
Abstract Computability1

Robin Cockett

Department of Computer Science
University of Calgary

Alberta, Canada

robin@cpsc.ucalgary.ca

FMCS June 2007

1
Joint work with Pieter Hofstra

Restriction categories

Turing categories

Reducibility

Partial combinatory algebras

Forever undecided

Defining restriction categories

A restriction category is a category with a restriction operator

A
f

−−→ B
A −−→

f
A

satisfying the following four equations:

[R.1] f f = f [R.2] f g = g f

[R.3] f g = f g [R.4] f g = fg f

Restriction categories are abstract partial map categories.

Basic results

In any restriction category X:

I e : A −→ A with e = e is called a restriction idempotent.
The restriction idempotents on A form a semilattice O(A).
Think off these as the “open” sets of the object.

I A map : A −→ B is total in case f = 1. All monics are total
maps and total maps compos: the total maps form a
subcategory Tot(X).

I The hom-sets are partially ordered f ≤ g ⇔ f g = f .

I Two parallel arrows are compatible f ^ g in case f g = g f
(are the same where they are both defined).

Basic results (cont.)

I A restriction isomorphism or partial isomorphism is an
f : A −→ B which has a (restriction) inverse f (−1), which is

necessarily unique, such that f (−1)f = f (−1) and ff (−1) = f .
A restriction monic is a monic restriction isomorphism: such
splits its unique retraction.

I For any class, E , of idempotents, SplitE (X) is a restriction
category with

e1
f

−−→ e2
e1 −−−→

e1f
e1

Examples

I Any category is “trivially” a restriction category by setting
f = 1.

I Sets and partial maps is a restriction category. More generally
every partial map category Par(X,M) is a restriction category.

(m, f) : A −→ B

(m,m) : A −→ A

I An inverse monoid is a one object restriction category with all
maps partial isomorphisms.

I Topological spaces with partial continuous maps, whose
domains of definition are open subsets: Par(Top, open).

I The opposite of the category of semilattices with stable maps
(binary meet preserving maps) is a restriction category.

I Partial recursive maps on products of the natural numbers.

Completeness of restriction categories

An M-stable system of monics satisfies:

I Each m ∈ M is monic

I Composites of maps in M are themselves in M

I All isomorphisms are in M

I Pullbacks along of an M-map along any map always exists
and is an M-map.

A ×C B

f ′

��

// m′

// A

f

��
B //

m
// C

Given such an M one can form the partial map category
Par(X,M) ...

Completeness of restriction categories

Theorem
(Cockett-Lack) Every restriction category has a full, structure
preserving, embedding into the M-partial map category of a
category with a stable system of monics M.

There is also a Yoneda representation (Mulry):

Y : X −→ Par(SetTot(Split(X))op ,M̂)

Cartesian restriction categories
A cartesian restriction category is a restriction category with
partial products:

I It has a restriction final object 1:
I Each A has a total map ! : A −→ 1

I If A
f

−−→ 1 then f = f !.

I It has restriction products in case for every A and B there is a
cone (A × B , π0, π1) such that given any other cone there is a
unique comparison map

A

C
〈f ,g〉//

f

≥

55llllllllllllllllll

≥

g

))RRRRRRRRRRRRRRRRRR A × B

π0

<<xxxxxxxxx

π1

""FF
FF

FF
FF

F

B

such that gf = 〈f , g〉π0 and f g = 〈f , g〉π1.

Cartesian restriction categories

Partial products are examples of restriction limits ...

The following equations hold in any cartesian restriction category:

I Letting ∆ = 〈1, 1〉 then ∆ is total, ∆πi = 1

I h〈f , g〉 = 〈hf , g〉 = 〈f , hg〉

I 〈f , g〉 = f g

In the total category the partial products become ordinary
products.

Theorem
If restriction idempotents split then X is a cartesian restriction
category if and only if Tot(X) is a cartesian category.

Meets in restriction categories

A restriction category has meets if

A
f

−−→−−→
g

B

A −−−−→
f ∩ g

B

where f ∩ g ≤ f , f ∩ g ≤ g , f ∩ f = f , h(f ∩ g) = hf ∩ hg . This
makes f ∩ g the meet of f and g in the hom-set lattice.

