomial .f (x)  is a non-residue modulo p are comparatively weak. 
There is a bound following from work of Weil; for example, Burgess mentioned 
this in 1967, observing there is a non-residue .x <  H  for .H ⪢ √

p log p [10]. 
Improvements have only been made in general for polynomials in at least two 
variables (in contrast to the special case of .f (x)  = x, where this problem is known 
as the least non-residue problem); for a discussion and literature review, see [45]. 

8 Path Finding with Oriented Isogeny Volcanoes 

In this section, we review the previous work of the present authors [5], which 
provides inspiration for the subject of this chapter. 

As discussed in the introduction, finding a path between two curves in a super-
singular .𝓁-isogeny graph compromises the security of a variety of cryptographic 
systems. The bijection of Theorem 3.2 serves as inspiration for producing such a 
path, by highlighting the many volcano structures present in the graph, hinting that 
one might navigate the graph by reference to these oriented volcanoes. In fact, we 
saw that every cycle in the supersingular .𝓁-isogeny graph is a rim of a volcano in 
some oriented isogeny graph. In previous work [5], the authors presented explicit 
classical and quantum algorithms for finding a path from any elliptic curve E to an 
initial curve .Einit. Here, .Einit is generally taken to be the supersingular elliptic curve 
of j -invariant 1728, but other choices for .Einit are also possible. The algorithms use 
the knowledge of one endomorphism . θ on E, or equivalently, an explicit orientation 
of E by some imaginary quadratic field K , to navigate the oriented .𝓁-isogeny graph 
.GK,𝓁. Their complexity is subject to certain plausible heuristics, further detailed 
below, and is in part governed by the time it takes to evaluate . θ on points on E. 
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The reader is encouraged to consult [56] for a different approach to solving the 
endomorphism ring problem using the data of an orientation. 

The runtime of the classical algorithm additionally depends subexponentially on 
the degree d of . θ and linearly on a certain class number that can be significantly 
smaller than the class number of the quadratic order of discriminant . Δ defined by . θ . 
This runtime can be substantially improved in many cases, leading in particular to 
certain new families of endomorphisms on every supersingular elliptic curve, whose 
exposure gives rise to a classical polynomial time algorithm for finding an .𝓁-isogeny 
path from E to .Einit. While this fact may on first glance seem alarming, the proof 
is non-constructive and thus does not provide an efficient strategy for finding such 
an offending endomorphism. So this result does not pose a threat to the security of 
isogeny based cryptosystems. 

The quantum path finding algorithm relies on two different quantum subroutines: 
solving an oriented variant of the VECTORIZATION problem, which asks to find 
a class group element acting to take one oriented curve to another (see also [16, 
56]), and a new problem called PRIMITIVEORIENTATION, which asks, for a given 
endomorphism, to determine the quadratic order for which the orientation it induces 
is primitive. The resulting algorithm finds a smooth .𝓁-isogeny from E to .Einit such 
that the smoothness bound and the runtime are subexponential in .log |Δ|. 

For completeness, we reproduce the key results of [5] here and give a brief road 
map of the path finding algorithms. Let .E/Fp be a supersingular elliptic curve and 
. θ an endomorphism on E of degree d and discriminant . Δ not divisible by p. Denote 
by .Tθ (k, p) the time it takes to evaluate . θ on points on E defined over . Fpk . If . θ is 
given by rational maps, then .Tθ (k, p) is a polynomial in d, k and . log p. But if . θ is 
given as the product of endomorphisms of smaller degree, then the dependence of 
.Tθ (k, p) on d is much more favourable. All the algorithms of [5] assume in practice 
one of these two representations, which are typical in applications involving elliptic 
curve endomorphisms. 

For any discriminant . Δ of some quadratic order, the .𝓁-fundamental part of . Δ
is the unique discriminant . Δ' such that .Δ = 𝓁2mΔ', with .v𝓁(Δ

') ≤ 1 when . 𝓁
or . Δ are odd and .v𝓁(Δ

'/4) ≤ 1 when .𝓁 = 2 and . Δ is even. For brevity, write 
.Lx(1/2) = exp(O(

√
log x log log x)). 

