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Abstract

We present two new algorithms for solving norm equations over global function fields
with at least one infinite place of degree one. The first of these is a substantial
improvement of a method due to Gaál and Pohst, while the second approach uses
index calculus techniques and is significantly faster asymptotically and in practice. Both
algorithms incorporate compact representations of field elements which results in a
significant gain in performance compared to the Gaál–Pohst approach. We provide
Magma implementations, analyze the complexity of all three algorithms under varying
asymptotics on the field parameters, and provide empirical data on their performance.
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1 Introduction
Solving norm equations, which are a special instance of Diophantine equations over global
fields, is a classical research area in number theory. In the setting of number fields, this
problem has undergone extensive investigation. In 1973, Siegel proposed a method for
solving norm equations in Galois fields by bounding the absolute values of the solutions
[25]. In 1989, Pohst and Zassenhaus introduced a technique for solving norm equations
over algebraic number fields by exhaustive search [21], using inequalities given in [20]. In
[10], Fieker, Jurk, and Pohst presented an exhaustive search algorithm for solving relative
norm equations that uses amodified version of the Finke–Pohst enumeration algorithmof
[11]. Finally, Simon developed away to solve norm equations algebraically using S-units in
2002 [26]. In contrast, solving norm equations in algebraic function fields has undergone
far less exploration. The only algorithm in the literature to date, proposed in 2009, is due
to Gaál and Pohst [12], who adapted the exhaustive search method of [21] to function
fields.
One of the difficulties arising in solving norm equations in any global field is the size

of their solutions. An illustrative example of this behaviour is exhibited by algebraic units
which can be extremely large, yet their norm is very small. An innovative way to address
this problem is to represent the solutions, as well as other field elements arising in the
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computation of these solutions, in compact representation. In global function fields, the
concept of compact representations was first introduced in 1996 by the third author [23]
in the setting of quadratic extensions. In that source and a subsequent paper [24], the
concept was used to prove membership in NP and other complexity results for several
decision problems arising in computational number theory. In 2013, Eisenträger and
Hallgren generalized the concept of compact representation to arbitrary global function
fields [9]. They provided a proof that the principal ideal problem in this setting belongs
to NP and presented polynomial time quantum algorithms for computing a generator of
a principal ideal, the unit group, and the class group of a global function field.
We present two novel algorithms for solving norm equations in global function fields

using compact representations. One is an exhaustive search algorithm inspired by the
method due to Gaál and Pohst in [12], and the other technique is based on principal ideal
testing via index calculus. Our algorithms require the function field to have at least one
infinite place of degree 1. We provide detailed complexity analyses of our new algorithms
as well as the Gaál–Pohst algorithm [12] and the algorithm for computing compact rep-
resentations of Eisenträger and Hallgren [9]. All these algorithms were implemented in
Magma [7], and we performed extensive numerical experiments to compare their perfor-
mance in practice. Our Magma implementation, including the testing code, can be found
in [17].
Incorporating compact representations into the algorithms not only allowed for smaller

representations of solutions, but also led to a significant speed-up compared to the Gaál–
Pohstmethod that does not use compact representations.Our newalgorithms outperform
the Gaál–Pohst algorithm enormously in terms of run time and have significantly better
asymptotic complexities, exponentially better in terms of most of the main function field
parameters. The algorithm using index calculus was the most efficient, both in terms of
asymptotic complexity and in practice, especially for large inputs.

2 Notation and preliminaries
For background and an algebraic treatment of global function fields, the reader is referred
to [22,27].

2.1 Global function fields and norm equations

Let k = Fq be a finite field of q elements and x be transcendental over k . Denote the
polynomial ring and the rational function field over k in x by k[x] and k(x), respectively.
A global function field F is a finite algebraic extension of k(x). Let n denote its extension
degree over k(x), g its genus, and OF its maximal order, i.e. the integral closure of k[x] in
F .
The places of F are partitioned as P(F ) = P∞(F ) ∪ P0(F ) where P∞(F ) is the set of

infinite places of F/K (x) (consisting of the poles of x), and P0(F ) is the set of finite places
of F/k(x) (corresponding to the non-zero prime ideals in OF ).
Themaximum norm of any element α ∈ F× is defined to be

‖α‖∞ = max
P∈P∞(F )

{−vP(α)/eP},

where vP() denotes the discrete valuation corresponding to a place P ∈ P(F ) and eP is the
ramification index of P in F/k(x).
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Henceforth, we fix a reduced basis of F/k(x), i.e. a basis B = {ω1, . . . ,ωn} that is also a
k[x]-basis of the maximal order OF such that ‖ω1‖∞ ≤ · · · ≤ ‖ωn‖∞ and

‖λ1ω1 + · · · + λnωn‖∞ = max
1≤i≤n

‖λiωi‖∞

for all λ1, . . . , λn ∈ k(x), not all zero.
A norm equation in F/k(x) is an identity of the form

NormF/k(x)(α) = c, (1)

where α ∈ OF and c ∈ k[x] \ {0}. Solving a norm equation (1) refers to finding all α ∈ OF
up to associates, i.e. factors that are units in OF , such that NormF/k(x)(α) ∈ ck×. By slight
abuse of terminology, a solution of (1) will mean a solution of any of the norm equations
NormF/k(x)(α) = ζ c with ζ ∈ k×. Testing whether two elements α,β ∈ OF are associate
is accomplished by identifying all the places P ∈ P0(F ) for which vP(α) �= 0 or vP(β) �= 0,
and then checking that vP(α) = vP(β) for all these places.

2.2 S-units and their lattices

For any set S ⊆ P(F ), let OS denote the ring of S-integers and O×
S the group of S-units.

For S = P∞(F ), we have OS = OF . Assume now that S is finite with P∞(F ) ⊆ S ⊂ P(F ).
Fixing an order on the places P1, . . . , P|S| of S, consider the two group homomorphisms

φS : F× −→ Z
|S|, α �→ (−vP1 (α), . . . ,−vP|S| (α)

)
,

�S : F× −→ Z
|S|, α �→ (−vP1 (α) deg P1, . . . ,−vP|S| (α) deg P|S|

)
.

The images	′
S = φ(O×

S ) and	S = �S(O×
S ) are the S-unit valuation lattice and the S-unit

lattice of F/k(x), respectively; they are lattices over Z of rank |S|−1. Put R′
S = det	′

S and
RS = det	S , where we write RS = RF for S = P∞(F ) and refer to RF as the regulator of
F/k(x).
Let Cl(F ) denote the class group of F . For any divisorD, let [D] denote its class in Cl(F ).

Then the kernel of the map


S : Z|S| → Cl(F ) via (v1, . . . , v|S|) �→
⎡

⎣
|S|∑

i=1
viPi

⎤

⎦ (2)

is isomorphic to 	′
S , so a basis of 	′

S is obtained as a basis of ker(
S), computed in
Algorithm 1. Here, we recall that Cl(F ) ∼= Cl0(F )⊕Z where Cl0(F ) ⊂ Cl(F ) is the degree
zero divisor class group of F .