Theorem (Jackson and Stokes)

A restriction category has meets if and only if it is a full
subcategory of a partial map category Par(X,M) where X has
equalizers and all regular monics are contained in M.

Discrete restriction categories

An object X in a cartesian restriction category is discrete in case
its diagonal map

∆ : X −→ X × X

is a partial isomorphism. A cartesian restriction category is
discrete in case very object is discrete.

In Par(Top,Open) the discrete objects are precisely discrete
topological spaces.

Discrete restriction categories

Theorem
A cartesian restriction category is discrete if and only if it has
meets.

Proof: Note ∆(π0 ∩ π1) = ∆π0 ∩ ∆π1 = 1 ∩ 1 while

π0 ∩ π1 = π0 ∩ π1〈π0, π1〉 = 〈π0 ∩ π1π0, π0 ∩ π1π1〉

= 〈π0 ∩ π1, π0 ∩ π1〉 = (π0 ∩ π1)∆

Conversely set f ∩ g = 〈f , g〉∆(−1). �

Joins and disjoins

A restriction category has a restriction zero in case there is a zero

map between every pair of objects A
0

−−→ B (with f 0 = 0 and
0g = 0) such that 0A,B = 0A,A.

A restriction category has joins if it has a restriction zero and if
whenever f ^ g there is a join f , g ≤ f ∨ g such that whenever
f , g ≤ h then f ∨ g ≤ h which is stable that is h(f ∨ g) = hf ∨ hg
(this implies (f ∨ g)h = fh ∨ gh).

Joins and disjoins

A restriction category has disjoins if it has a restriction zero and
whenever f ⊥0 g , that is f g = 0 = gf , then there is a stable join
f , g ≤ f t g such that f , g ≤ h then f t g ≤ h and
h(f t g) = hf t hg .

Having joins implies having disjoins (but not conversely).

A cartesian restriction category has joins (resp, disjoins) in case
0 × h = 0 and (f ∨ g) × h = (f × h) ∨ (g × h) (resp.
(f t g) × h = (f × h) t (g × h)).

Coproducts ...

A restriction category has coproducts if it has coproducts (and
initial object) in the ordinary sense such that the coprojections
(and the initial maps) are total.

The coproduct functor necessarily preserves the restriction:
f + g = f + g .

A cartesian restriction category is a distributive restriction
category in case it has a restriction zero and the products
distribute over the coproducts.

Remark: Distributive restriction categories have disjoins with
respect to the relation f ⊥ g if 〈f |g 〉 : A + A −→ A is a partial
isomorphism.

Disjoins and coproducts

Theorem
In a split restriction category with disjoins whenever e1 and e2 are
disjoint restriction idempotents then the split of e1 t e2 is a
coproduct of the splitting of e1 and the splitting of e2.

(i.e. certain coproducts are forced by the presence of disjoins)

Proof: Note that if f : e1 −→ X and g : e2 −→ X then
f t g : e1 t e2 −→ X is the unique map required to establish the
copairing. �

TURING CATGEORIES

T is a Turing category if

I it is a cartesian restriction category

I it has a Turing object, T :

T × A
τA,B // B

X × A

k×1

OO

f

<<xxxxxxxxx

this an object T with for each A and B a Turing morphism,
τA,B , such that for each f there is a total k , called a code for
f , making the diagram above commute.

Note: none of this structure is canonical!

Turing categories

Theorem
In a Turing category, with a Turing object T , every object A is a
retract of T .

Proof: Consider

T × 1
τ1,A // A

A × 1

mA×1

OO

π1

<<yyyyyyyyy

Then we have A C
rA
mA

T where rA = 〈1, !〉τ1,A. �

In particular 1 C T and T × T C T .

Normalizing Turing structure

Theorem
A cartesian restriction category is a Turing category if and only if
there is an object T , of which every object is a retract, which has

a Turing morphism T × T
τT ,T

−−−−→ T.

Proof: The difficulty is to prove that if every object is a retract
of T then having a Turing morphism • = •1 = τT ,T suffices. For
n > 1 assume we have •n−1 defined inductively then:

T × T × T n−1 1×• // T × T n−1 •n−1
// T

X × T × T n−1

f •
n−1

×1

44

f

22eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

(f •
n−1

)•×1

OO

provides f •
n

= (f •
n−1

)•.