Theorem 8.1 ([5, Theorem 11.2]) Let .E/Fp be a supersingular elliptic curve and 
. θ an endomorphism on E of degree d and discriminant . Δ coprime to p. Let . 𝓁 /= p 
be a prime (assumed to be constant in the runtime estimate), . Δ' the .𝓁-fundamental 
part of . Δ and .hΔ' the class number of the quadratic order of discriminant . Δ'. If  
.Ld(1/2) is bounded below by a polynomial in .log p and .|Δ'| ≤  p2, then there is a 
classical algorithm that finds an .𝓁-isogeny path of length .O(log p + hΔ') from E 
to the curve .Einit of j -invariant .j = 1728 in heuristic runtime . Tθ (Ld(1/2), p) + 
hΔ'Ld(1/2) poly(log p). 

Theorem 8.2 ([5, Theorem 11.3]) Let .E/Fp be a supersingular elliptic curve and 
. θ an endomorphism on E of discriminant . Δ coprime to p such that .Tθ (k, p) is 
bounded below by a polynomial in .log(pk ). If  .|Δ| ≤  p2, then there is a quantum 
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algorithm that finds an .L|Δ|(1/2)-smooth isogeny of norm .O(
√|Δ|) from E to . Einit 

in heuristic runtime .Tθ (O(log2 d), p)L|Δ|(1/2). 

The basic strategy of the algorithm of Theorem 8.1 [5, Algorithm 8.1] is as 
follows. Use the orientation induced by . θ as an ‘orienteering tool’ to climb from 
E to the rim of the oriented .𝓁-isogeny volcano containing E. Generate this entire 
rim via the action of the class group of the associated .𝓁-fundamental order . O on the 
rim curves and store all their j -invariants in a list L. Orient the curve .Einit (whose 
endomorphism ring is known) by the same orientation as E and use it to climb its 
volcano. Hoping to reach the same rim as the path originating at E, i.e. a vertex in 
L, construct the desired path from E to .Einit from the two ascending paths and one 
of the two rim segments connecting them. 

Throughout the computation, it is imperative to keep the size of the endo-
morphisms and the discriminants under consideration reasonable. To that end, 
endomorphisms are maintained in factored form as a product of endomorphisms 
of bounded prime power degree, and a technique akin to sieving produces such 
a representation for which the trace of the endomorphism is also of manageable 
size. Navigating the oriented .𝓁-isogeny graph requires effective subroutines for 
detecting whether an edge is ascending/descending/horizontal, traversing an edge 
and carrying along the orientation, dividing an endomorphism by . 𝓁 (to traverse 
an ascending edge), evaluating an endomorphism on .𝓁-torsion points (required 
for the class group action) and factoring an endomorphism into a product of 
endomorphisms of prime power degree while controlling the size of its reduced 
trace. Algorithms for performing all these computational tasks, accompanied by 
proofs of correctness and a complete complexity analysis, can be found in [5]. 
Code is available at [6] and was used for a proof-of-concept example to generate 
an explicit 2-isogeny path of length 5 from . E : y2 = x3 + (7i + 86)x + (45i + 174) 
to .Einit : y2 = x3 − x over .F1792 , where .i2 = −1. 

A crucial ingredient in the path finding technique is orienting .Einit appropriately. 
Given an .𝓁-fundamental order .O ⊂ K of discriminant . Δ, this requires finding an 
endomorphism .θ ∈ End(Einit) that generates an order .O' ⊆ O. The relative index 
.[O : O'] is a power of . 𝓁, say . 𝓁r for some .r ≥ 0. For reasons of efficiency, r should be 
small, situating . O' as close to a rim as possible. At the same time, to guarantee the 
existence of a path from the starting curve E to .Einit in .GK,𝓁, the orientation induced 
by . θ must place .Einit in the same connected component (i.e. volcano) of .GK,𝓁 as the 
oriented starting curve. A natural strategy is thus to loop over .r = 0, 1, 2, . . .  until 
the desired endomorphism . θ and order . O' are found. This raises the key question 
of how large r needs to be to ensure that a suitable orientation is encountered, at 
least with high probability. The answer is governed by how vertices corresponding 
to a fixed curve are spread around the cordillera. We will return to this issue in a 
moment. 