Algorithm 1 SValMat
Input: A finite set S = {P1, . . . , P|S|} of places including all infinite places of F
Output: An S-unit value matrixMS ∈ Z

(|S|−1)×|S|
1: Compute the structure of Cl0(F ) using [15, Algorithmus 5.5] or the technique of [8]
2: 
S ← the map defined in (2)
3: {v1, . . . , v|S|} ← Generators of ker(
S)
4: M0 ← (|S| − 1) × |S| matrix whose i-th row is vi for 1 ≤ i ≤ |S| − 1
5: MS ← LLL-reduction ofM0
6: return MS
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Lemma 2.1 The cost of Algorithm 1 is heuristically subexponential in g and polynomial
in q, n.

Proof The cost of Algorithm 1 is dominated by step 1. When g → ∞, we use Hess’s
relation search algorithm [15,Algorithmus5.5]whose expected run time is subexponential
in g under a reasonable smoothness assumption [15, Glattheitsannahme 4.19 and Satz
5.23]. When q → ∞, Diem’s method [8] computes Cl0(F ) in heuristic expected time that
is polynomial in q. Finally, class group computation is polynomial in n when n → ∞ and
g , q are considered fixed.

For analyzing the size of the output of Algorithm 1, we consider the standard maximum
norm of any matrixM = (mij) over Z, given by

‖M‖∞ = max
i,j

|mij|.

(This should not be confused with the maximum norm on F ; the context makes it clear
which norm is under consideration.)

Proposition 2.2 The output MS of Algorithm 1 satisfies

‖MS‖∞ ≤ 2(|S|−1)(|S|−2)/4R′
S.

Proof. The rows ofMS form an LLL-reduced basis of 	′
S . Denoting by (MS)j the j-th row

ofMS , we have
|S|−1∏

j=1

∥∥(MS)j
∥∥ ≤ 2(|S|−1)(|S|−2)/4 det	′

S = 2(|S|−1)(|S|−2)/4R′
S

by [19, Proposition 1.6]. Chose j such that ‖MS‖∞ is taken on by an element in the j-th
row ofMS . Then

‖MS‖∞ = ∥∥(MS)j
∥∥∞ ≤

|S|−1∏

j=1

∥∥(MS)j
∥∥∞ .

Corollary 2.3 Let BS = {b1, . . . , b|S|−1} be a LLL-reduced basis of 	S. Then

max
1≤i≤|S|−1

∥∥bi
∥∥∞ ≤ 2(|S|−1)(|S|−2)/4RS.

By [27, Proposition 14.1 (a)], we have R′
S = |Cl0(F )/ClS(F )| ≤ Cl0(F ), where ClS(F ) is

the S-class group of F , i.e. the group of divisors supported only outside Smodulo principal
divisors. Using the bound |Cl0(F )| ≤ (√q + 1)2g , we obtain

R′
S ≤ RF ≤ (√q + 1)2g . (3)

3 Compact representation
An alternative to the standard representation of an element α ∈ F , i.e. given in terms of a
k(x)-basis of F , is to write α as a tuple of small elements in F such that a suitable power
product of these elements evaluates toα. Sucha compact representation is particularlywell
suited for elements α of small norm and a highly useful tool for solving norm equations.
We follow the treatment of this subject in [9] and assume throughout this section that
F/k(x) has an infinite place of degree 1.
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Write P∞(F ) = {P∞,1, . . . , P∞,r+1} with deg P∞,r+1 = 1. It will be helpful to define for
any α ∈ F the r-tuple

val∞(α) = (vP∞,1 (α), . . . , vP∞,r (α)) ∈ Z
r .

Let v = (v1, . . . , vr) ∈ Q
r . Then α is said to be close to v if

r∑

i=1
|vP∞,i (α) − vi| ≤ r + g.

Riemann–Roch spaces and minima play a key role in computing compact represen-
tations. The Riemann–Roch space of a divisor D of F is the finite dimensional k-vector
space

L(D) := {α ∈ F×|div(α) ≥ −D} ∪ {0}.

For a fractionalOF -ideal I , the divisor of I is div(I) =∑P∈P0(F ) nPP, where nP = vp(I) and
p is the OF -prime ideal corresponding to the place P ∈ P0(F ). A non-zero element μ ∈ I
is aminimum of I if the following hold. If α ∈ I is non-zero such that vP(α) ≥ −vP(μ) for
all P ∈ P∞(F ), then either α = 0 or vP(α) = vP(μ) for all P ∈ P∞(F ). In other words, if
D = div(I) −∑P∈P∞(F ) vP(μ)P, then every α ∈ L(D) is either 0 or vP(α) = vP(μ) for all
P ∈ P∞(F ). A fractional OF -ideal I is reduced if 1 is a minimum of I . For any fractional
OF -ideal I and any minimum μ of I , the ideal (μ−1)I is reduced. For a reduced ideal I , we
have 0 ≤ deg div(I) ≤ g .
We now have all the ingredients to introduce compact representations.

Definition 3.1 [9, Definition 4.3] A compact representation of α ∈ F is a pair tα =
(
μ, (β1,β2, · · · ,βl)

)
where

• l ≤ log
(∥∥val∞(α)

∥∥∞ + g
)
,

• β1, . . . βl ∈ F such that β =
l∏

i=1
β2l−i
i is a minimum of OF ,

• μ ∈ F satisfies α = μ/β ,
• The number of bits required to represent μ is polynomial in log q, n and

deg NormF/k(x)(α),
• The number of bits required to represent each βi is polynomial in log q and n.

This implies in particular that given a compact representation tα = (μ, (β1, . . . ,βl)) of
α ∈ F , we have

α = μ

l∏

i=1

(
1
βi

)2l−i

, (4)

where l,μ,β1, . . . ,βl are all small.
Eisenträger andHallgen provided an algorithm for computing a compact representation

of α ∈ F in [9] which we reproduce here in more streamlined form. The algorithm first
finds μ by computing a basis of a suitable Riemann–Roch space (Algorithm 2) and then
computes β1, . . . ,βl via a square-and-multiply approach similar to binary exponentiation
(Algorithm 3).
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Algorithm 2 Reduce [9, Algorithm 3.4]
Input: A fractional OF -ideal I and a vector v = (v1, v2, · · · , vr ) ∈ Z

r

Output: A minimum γ of I that is close to v
1: D ← div(I) +∑r

i=1 viP∞,i
2: for � ∈ [− degD,− degD + g] do
3: if L(D + �P∞,r+1) is not trivial then
4: Pick γ from a basis of L(D + �P∞,r+1)
5: return γ

To find tα , we first use Algorithm 2 to find a minimum μ close to 0 in A = αOF . Let
v = log2

∥
∥val∞(μ) − val∞(α)

∥
∥∞ and put l = �v� + 1, where �·� rounds to the nearest

integer, rounding up in case of a tie. In the i-th iteration, given (β1, . . . ,βi−1) fromprevious
iterations, we compute a minimum βi of the fractional OF -ideal β−2

(i) OF close to v/2l−i −
2 val∞(β(i)), where β(i) =∏i−1

j=1 β2i−j
j .