Normalizing Turing structure

But what about ◦ = •0?

T
◦ // T

X

f

>>~
~~

~~~
~

f ◦

OO

Set this to ◦ = T −−→
∆

T × T −−→
•

T . Now we have

T
∆ // T × T

• // T

X × T

(π0f )•×1

OO

π0f

77nnnnnnnnnnnnn

X

(π0f )•

OO

〈1,(π0f )•〉
77nnnnnnnnnnnnn

f

CC



Normalizing Turing structure

Finally for an arbitrary object A by assumption we have A C
mA
rA T

so we may define:

T × A1 × ... × An

τA1×.×An,B
−−−−−−−→ B

= T × A1 × ... × An

1 × mA1
× ... × mAn−−−−−−−−−−−−−→ T × T n •n

−−→ B
rb−−→ B

Clearly this is a Turing morphism. �

Thus a Turing category is determined once one has a retractive
generator with a (self-)Turing morphism.



Reducibility

In any restriction category say that a restriction idempotent e ′ : X
(many-one) reduces to e : Y , write e ′ ≤m e, if there is a total
map f : X −→ Y so that fe = e ′.

Say that e ′ 1-reduces to e, e ′ ≤1 e if there is a monic f with
fe = e ′.

Say that e : X is m-complete in case every e ′ m-reduces to e, that
is e ′ ≤m e. Similarly e is 1-complete is every e ′ 1-reduces to e.



Reducibility (cont.)
Recall K = ◦ = ∆• are those computations which terminate on
their own codes.

Theorem
In any Turing category K = ◦ is m-complete.

Proof: Suppose e : X then

T
◦ // T

X

(emX )◦

OO

e
// X

OO
mX

OO

and

(emX )◦K = (emX )◦◦

= (emX )◦◦

= emX = e = e

�



1-reducibility

There is no guarantee that f ◦ is monic but if it was K would be
1-complete.
We will use “padding” to obtain an alternative Turing morphism
which has this property. Modify the Turing morphism

T × T rT×T

//

•′

((
(T × T ) × T

π1×1 // T × T
• // T

X × T
f •

′

×1

gg

〈f •,mX 〉mT×T×1

OO

f •×1

77

f

44iiiiiiiiiiiiiiiiiiiiii

define f •
′

= 〈f •,mX 〉mT×T note that

f •
′

rT×Tπ1 = mX

so, in fact, this is a section so certainly f ◦′ is monic!



1-reducibility

Theorem
In any Turing category K ′ = ◦′, as defined above, is 1-complete.

Note: this is stronger than 1-complete as the morphism along
which the reduction is being obtained is a section.

This also illustrates the non-canonical nature of the Turing
morphisms (doing this again gives an infinite family of Turing
morphisms).

Note: special properties of • may not be preserved by moving to
•′. For example if (T , •) is a λ-algebra (T , •′) will only be a
λ-algebra when the Turing category is trivial!



Partial combinatory algebras
In a cartesian restriction category a partial combinator algebras
is:

I an object A

I a partial map • : A × A −→ A

I two (total) points 1
k

−−→ A and 1
s

−→ A.

satisfying:

A × A × A
(•×1)• // A

A × A

k×1×1

OO

π0

::tttttttttt

A × A × A × A
•3

// A

A × A

•

OO

A × A × A

s×1×1×1

OO

θ′
A

// (A × A) × (A × A)

•×•

OO

and A × A
s × 1 × 1

−−−−−−→ A × A × A
•2

−−→ A is total.



Partial combinatory algebras

Equationally we have:

(k • x) • y = x ((s • x) • y) • z = (x • z) • (y • z) x |(s•v)•w = x

These are the usual equations from (total) combinatory algebra
with the added requirement (expressed in the last equations) that
sxy is total.

Theorem
If (T , •) is a Turing object for a cartesian restriction category it is
a partial combinatory algebra.

Proof: Use the above commuting requirements to define k and s!
�

This begs the question: what is the connection between PCAs and
Turing categories?



Partial combinatory algebras

Given any cartesian restriction category there is a cartesian
restriction functor

Γ : X −→ Par : A 7→ points(A) = Tot(X)(1,A)

Note: this carries a PCA in X to an “ordinary” PCA in Sets.

Let X be any cartesian restriction category and suppose A = (A, •)
is an applicative system (i.e. • : A×A −→ .A is a partial operation)