A number of the algorithms outlined above depend on heuristics. Quoting from 
the introductory text of [5]: 
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We rely on a number of heuristic assumptions: (i) The Generalized Riemann Hypothesis. 
(ii) Powersmoothness in a quadratic sequence or form is as for random integers (a 
powersmooth analogue of the heuristic assumption underlying the quadratic sieve; see [5, 
Heuristics 5.10 and 9.3]). (iii) The orientations of a fixed j -invariant are distributed reason-
ably across all suitable volcanoes [5, Heuristic 3.7]. (iv) This distribution is independent of a 
certain integer factorization [5, Heuristic 6.7]. (v) The aforementioned integer factorization 
is prime with the same probability as a random integer ([5, Heuristic 6.4]; this heuristic is 
similar to those used in [23] and [32]). 

Among these, item (i) is standard, and items (ii) and (v) are purely number 
theoretical questions. This leaves items (iii) and (iv) as the only heuristics which 
concern oriented isogeny graphs. Unfortunately, item (iv) seems out of reach at the 
moment, so we will focus on item (iii) which indeed addresses our earlier question. 
It asks us to consider, for a fixed j -invariant, how its various orientations appear in 
a cordillera of volcanoes: Does it prefer certain volcanoes over others? At the same 
time, it is natural to consider the ‘opposite’ question: For a fixed volcano, how do 
the various j -invariants lie upon it? Do some j -invariants sit at greater depth than 
others? This can be rephrased as a question about the covering map from an oriented 
volcano to the usual supersingular .𝓁-isogeny graph . G𝓁. In Sect. 9, we address some 
of these questions. 

9 Random Walks and Consequences for Oriented Isogeny 
Volcanoes 

In this section, we use a standard random walk result for Ramanujan graphs to 
address some questions about the appearance of j -invariants on oriented .𝓁-isogeny 
volcanoes. 

9.1 Random Walks in an 𝓁-Isogeny Graph 

In this entire section, as a matter of convenience, we assume that . p ≡ 1 
(mod 12) to avoid issues of extra automorphisms. In particular, strictly speaking, 
Proposition 9.1 depends upon results about regular undirected Ramanujan graphs. 
Of course, the result can be expected to hold for all . G𝓁, regardless of p, which are at 
worst very nearly undirected regular graphs, having some perturbations around the 
two vertices .j = 0 and .j = 1728 if these belong to . G𝓁. 

We refer to the length (number of .𝓁-isogenies) of a shortest path between two 
curves in the .𝓁-isogeny graph . G𝓁 as the distance between the two curves. The 
diameter of . G𝓁 (the maximum distance between pairs of points) is known to be 
bounded by .2 log p [46, Theorem 1]; see also [38]. One way to obtain such results 
is using the Ramanujan property and standard methods for expander graphs [29]; 
our version and proof here closely follow [27, Theorem 1]. 
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Proposition 9.1 Let .p ≡ 1 (mod 12). Let . 𝓁 be a prime and . G𝓁 be the supersingular 
.𝓁-isogeny graph over . Fp, with .#G𝓁 vertices. Let . S represent a subset of . #S initial 
vertices. Let . j1 represent a target vertex. Let j represent the vertex reached by a 
random walk of t steps from a random vertex in . S. We denote by . Prt the probability 
of an event over all such random walks of length t . Then we have 

. 

||||Prt (j = j1) − 
1 

#G𝓁

|||| ≤ 
1 

#S

(
2
√

𝓁

𝓁 + 1

)t 

. 