Algorithm 3 CompRep [9, Algorithm 4.6]
Input: A principal ideal A = αOF and the vector val∞(α) ∈ Z

r

Output: A compact representation of α
1: μ ←Reduce(A,0)
2: l ← �log2

∥
∥val∞(μ) − val∞(α)

∥
∥∞� + 1

3: B ← 1 · OF , β0 ← 1, vβ ← 0 ∈ Z
r

4: for i ∈ {1, . . . , l} do
5: t ← [⌊

(vP∞,1 (μ) − vP∞,1 (α))/2l−i⌉ . . .
⌊
(vP∞,r (μ) − vP∞,r (α))/2l−i⌉]T

6: B ← 1/β2
i−1B

2

7: βi ← Reduce(B, t − 2vβ )
8: vβ ← 2vβ + val∞(βi)
9: return (μ, (β1, ...βl))

Given themultiplicative structure of compact representations, it is relatively straightfor-
ward to devise algorithms for computing products, powers and norms of elements given
in compact representation. It is also easy to find the value at any place P ∈ P(F ) of an ele-
ment in compact representation, ascertain whether an element in compact representation
belongs to OF (by checking that all its values at the finite places are non-negative), and
determine whether two elements in compact representation are associate (by comparing
their values at all the finite places in their support). We omit the details here and refer to
[18, Section 2.4.2] for explicit descriptions of these algorithms.

4 Solving norm equations
In this section, we first describe several techniques for solving norm equations, begin-
ning with the only method found in prior literature, due to Gaál and Pohst [12]. Then we
present two new algorithms for accomplishing this task. Themethod in Sect. 4.2 improves
on the exhaustive search approach taken by Gaál–Pohst and incorporates compact rep-
resentations. Section 4.3 introduces a new algorithm that uses index calculus techniques
and also makes use of compact representations.
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4.1 Gaál–Pohst

The idea of this method is to look for all non-associate solutions of (1) in a certain region
and check that each solution candidate has the correct norm. Since the search space is
not explicitly given in [12], we describe it here.
Suppose α is a solution of (1), given in standard representation with respect to a reduced

basis B = {ω1, . . . ,ωn} of F/k(x). Then

α =
n∑

i=1
λiωi, (5)

where λi ∈ k[x] for 1 ≤ i ≤ n. Since B is a reduced basis, we have

‖α‖∞ = max
1≤i≤n

{deg λi + ‖ωi‖∞},
so deg λi ≤ ‖α‖∞ − ‖ωi‖∞ for 1 ≤ i ≤ n. Assume that α is minimal among its associate
elements with respect to the maximum norm. Then an upper bound on ‖α‖∞ produces
a degree bound on λi which yields a finite space that we can search for non-associate
solutions of (1) in OF .
Let ε1, . . . , εr be a system of fundamental units of F and P ∈ P∞(F ). For any solution

β ∈ OF of (1), there exist x1, . . . , xr ∈ R such that

vP(α) =
r∑

j=1
xjvP(εj) + 1

n
vP(c) =

r∑

j=1
xjvP(εj) − eP

n
deg c,

where eP is the ramification index of P. This identity is given in [12, p. 244] without proof,
but can be derived by adapting the reasoning in [21, Sections 5.3 and 6.4] from number
fields to function fields; for details, see [18, Lemma 3.1].
Now put α = β

∏r
j=1 ε

−�xj�
j . Then α is associate to β . Since 1/2 ≥ a − �a� ≥ −1/2 for

all a ∈ R, a simple calculation yields

θP − eP
n

≥ vP(α) ≥ −θP − eP
n

deg c where θP = 1
2

r∑

j=1
|vP(εj)|. (6)

The lower bound implies

‖α‖∞ ≤ � where � = max
P∈P∞(F )

{
θP
2eP

}
+ 1

n
deg c, (7)

so

deg λi ≤ � − ‖ωi‖∞ for 1 ≤ i ≤ n. (8)

We can invoke Algorithm 1 to compute the values of a system of fundamental units at the
infinite places of F and compute the bounds given in (8) for 1 ≤ i ≤ n. Then we compute
the norm of every α of the form (5) such that the coefficients λi satisfy (8) and only retain
α if its norm is equal to c up to a multiple in k×. Once all solutions have been found, we
remove associate solutions via the procedure described at the end of Sect. 2.1.

4.2 Improved exhaustive search

In this section, we describe a new exhaustive search algorithm for solving norm equations
which makes use of compact representations. We assume deg P∞,r+1 = 1. Let

Sc,0 = {P ∈ P0(F ) | vP(c) �= 0} , Sc = Sc,0 ∪ P∞(F ) .

Then every solution α ∈ OF of (1) is an Sc-unit. So if we can bound the values vP(α) for
all P ∈ Sc, then we can search the region defined by these bounds for solutions.
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Bounds on vP(α) for P ∈ P∞(F ) are given in (6). Note that the quantities θP can easily be
obtained from the unit value matrixMP∞(F ) computed in Algorithm 1. To obtain bounds
on vP(α) for P ∈ P0(F ), write (1) in the form αβ = c where β = NormF/k(x)(α)/α ∈ OF ,
which implies 0 ≤ vP(α) ≤ vP(c) for all P ∈ P0(F ).
We use these bounds to form inputs for Algorithm 3 to compute compact representa-

tions of solution candidates of (1). Write

Sc,0 = {P1, . . . , P|Sc,0|} , P∞(F ) = {P∞,1, . . . , P∞,r+1}.

The solutions of (1), up to associates, are in one-to-one correspondence with the principal
ideals αOF dividing cOF . For 1 ≤ i ≤ |Sc,0|, let pi be the prime ideal corresponding to
Pi ∈ Sc,0. Then all the integral OF -ideals dividing cOF are of the form

I =
|Sc,0|∏

i=1
p
vi
i ,

where 0 ≤ vi ≤ vPi (c) for 1 ≤ i ≤ |Sc,0|. If I is principal, say I = αOF , then vP(α) satisfies
the bounds (6) for all P ∈ P∞(F ). An additional constraint is given by the fact that the
principal divisor of α has degree zero. In other words, we only need to consider tuples
(v1, . . . , v|Sc,0|) and (v∞,1, . . . , w∞,r+1) such that

0 ≤ vi ≤ vPi (c) for 1 ≤ i ≤ |Sc,0|, (9)

−θP∞,i − eP∞,i

n
deg c ≤ v∞,i ≤ θP∞,i − eP∞,i

n
deg c for 1 ≤ i ≤ r + 1, (10)

|Sc,0|∑

i=1
vi degQi +

r+1∑

i=1
v∞,i deg P∞,i = 0. (11)

These conditions are necessary, but not sufficient, for α to be a solution of (1). Never-
theless, the constraint (11) in particular significantly cuts down the number of compact
representations that need to be computed.
For every pair (I, V∞), with V∞ = (v∞1 , . . . , v∞,r+1), that satisfies these conditions, we

compute a compact representation t = CompRep(I, V∞). We then test that t represents
an element inOF and that this element has the correct norm.We discard t if it represents
an element that is associate to a solution already found. Algorithm 4 shows the whole
process.

4.3 Index calculus

In this section, we describe a new exhaustive search algorithm for solving norm equations
which alsomakes use of compact representations, sowe assumeagain that deg P∞,r+1 = 1.
Unlike the previous exhaustive search techniques, which enumerate all elements within
a large search region, this algorithm enumerates ideals I that divide cOF and conducts
principal ideal tests by solving matrix equations involving a precomputed S-unit value
matrix. Using the solutions of thematrix equations, we compute compact representations
of solutions of (1).
The solutions α of (1), up to associates, are in bijection with the principal ideals αOF of

norm cζ with ζ ∈ k×. By (9), any such ideal must necessarily divide cOF . So in order to
find all solutions, it suffices to consider OF -ideals I that divide cOF . If I is principal and
has the correct norm, then a generator of I is a solution of (1).
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Algorithm 4 Solving (1) via improved exhaustive search
Input: c ∈ k[x] \ {0}, a reduced basis B = {ωi|1 ≤ i ≤ n} of OF , a unit value matrixMP∞(F ) =

(mi,j)
Output: A setR of all non-associate solutions of (1) in compact representation
1: R ← ∅
2: Sc,0 ← {P ∈ P0(F )|vP(c) �= 0}
3: vl ←

[
1
2

r∑

i=1
|mi,1| . . .

1
2

r∑

i=1
|mi,r+1|

]

4: vc ←
[ eP∞,1

n
deg c . . .

eP∞,r+1

n
deg c

]

5: for (v1, . . . , v|Sc,0|) where 0 ≤ vi ≤ vPi (c) do
6: for V∞ = (v∞,1, . . . , v∞,r+1) where −(vl)i − (vc)i ≤ v∞,i ≤ (vl)i − (vc)i do

7: if
|Sc,0|∑

i=1
vi deg Pi +

r+1∑

j=1
v∞,j deg P∞,j = 0 then

8: t ← CompRep(I, V∞)
9: if t ∈ OF and t represents an element of norm ζ c with ζ ∈ k× then

10: if t represents an element that is not associate to α for any tα ∈ R then
11: R ← R ∪ {t}
12: break V∞
13: return R

Let Sc and Sc,0 be as in Sect. 4.2. In order to enumerate all ideals I that divide cOF , we
factor cOF via a precomputation as

cOF =
|Sc,0|∏

i=1
p
vPi (c)
i ,

where for each i, pi is the OF -prime ideal corresponding to the place Pi ∈ Sc,0. Then we
perform principal ideal tests on all ideals I dividing cOF , which are precisely of the form

I =
|Sc,0|∏

i=1
p
vPi (I)
i ,

where 0 ≤ vPi (I) ≤ vPi (c) for all 1 ≤ i ≤ |Sc,0|.
There is a principal ideal test, implemented in Magma, which is an index calculus

algorithm that uses Hess’s randomized relation search algorithm [15, Algorithmus 5.5].
This algorithm finds a factorization of an ideal equivalent to I by searching relations.
When I is principal, the algorithm returns a generator in “factored form”. The factored
form has subexponentially many terms, each of which has subexponential size in the size
of inputs. In our context, the prime ideal factorization of I is already known, and we wish
to compute a compact representation of a generator of I if I is principal. Thus, instead of
using the existing algorithm, we solve a matrix equation for each I to determine whether
or not I is principal and to derive inputs for computing a compact representation.
Let {ε1, ε2, . . . , ε|Sc|−1} be a system of fundamental Sc-units. Every solution α of (1) is an

Sc-unit, so there exist integers xi ∈ Z such that

α =
|Sc|−1∏

i=1
ε
xi
i . (12)

We form a matrixMSc,0 from the columns of the Sc-value matrixMSc that correspond to
the places in Sc,0. Here,MSc = SValMat(Sc) is precomputed using Algorithm 1.
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Now consider the matrix equation
⎡

⎢⎢⎢
⎢
⎣

vP1 (ε1) vP1 (ε2) . . . vP1 (ε|Sc|−1)
vP2 (ε1) vP2 (ε2) . . . vP2 (ε|Sc|−1)

...
...

. . .
...

vP|Sc,0| (ε1) vP|Sc,0| (ε2) . . . vP|Sc,0| (ε|Sc|−1)

⎤

⎥⎥⎥
⎥
⎦

⎡

⎢⎢⎢
⎢
⎣

x1
x2
...

x|Sc|−1

⎤

⎥⎥⎥
⎥
⎦

=

⎡

⎢⎢⎢
⎢
⎣

vP1 (I)
vP2 (I)

...
vP|Sc,0| (I)

⎤

⎥⎥⎥
⎥
⎦
. (13)

It is easy to verify that (13) has a solution
[
x1 . . . x|Sc|−1

]T
if and only if I is principal, with

a generator given by (12). Any such solution gives rise to infinitelymany solutions asMSc,0
has fewer rows than columns. However, any two solutions of (13) correspond to associate
solutions of (1). So for anyOF -ideal I dividing cOF , we need only find one solution of (13),
and this should be one that gives rise a solution α0 of (1) whose norm ‖α0‖∞ is small or
even minimal. We proceed as follows.
First, choose a solution X =

[
x1 . . . x|Sc|−1

]T
of (13) that corresponds to α =

∏|Sc|−1
i=1 ε

xi
i . Then compute the vector vα,∞ of the values of α at the infinite places by

vα,∞ = MT
Sc,∞X ,

where MSc,∞ is the matrix consisting of the columns of MSc that are not in MSc,0, i.e.
correspond to the infinite places of F . Note that even if X is short in the Euclidean norm,
the quantity

∥
∥vα,∞

∥
∥∞ could still be very large. So we compute a vector v0 in the unit lattice

that is close to vα,∞ with respect to the Euclidean norm and form the vector

vα0 ,∞ = vα,∞ − v0.

This vector is short in the Euclidean norm and thus corresponds to a generator α0 of I
such that ‖α0‖∞ is small. From I and vα0 ,∞, we can compute a compact representation
t = CompRep(I , vα0 ,∞) of α0. If it has norm c, it represents a solution of (1).

Algorithm 5 Solving (1) via index calculus
Input: The maximal order OF of F , c ∈ k[x] \ k , an Sc-unit value matrixMSc
Output: A setR of all non-associate solutions of (1) that are in OF in compact representation
1: R ← ∅
2: Sc,0 ← {P ∈ P0(F )|vP(c) �= 0}
3: MSc,0 ← the matrix of the columns ofMSc corresponding to the places in Sc,0
4: MSc,∞ ← the matrix of the columns ofMSc corresponding to the places in P∞(F )
5: MP∞(F ) ←SValMat(P∞(F ))
6: for every I |cOF such that I =∏|Sc,0|

i=1 pvPi (I) do
7: if NormF/k(x)(I)/c ∈ k×, then
8: if (13) is consistent, then
9: X ← a solution of (13) that is short in the Euclidean norm

10: v0 ← a vector in the lattice generated by the rows ofMP∞(F ), that is closest toMT
Sc,∞X

11: v ← MT
Sc,∞X − v0

12: t ← CompRep(I, v)
13: R ← R ∪ {t}
14: return R

In Example 4.1, we compute the search space for each of our three algorithms on input
the same norm equation and compare their run times. The computation was performed
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withMagma version 2.27-6 on an Intel Xeon CPU E7-8891 v4 with 80 64-bit cores at 2.80
GHz and 256 GB RAM .

Example 4.1 Let F/F5(x) be an extension of degree n = 3 defined by a root of

f (t) = t3 + (4x3 + 3x2 + 1)t2 + (3x3 + 4x2 + 4x + 2)t + 2x3 + x.