Proof Choose a basis of a vector space of dimension .#G𝓁 to correspond to the 
vertices of . G𝓁. Let .A𝓁 represent the .#G𝓁 × #G𝓁 adjacency matrix of . G𝓁. Let . v0 
represent an initial vector whose entry for vertex v is .1/#S if .v ∈ S and 0 
otherwise. This is the probability vector for the initial vertex of the random walk. 
Let . λ1 be the largest eigenvalue of . A𝓁 and . λ2 the second largest. Recursively define 
.vt = 1 

λ1 
A𝓁vt−1, so . vt is the probability vector for the t-th vertex of the random 

walk. 
Let . u have all entries . 1/#G𝓁, so . u is the probability vector for the uniform 

distribution over the vertices of . G𝓁. Then . u is an eigenvector for . λ1, which has an 
eigenspace of dimension 1. Choose an orthogonal basis of eigenvectors . ei for . R#G𝓁

such that .e1 = u. Then since .vt−1 is a probability distribution, . 〈vt−1, 1〉 = 〈u, 1〉 =  
1. Writing .vt−1 = E

i αiei , this implies that .α1 = 1. Hence .vt−1 − u = E#G𝓁

i=2 αiei . 
Therefore, 

. A𝓁(vt−1 − u) = 
#G𝓁E

i=2 

λiαiei . 

Consequently, we have 

. ‖vt − u‖2 =
||||

||||
1 

λ1 
A𝓁(vt−1 − u)

||||

||||
2 
≤ 

1 

λ1 
λ2‖vt−1 − u‖2. 

We also have 

. ‖v0 − u‖2 = #S
(

1 

#S 
− 

1 

#G𝓁

)2 

+ (#G𝓁 − #S)

(
1 

#G𝓁

)2 

= 
1 

#S

(
1 − 

#S 
#G𝓁

)
≤ 

1 

#S 
. 

Iterating, we have 

. 

||||Pr(j = j1) − 
1 

#G𝓁

|||| = ‖vt − u‖∞ ≤ ‖vt − u‖2 ≤ 
λt 

2 

λt 
1 
||v0 − u||2 ≤ 

λt 
2 

#Sλt 
1 

≤ 
1 

#S

(
2
√

𝓁

𝓁 + 1

)t 

. 

The final inequality is the bound on the spectral gap (5) for these graphs. ⨅⨆
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Corollary 9.2 Let . j1 be a j -invariant and . S a subset of the vertices of . G𝓁. If  

. t >  
log #G𝓁 − log #S 
log((𝓁 + 1)/2

√
𝓁) 

, 

then there exists a path of length .≤ t in . G𝓁 starting in . S and ending at . j1. In  
particular, for 

. t >  log√
𝓁/2 #G𝓁 − log√

𝓁/2 #S, 

all curves are within distance t of . S. 
Proof This follows from Proposition 9.1 by multiplying through by .#G𝓁, to obtain 

. |#G𝓁 Prt (j = j1) − 1| ≤  
#G𝓁

#S

(
2
√

𝓁

𝓁 + 1

)t 

and then letting t be large enough so the right side is less than 1. ⨅⨆

9.2 The Depth of j -Invariants on an Oriented Volcano 

Each volcano of the oriented .𝓁-isogeny graph includes every j -invariant of the 
supersingular graph (to see this, fix a j -invariant . j0 of the volcano, and then consider 
an .𝓁n-isogeny to the desired j -invariant . j1; this generates a path in the oriented 
graph). It is natural to ask how far down a volcano one must go to see all j -invariants. 
We may use Corollary 9.2 to answer this. 

Corollary 9.3 Let . V be an oriented volcano, and set . S := {j ∈ G𝓁 : 
(Ej , ι)  is on the rim of V for some ι}. Then all j -invariants appear on . V at depth 
less than or equal to 

. ⎾log√
𝓁/2 #G𝓁 − log√

𝓁/2 #S⏋. 

Remark 9.4 The proof of [5, Proposition 6.5], particularly equation (3), provides 
a sort of computational proof of this behaviour in the case of the Gaussian field. 

It is an interesting question to ask about the cardinality of . S, which is related 
to the question of the multiplicity of j -invariants in .SSpr 

O. That is, how many .O-
primitive orientations are there for a fixed curve E? Kaneko showed that a curve 
cannot have more than one embedding when the discriminant is at most p in 
absolute value [30, Theorem 2’]. On the other hand, [25, Proof of Theorem 1.4] 
shows that for any fixed curve E and integer t , orders . O of sufficiently large 
discriminant will always embed into .End(E) at least t times. The number of curves 
with an .O-orientation is bounded below in [34]. 
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9.3 The Volcanoes upon Which the Orientations of a Fixed 
j -Invariant Lie 

Every j -invariant occurs in every volcano (as described at the beginning of 
Sect. 9.2). In [5], the algorithms depended upon the following heuristic about the 
relative frequency of a fixed j -invariant across different volcanoes (quoted as 
item (iii) in Sect. 8 above). 

Heuristic 9.5 ([5, Heuristic 3.7]) Let . O be an .𝓁-fundamental order in a quadratic 
field K . Consider the finite union . S of .O'-cordilleras in the oriented supersingular 
.𝓁-isogeny graph .GK,𝓁 for all .O' ⊇ O. Let .d(v) denote the depth of a vertex v on its 
volcano. Let .j (v)  denote its j -invariant. Define:

• . RV , the number of edges descending from the rim of the volcano .V ∈ S.
• . RS , the number of edges descending from all rims in . S. 

Then for any j -invariant . j0 and any volcano .V ∈ S , the ratio 

. 
#{v ∈ V : j (v)  = j0, d(v)  ≤ t} 
#{v ∈ S : j (v)  = j0, d(v)  ≤ t} 

approaches .RV/RS as .t → ∞. 

However, naïve methods can only prove a weighted version of this result, where 
j -invariants at smaller depth are weighted more heavily. Our result also has a 
restriction on the rim sizes. 

Theorem 9.6 Consider a cordillera . C in the oriented supersingular .𝓁-isogeny 
graph .GK,𝓁 whose volcanoes are all isomorphic as graphs and .(𝓁+ 1)-regular (e.g. 
a single .O-cordillera). Let . V be one volcano of the cordillera . C and . SV the vertex 
set of its rim. Let . SC be the set of vertices in the rims of the full cordillera. Let . d(v) 
denote the depth of the vertex v, and let .ft (d) denote the function that counts the 
number of paths of length t starting at the rim of any volcano and terminating at 
any fixed vertex at depth d of that volcano (by symmetry, this is independent of the 
vertex but depends on the depth and rim size). If we define 

.SV,j1,t =

E

v∈V, j (v)=j1 

ft (d(v))

E

v∈C, j (v)=j1 

ft (d(v)) 
, (11) 

then 

.

||||SV,j1,t − 
#SV 
#SC

|||| ⪡
(

2
√

𝓁

𝓁 + 1

)t 

, 
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where the implied constant depends on . C and . 𝓁, but not t . 

Proof The numerator of (11) is the number of times we encounter .j = j1 among all 
paths of length t originating at the rim of . V . The denominator is the corresponding 
number for all paths of length t originating at the rims of . C. The number of paths of 
length t from the rim set of . V is .(𝓁 + 1)𝓁t−1#SV . So, applying Proposition 9.1 with 
.S = SV , we have  

. 
1 

(𝓁 + 1)𝓁t−1

E

v∈V,j (v)=j0 

ft (d(v)) = Pr(j  = j0)#SV = 
#SV 
#G𝓁

+ O

((
2
√

𝓁

𝓁 + 1

)t)
. 

Combining with the analogous fact for the denominator gives the result. ⨅⨆
The restriction to .(𝓁+1)-regularity rules out the rims having oriented curves with 

automorphisms (see Remark 2.7); it is merely a convenience and the result could be 
adjusted to accommodate these cases. 

This result is insufficient for the purposes of [5] in that it does not rule out the 
possibility that some volcanoes have few occurrences of .j = j0 at small depth, 
while others have more such occurrences at greater depth. If this is indeed the 
case, it may be that Algorithm 6.1 of [5], which proceeds by depth, preferentially 
finds certain volcanoes early on. (Nevertheless, Corollary 9.3 above provides some 
reassurance that all j -invariants begin to appear after a while.) 
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