Then F/F5(x) has two infinite places P∞,1 and P∞,2 with respective ramification indices
eP∞,1 = eP∞,2 = 1, and hence unit rank r = 1.
Let c = x + 4. The prime ideal factorization of cOF is cOF = p1p2, where these two

prime ideals correspond to two finite places P1 and P2 with vP1 (c) = vP2 (c) = 1.
The search space of Gaál–Pohst is determined by the degree bounds in (8). In this

example, we have deg λ1 ≤ 347 + 1
3 , deg λ2 ≤ 344 + 1

3 , and deg λ3 ≤ 344 + 1
3 . Thus, a

search for solutions requires computing the norms of 5348+345+345 = 51038 elements in
OF .
The search space of Algorithm 4 is the number of compact representations computed

in Step 8, which is the number of tuples satisfying (9), (10), and (11). In our case, we
need to find tuples (v1, v2, v∞,1, v∞,2). To satisfy the degree bound in (11), we only need
to choose the first 3 numbers to determine the tuple. Since we have 0 ≤ v1, v2 ≤ 1 and
−347 − 1

3 ≤ v∞1 ≤ 347 − 1
3 , we have up to 2 · 2 · (347 · 2 + 1) = 2980 possible tuples

which is much less than the search bound for Gaál–Pohst.
Lastly, the number of ideals to enumerate in Algorithm 5 is the number of pairs (v1, v2).

With the samebounds on v1, v2 above, we only need to search 4 idealswhich is significantly
less than the previous two algorithms.
The search of Gaál–Pohst did not finish within 4 days, so we terminated the computa-

tion. Our improved exhaustive search algorithm took 114.83 CPU seconds, and the index
calculus algorithm only took 0.18 CPU seconds for the entire process.

5 Complexity analysis
In this section, we analyze the complexity of the compact representation and norm equa-
tion algorithms. Throughout, F/k(x) is represented by a monic irreducible polynomial
f (t) = tn + an−1tn−1 + · · · + a0 ∈ k[x][t]. The size of this representation is captured by
the quantity

Cf = max
{⌈

deg ai(x)
i

⌉∣∣∣
∣ 1 ≤ i ≤ n

}
. (14)

Note that Cf = O(g) when g → ∞; see [2, Corollary 3.5]. Except for the original Gaál-
Pohst method, we assume that F/k(x) has a place of degree one.
Our asymptotic run times count bit operations and are expressed as functions of q = |k|,

n = [F : k(x)], g (the genus of F ), and the sizes of the inputs specific to each algorithm.
Some complexity estimates include other quantities, such as the regulator RF or the unit
rank r of F/k(x). If all these quantities are present, O() constants should be understood
as true constants. Later, we will consider asymptotics where one of q, n, g or [in the case
of solving norm equations (1)] deg c grows and the other quantities are assumed to be
fixed; these O() constants will then depend on the fixed parameters. For any quantity X ,
we simplify any power of logX to writing Xε .
For basic arithmetic ingredients, we assume the following complexities:

• Multiplication of two elements in k : O((log q)1+ε) = O(qε) [14];
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• Multiplication of two polynomials in k[x] of degree d: O(d1+εqε) [14];
• Computing the determinant of a matrixM = (mij) ∈ k[x]n×n:

O(nω+εqε�s(M)�), where ω < 2.37286 (see [16, Proposition 3.3] and [1]) and

s(M) = 1
n

n∑

i=1

(
max
1≤j≤n

(degM)i,j
)

is the average column degree ofM.
• Factoring a polynomial in k[x] of degree d:O(dωqε) using Berlekamp’s algorithm [29,

Theorem 14.32].

Sizes of elements are measured in heights which are defined as follows:

• For λ = λ1/λ2 ∈ k(x) with coprime polynomials λ1, λ2 ∈ k[x], λ2 �= 0, we define
h(λ) = max{deg λ1, deg λ2}.

• For a k(x)-basis B = {ω1, . . . ,ωn} of F and α = ∑n
i=1 λiωi ∈ F with λi ∈ k(x) for

1 ≤ i ≤ n, we define hB(α) = max1≤i≤n h(λi).
For a precomputed fixed reduced basis B, we write h(α) for hB(α).

• For a divisor D =∑P nPP of F , we define h(D) =∑P |nP | deg P.
We assume that we have precomputed a reduced basis B = {ω1, . . . ,ωn} of F/k(x) and
polynomials aijm ∈ k[x] such that ωiωj = ∑n

m=1 aijmωm for 1 ≤ i, j ≤ n. The elements of
a reduced basis are short; specifically

‖ωn‖∞ ≤
⌈
2g − 1

n

⌉
+ 1 (15)

by [28, Theorem 5.4.1].
Fractional OF -ideals I are given in Hermite Normal Form (HNF) representation, i.e. as

a pair (MI , d(I)). Here, d(I) is the denominator of I , i.e. the monic polynomial d ∈ k[x]
of minimal degree such that dI ⊆ OF , and MI is the coefficient matrix of a k[x]-basis of
d(I)I in HNF.
The next two lemmas provide the cost of norm computation.

Lemma 5.1 For α ∈ F, computing NormF/k(x)(α) requires O(n3d1+ε
α qε) bit operations,

where dα = max
{
h(α), 2

(⌈
2g−1
n

⌉
+ 1
)}

.

Proof We have NormF/k(x)(α) = det(Mα), where Mα ∈ k(x)n×n is the unique matrix
such that α [ω1, . . . ,ωn] = [ω1, . . . ,ωn]Mα . Writing α = ∑n

i=1 λiωi and Mα = (mij), we
havemjl = ∑n

i=1 λiaijl and degmjl ≤ 2dα by (15). So computingMα takes O
(
n3d1+ε

α qε
)

bit operations, and this dominates the cost of computing detMα .

Lemma 5.2 For a fractional OF -ideal I in HNF representation, computing Norm(I)
requires O

((
n2+ε deg Norm(d(I)I) + (n deg d(I))1+ε

)
qε
)
bit operations.

Proof Let (MI , d(I)) be the HNF representation of I . Then Norm(I) = detMI/d(I)n. By
[28, Proposition 5.1.17], we have ‖MI‖∞ ≤ deg Norm(d(I)I). So the cost of computing
detMI isO(n2+ε deg Norm(d(I)I)qε), and that of computing d(I)n isO((n deg d(I))1+εqε).
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5.1 Compact representation

The cost of computing compact representations using Algorithm 3 is dominated by the
calls to Algorithm 2 whose cost in turn is dominated by computing k-bases of at most
g + 1 Riemann–Roch spaces. We assume that deg P∞,r+1 = 1. LetD be a divisor of F . For
brevity, we denote the cost of computing a k-basis of the Riemann–Roch space L(D) by
RR(h(D)). By [3, Theorem 4.13], we have

RR(h(D)) = O
((

n5(h(D) + n2Cf )2 + n5+εC2+ε
f

)
qε
)

(16)

bit operations, with Cf as in (14), and RR(mh(D)) = RR(h(D)) form ∈ R.

Lemma 5.3 Let I be a fractional ideal and v ∈ Z
r . On input I and v, Algorithm 2 requires

O
(
g RR(nh(Norm(I)) + n ‖v‖∞ + g)

)
bit operations.

Proof For the divisor D formed in step 1, we have h(D) ≤ h(div(I)) + n ‖v‖∞, where

h(div(I)) ≤
∑

P∈P0(F )
|vP(div(I))| deg P ≤

∑

P∈P0(F )
|vP(Norm(I))| deg P ≤ 2nh(Norm(I)).

The last inequality can be obtained from the factorization of Norm(I) into irreducible
polynomials in k[x]; see [18, Lemma 2.35].
The interval containing � in step 2 forces |�| ≤ h(D) + g , so

h(D + �Pr+1) ≤ 2h(D) + g ≤ 2nh(Norm(I)) + n ‖v‖∞ + g.

The loop in step 2 is executed g + 1 times, so the result follows from (16).

Lemma 5.4 LetAbe aprincipalOF -ideal inHNF-representation, generated by an element
α ∈ F. On input A and val∞(α), Algorithm 3 requires

O
(
g
(
RR(nh(NormF/k(x)(α)) + g) + log

(∥∥val∞(α)
∥∥∞ + g

)
RR(n2 + ng)

))

bit operations.

Proof. We use the fact that β = μ/α is a minimum of OF , so B = (β−1)OF is a
reduced OF -ideal, and hence 0 ≤ deg(div(B)) ≤ g . By Lemma 5.3, the cost of step 1
is O

(
g RR(nh(NormF/k(x)(α)) + g)

)
bit operations. Similar reasoning shows that the cost

of computing each βi in step is O
(
g RR(n2 + ng)

)
bit operations. The number l of loop

iterations defined in step 2 can be bounded by

l = �log2(
∥∥val∞(β)

∥∥� + 1 ≤ �log2(
∥∥val∞(α)

∥∥∞ + g)� + 1.

Let D be any divisor of F and α ∈ L(D). Then [4, Lemma 3.5] implies that

h(α) = O(h(D) + n). (17)

We can now bound the heights of the quantities comprising a compact representation.

Lemma 5.5 Let tα = (μ,β1, . . . ,βl) = CompRep(αOF , v∞(α)) be a compact representa-
tion of α ∈ F, and let Cf be as defined in (14). Then the following hold.

l = O(log
∥∥v∞(α)

∥∥∞ + g),

h(μ) = O(nh(NormF/k(x)(α)) + g + n),

h(βi) = O(n2 + ng) for 1 ≤ i ≤ l.
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Proof The bound on l was established in the proof of Lemma 5.4. We have μ ∈ L(D)
where D = div(αOF )+ �Pr+1. The bound on h(μ) follows from the bound on h(D) given
in the proof of Lemma 5.4 and (17).
By [9, Proof of Proposition 4.11], each βi is a minimum in a fractional OF -ideal B2

i
close to a vector ti = (ti1, . . . , tir), where Bi is a reduced ideal and ‖ti‖∞ = O(n + g). So
βi ∈ L(Di) where

h(Di) = h(div(B2
i )) + h

⎛

⎝
r∑

j=1
tijPj + �Pr+1

⎞

⎠ = O(g + n ‖ti‖∞) = O(n2 + ng).

Thus, h(βi) = O(n2 + ng) by (17).

5.2 Gaál–Pohst

The cost of theGaál–Pohstmethod [12] is dominated by computing thenormsof elements
in the search space and checking whether solutions are associate. By (8), the number of
elements in the search space is bounded by

n∏

i=1
q��−‖ωi‖∞�+1 ≤ qn�, (18)

with � given by (7).
To test associateness of two elements, we factor the principal ideals they generate,

which is accomplished by factoring their norms using Berlekamp’s algorithm. This yields
the following complexity for Gaál–Pohst’s exhaustive search method.

Theorem 5.6 Let T = r2r(r−1)/4−1RF + 1
n deg c, where RF is the regulator and r the unit

rank of F/k(x). Let dT = max{T, � 2g−1
n �}. Then the Gaál–Pohst method can solve Eq. (1)

in

O
(
2nTq

ε

qε(n3d1+ε
T + (deg c)ω)

)

bit operations, when n, g, q and deg c → ∞.

Proof By (8), we have h(α) ≤ � for every α in the search space. By Corollary 2.3, we have
� ≤ T . Thus, computing the norm of each α can be done in timeO(n3d1+ε

T qε) by Lemma
5.1. By (18), we compute the norms of up to qn� elements. The cost of testing whether
two solutions of (1) are associate isO((deg c)ωqε) via norm factorization, and the number
of tests that need to be performed is bounded above by qn�.

We briefly discuss the asymptotic complexity and the sizes of the solutions α produced
by the Gaál–Pohst method in the different asymptotic settings where one of n, g , deg(c),
q tends to infinity and the other three quanities are fixed. By (7), we have h(α) ≤ � ≤ T.
We note that r ≤ n and use (3) to bound RF .

• n → ∞: run time 2O(n22n2/4), h(α) = O(n2n2/4);
• g → ∞: run time 2O(qg ), h(α) = 2O(g);
• deg c → ∞: run time O

(
2qε deg c(deg c)ω

)
, h(α) = O(deg c);

• q → ∞: run time qO(qg ), h(α) = O(qg ).

5.3 Improved exhaustive search

The cost of Algorithm 4 is dominated by computing compact representations and their
norms. We assume that F has an infinite place of degree 1, labelled as before by P∞,r+1.
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The number of compact representations computed in Algorithm 4 is bounded by the
number of tuples (v1, . . . , v|Sc,0|, v∞,1, . . . , w∞,r+1) that satisfy (9) and (10). The number of
v1, . . . , v|Sc,0| satisfying (9) is

|Sc,0|∏

i=1
(vPi (c) + 1). (19)

Similarly counting the number of (v∞,1, . . . , v∞,r+1) that satisfy (10), we obtain an upper
bound of

|Sc,0|∏

i=1
(vP(c) + 1)

r∏

j=1
(2θ∞,j + 1) (20)

on the number of compact representations computed in Algorithm 4. This yields the
following cost estimate for Algorithm 4.

Theorem 5.7 With T ′ = r2r(r−1)/4−1RF , Algorithm 4 can solve Eq. (1) in

O
((

gRR(n deg(c) + g) + g log(T ′ + g)RR(n2 + ng) + n5+ε(T ′ deg c)1+ε + (deg c)ω
)

× qε(2T ′ + 1)r
∏

P∈Sc,0
(vP(c) + 1)

)

bit operations, when n, g , q and deg c → ∞.

Proof The number of compact representations computed in Algorithm 4 is given in (20).
By Lemma 5.4, computing each compact representation takes

O
(
gqε
(
RR(n deg(c) + g) + log(max

i
θ∞,i + g)RR(n2 + ng)

))

bit operations. By Corollary 2.3, we have θ∞,i ≤ � ≤ T ′ for 1 ≤ i ≤ r + 1. The cost
of testing whether or not such a compact representation is in OF is O((deg c)ωqε). For
each compact representation computed in step 8, we have l = O

(
log
∥
∥∥MT

Sc,∞
∥
∥∥∞

)
. From

Lemma 5.5, we also have h(βi) = O(n2 + ng) for 1 ≤ i ≤ l and h(μ) = O(nh(Norm(I)) +
g + n = O(n deg c + g + n) because I divides cOF . By [18, Lemma 2.48], the cost of
computing the norm of such a compact representation is thus O(n5+ε(T ′ deg c)1+εqε).
Finally, the cost of testing associateness of any two such compact representations is again
the same as that of factoring cOF , i.e. O((deg c)ωqε).

Again we analyze the complexity of Algorithm 4 under different asymptotic assump-
tions, with one of n, g , deg c, q tending to infinity and the others remaining fixed. To sim-
plify the expression in Theorem 5.7, we bound (19). This quantity varies greatly depending
on the factorization of c. It takes on its minimal possible value when cOF has only one
unramified (i.e. inert) place P, in which case vP(c) = 1. Its maximum occurs when c splits
into linear factors and each linear factor splits completely, in which case vP(c) = 1 for all
P ∈ Sc,0 and |Sc,0| = n deg c. Thus,

2 ≤
∏

P∈Sc,0
(vP(c) + 1) ≤ 2n deg c. (21)

Along with these bounds, we again use r ≤ n and bound RF via (3).
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5.3.1 Case n → ∞
Here, T ′ = O(n2n2/4). Using the upper bound in (21), we obtain |Sc| = O(n). If cOF is
a prime ideal, in which case the lower bound in (21) applies, the asymptotic run time
improves by a factor of 2n. In this case, h(div(cOF )) = O(n). By Proposition 2.2 and (7),
the size of a solution in compact representation in Algorithm 4 is polynomial in n.

5.3.2 Case g → ∞
Here T ′ = O(2O(g)) and RR(n2 + ng) = O(g2+ε) by (16) as Cf = O(g), yielding an asymp-
totic run time of O

(
g4+ε2g(n+1)qε

)
= 2O(g) for Algorithm 4. Compact representations of

solutions have polynomial height in g .

5.3.3 Case deg c → ∞
The worst case is again given by the upper bound in (21), in which vase |Sc| = O(deg c).
From (16), we see that RR(n deg c + g) = O((deg c)2), giving an asymptotic complex-
ity of O

(
2n deg c(deg c)ω

)
for Algorithm 4. When cOF is a prime ideal, this improves to

O ((deg c)ω), which is polynomial in deg c. Here, h(div(cOF )) = O(deg c), so a solution in
compact representation has polynomial size in deg c.

5.3.4 Case deg q → ∞
Here, (3) yields an asymptotic complexity of O(qgn+ε) for Algorithm 4.
Note that in all cases, Algorithm 4 represents an enormous speed-up over Gaál–Pohst,

and the solutions have far smaller sizes. So introducing compact representation results in
a significant gain in time and space efficiency.

5.4 Index calculus

We now analyze the expected running time of Algorithm 5. Again we assume that F has
at least one infinite place of degree 1. Define

dSc := max
{
2(|Sc|−1)(|Sc|−2)/4R′

S, max
P∈Sc,0

vP(c)
}
. (22)

For any augmented matrix
[
MT

Sc V
]
in (13), we have

∥
∥∥
[
MT

Sc V
]∥∥∥∞ ≤ dSc , and

max1≤i≤|Sc|−1{h(εi)} ≤ dSc . Note that dSc only depends on c and F .
We enumerate all OF -ideals I that divide cOF as given in (9). The number of these I is

given by (19). For each such I , wemust compute five components: theHNF representation
of I , the norm NormF/k(x)(I), a solution X of (13), a vector v0 in the unit lattice that is
close to X , and a compact representation of the solution of (1) corresponding to X .
Computing the HNF representation of such I entails computing products of HNF rep-

resentations which, by [28, Theorem 5.2.2] for example, can be done in O
(
n7g2qε

)
bit

operations.
Since c is in k[x], each I is integral, so Lemma 5.2 shows that computing the norm of

each I is O
((
n2+ε deg c + (n deg c)1+ε

)
qε
)
bit operations.

To determine the cost of solving a matrix equations MT
Sc,0X = V as given in (13), we

note that
∥∥∥MT

Sc,0

∥∥∥∞ = max
P∈P∞(F )

1≤i≤|Sc|−1

vP(εi), ‖V ‖∞ ≤ max
P∈P0(F )

vP(c).
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by construction. By [6, Theorem 22], the cost of solvingMT
Sc,0X = V is O(|Sc|ω+εdε

Sc ) bit
operations.
To find a vector v0 in the unit lattice closest toMT

Sc,∞X , we can use the algorithm in [5].
Its expected run time is O(20.3774r), and we have

∥∥
∥MT

Sc,∞X − v0
∥∥
∥∞ ≤ max

1≤i≤r

⎧
⎨

⎩

r∑

j=1

1
2
|vPi (εj)|

⎫
⎬

⎭
≤ dSc .

Finally, computing a compact representation t of a solution corresponding to X is done
by invoking Algorithm 3 on inputsA =∏|Sc,0|

i=1 p
(V )i
i andV −v0, where pi is the prime ideal

corresponding to the placePi ∈ Sc,0.Wehaveh(div(A)) ≤ h(div(cOF )) andh(Norm(A)) =
deg c. Thus, computing t takes

O
(
gqε
(
RR(n deg c + g) + log

(
dSc + g

)
RR(n2 + ng)

))

bit operations by Lemma 5.4.
Putting all these estimates together, we obtain the following asymptotic run time for

Algorithm 5.

Theorem 5.8 With dSc defined as in (22), Algorithm 5 requires

O
(( ∏

P∈Sc,0
(vP(c) + 1)

)(
|Sc|ω+εdε

sc + 20.3774r + qε
(
n7g2 + n2+ε(deg c)1+ε

+gRR(n deg c + g) + g log(dSc + g)RR(n2 + ng)
))
)

bit operations to solve a norm equation (1) when n, g, deg c, and q → ∞.

Proof Each iteration of the loop in steps 6 consists of the five components listed above
for an OF -ideal I , and thus takes

O
((
n7g2 + n2+ε deg c + (n deg c)1+ε

)
qε + |Sc|ω+εdε

Sc + 20.3774r

+gqε
(
RR(n deg c + g) + log(dSc + g)RR(n2 + ng)

))

bit operations. The number of iterations is the quantity in (19). Combining all these costs
yields the result.

The compact representations produced by Algorithm 5 are subject to the same height
bounds as those obtained from Algorithm 4.
We consider the complexity of Algorithm 5 when, as before, only one of n, g , deg c and

q tends to infinity and the others stay fixed. For a bound on dSc as given in (22), we bound
RF by (3) and use (21).

5.4.1 Case n → ∞
From (16), we obtain RR(n2 + ng) = O(n9). The upper and lower bounds in (21) yield
dSc = O(2n2 ) and dSc = O(1), respectively. The asymptotic complexity of Algorithm 5
is O

(
2n(0.3774+deg c)

)
= 2n(deg c+o(1)) and O

(
20.3774n

)
, respectively, i.e. exponential. In the

first case, this is due to the fact that the number of ideals diviing cOF is exponential in n,
whereas in the second case, the estimate arises from the cost of solving the system (13).
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Table1 Summary of asymptotic complexity of Gaál–Pohst, Algorithms 4 and 5

Asymptotic Gaál–Pohst Algorithm 4 Algorithm 5

n → ∞ (worst) 2O(n
22n

2/4) 2n
3(1+o(1)) 2n(deg c+o(1))

n → ∞, cOF prime (best) 2O(n
22n

2/4) 2n
3(1+o(1)) O(20.3774n)

g → ∞ 2O(q
g ) 2O(g) O(g4+ε )

deg c → ∞ (worst) O
(
2q

ε deg c (deg c)ω
)

O
(
2n deg c (deg c)ω

)
O
(
2n deg c (deg c)ω+2+ε

)

deg c → ∞, cOF prime (best) O
(
2q

ε deg c (deg c)ω
)

O
(
(deg c)ω

)
O
(
(deg c)2

)

q → ∞ qO(q
g ) O(qgn+ε ) O(qε )

5.4.2 Case g → ∞
Here, RR(n2+ng) = O(g2+ε), and log(dSc +g) = O(g1+ε), giving a polynomial asymptotic
complexity ofO

(
g4+ε

)
for Algorithm 5. This is asymptotically less than the precomputa-

tion ofMSc , which is subexponential in g by Lemma 2.1.

5.4.3 Case deg c → ∞
From (16), we obtain RR(n deg c + g) = O((deg c)2). The bounds on dSc are the same
as in the case n → ∞. The upper and lower bounds in (21) yield respective asymptotic
complexities of O

(
2n deg c(deg c)ω+2+ε

)
and O((deg c)2) when cOF is a prime ideal for

Algorithm 5; in the latter case, the cost of computing compact representations dominates
the overall run time. Note that factoring the ideal cOF , performed as a precomputation,
is actually asymptotically more costly than the algorithm itself when cOF is prime.

5.4.4 Case q → ∞
Here, the asymptotic run time of Algorithm 5 is O (qε) which is less expensive than the
precomputation ofMSc , whose cost is given in Lemma 2.1.
Once again, in all cases Algorithm 5 substantially outperforms Algorithm 4, and Gaál–

Pohst even more so. This is because the number of ideals tested in Algorithm 5 is far
smaller than the number of elements in the search spaces of the other two algorithms.
Table 1 summarizes the asymptotic complexities of theGaál–Pohstmethod,Algorithms

4 and 5. The complexity estimates in this table are born out by our numerical experiments,
described in the next section.

6 Empirical analysis
TheGaál–Pohst method, Algorithms 4 and 5 were all implemented inMagma [7], version
2.27-6. Our code is available on the first author’s GitHub [17]. All experiments were
performed on an Intel Xeon CPU E7-8891 v4 with 80 64-bit cores at 2.80 GHz and 256
GB RAM. Selected test results are provided in Figs. 1 and 2; an extensive suite of tests and
their results can be found in [18, Chapter 5].
All tests and timings were performed on function fields F/Fq(x), where q is a prime

not dividing n = [F : k(x)] and F has at least one infinite place of degree 1. The fields
in the selected results presented here all had ideal class number hOF = 1. Tests were
conducted with randomly generated function fields with specified n, g , q, deg c. Compu-
tations were forcefully terminated when the CPU time required for an algorithm and its
precomputation exceeded one day. Timings are given in terms of the average number of
CPU seconds.



S. Leem et al. Res. Number Theory           (2025) 11:17 Page 19 of 22    17 

Fig. 1 Empirical timing results and asymptotic complexities for varying n (g = 1, q = 3, hOF = 1, deg c = 1,
and irreducible c)

We summarize our observations of our timing tests as follows:

• In all test cases, for any norm equation, Algorithm 5 outperformed Algorithm 4 and
the Gaál–Pohst method.

• Our timing results are largely well-aligned with our complexity analysis. Since we
only considered worst case complexities, they are not expected to match exactly.

• With a set of minimal parameters, g = 1, q = 3, n = 1, deg c = 1, the Gaál–Pohst
method was as fast as Algorithm 4.

• As expected from the complexity results, Gaál–Pohst slowed down at a much faster
rate than theother two algorithms as theparameter sizes increased. Figure 1 illustrates
this.

• The average CPU time taken for precomputing an S-unit value matrix was negligible
compared to Gaál–Pohst and Algorithm 4 in all test examples. However, the precom-
putation took longer than Algorithm 5 in many cases. This is also not unexpected.

Figure 1 shows the timing results with n varying from 1 to 10 and g = 1, q = 3,
deg c = 1 fixed, along with the asymptotic complexities. The timing data of Gaál–Pohst
are only available for n = 2, 4, 5, because for n = 7, solving one norm equation already
took more than a day due to the huge search space. As expected, the shapes of the graphs
of the asymptotic complexities and timing results are largely similar, but the actual run
times grow slower than the asymptotic complexities.
For all the testing examples, Algorithm 5 was the fastest. Gaál–Pohst was faster than

Algorithm 4 for some examples with n = 2, but on average Algorithm 4 was faster. From
n = 3 on,Algorithm4outperformedGaál–Pohst significantly. Gaál–Pohst andAlgorithm
4 are more substantially affected by the growth in n, mainly because their search spaces
expand doubly exponentially as n grows, while the number of ideals to search inAlgorithm
5 grows exponentially.
Figure 2 shows the timing results for varying g with 1 ≤ g ≤ 18, with n = 2, q = 3,

deg c = 1. Again, there is good agreement between empirical and predicted run times.
No timings for Gaál–Pohst results are shown because the test took too long. For g = 1,
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Fig. 2 Empirical timing results and asymptotic complexities for varying g (n = 2, q = 3, hOF = 1, deg c = 1,
irreducible c)

Gaál–Pohst took 0.059 CPU seconds on average. Already for g = 2, Gaál–Pohst ran more
than 1 day. For g ≥ 9, Algorithm 4 ran over a day. In all test examples for varying g , as
expected, Algorithm 5 was the fastest, and the precomputation took longer than the time
required by Algorithm 5 to solve a norm equation.

7 Conclusion
There are several interesting opportunities for future work to extend the results herein.
An interesting question is how the quantity gcd(q, n) affects the performance of the Gaál–
Pohst algorithm. Numerical examples for fields F/Fq with gcd(q, n) > 1 show that this
method tends to search a larger space compared to base fields with gcd(q, n) = 1. It is
unclear whether this arises from wild ramification; a more careful investigation of the
search space and search strategy may lead to efficiency improvements in this setting.
A related problem of interest is to develop algorithms for solving norm equations in

lower dimensional submodulesM of OF . A challenge arising in this setting is that we can
no longer consider solutions inM up to associates. This is because for an element α ∈ M,
an element that is associate to α is not guaranteed to belong toM. In [13], S-unit equations
were used to solve this problem.
It would be beneficial to have an algorithm for computing compact representations that

does not require F to have an infinite place of degree 1. This restriction, imposed in [9]
and necessary for Algorithm 3, guarantees exact equality in (4), rather than the power
product just being close to α. A different method is needed to ensure accuracy of compact
representations, absent an infinite place of degree 1.
Finally, our results strongly suggest that it would be promising to explore the use of

compact representations in solving other families of Diophantine equations over global
function fields.
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