then Γ(A) is an applicative system in Sets. A set of indices for A

is a V ⊆ Γ(A) = Tot(X)(1,A) which is a sub-applicative system
(i.e closed to the application).

A map A × ... × A
h

−−→ A in X is (A,V)-computable if there is an
index v ∈ V with (v × 1 × ... × 1)•n = h. Similarly, the maps An

−→ Am (m > 0) is computable in case each projection An −→ A is
computable. h : An −→ 1 is computable provided h : A −→ A is
computable.



Combinatory completeness

We shall say that an applicative system is combinatory complete
relative to a set of indices V in case the (A,V)-computable maps
form a cartesian restriction subcategory.

Theorem
An applicative system A, with respect to a set of indices V, is
combinatory complete if and only if V contains indices s and k
making A a partial combinatory algebra.

This is most easily proven using the term logic ... while this is
beyond the scope of this talk I shall use it!



PCAs to Turing Categories

This gives an very important method of generating Turing
categories:

Theorem ( (A,V)-computability)

The (A,V)-computable maps of any combinatory complete
applicative system over any cartesian restriction category form a
Turing category C(A,V) with

CA : C(A,V) −→ X

a faithful cartesian restriction functor.

Given a combinatory algebra in any cartesian restriction category
an obvious set of indices to choose is the set of all points of the
PCA. Conversely one can choose the smallest set generated by a
choice of s and k ...



Turing subcategories

Given any cartesian restriction functor from a Turing category
F : T −→ X we may factorize it as

T
E(F )// T/ ∼=

M(F ) // X

where E (F ) forms the quotient of the category by
f ∼= g ⇔ F (f ) = F (g) and M(F ) is the residual faithful
embedding.

T/ ∼= is a Turing category, thus, M(F ) is a faithful embedding of a
Turing category into X:

T/ ∼=
M(F )

−−−−→ X



Turing subcategories

Any Turing object T ∈ T determines a PCA in X and a set of
indices VF = {F (p)|p ∈ points(T )}.
Thus, F induces a faithful functor:

CF (T ) : C(F (T ),VF ) −→ X

Theorem
There is a factorization of any F with domain a Turing category as

T
F ′

−−→ Split(C(F (T ),VF )) −→ Split(X)

Thus, up to splitting, faithful Turing subcategories of X are
determined by combinatory complete applicative systems in X

relative to a set of indices.



FOREVER UNDECIDED

We shall now examine undecidability results in Turing categories.
To get off the ground one needs a good notion of complement.
Disjoins provide this ...

THEREFORE we shall work from now on in Turing categories
with disjoins.

By a point of an object A in a caretsian restriction category is
meant a map p : 1 −→ A which is total.



Undecidability of K

Let T be a Turing category with disjoins.

I A restriction idempotent e is complemented (or recursive)
in case there is a restriction e ′ with ee ′ = 0 and e t e ′ = 1.

I A restriction idempotent e is intuitionistically
complemented in case there is a restriction idempotent e⊥

with ee⊥ = 0 such that whenever e ′e = 0 e ′ ≤ e⊥.

Recall that in a disjoin restriction category if e : A has a
complement e ′ : A then A is the coproduct of the splittings of e
and e ′.



Undecidability of K

Theorem
In a disjoin Turing category, T, K has a complement if and only if
T is trivial (i.e. exactly one map between each pair of objects).

Proof: Let K ′ be an idempotent with K ′K = 0. Set v = K ′• be
an index of K ′ (i.e. (v × 1)• = K ′) so that
vK = v∆• = 〈v , v〉• = vK ′ but then
vK ′ = vK ′K ′ = vKK ′ = 0 = vK ′K = vKK ′ = vK so that if
K t K ′ = 1 then 0 = 0 = (vK ) t (vK ′) = v(K t K ′) = v = 1 But
this collapses the final object and make the whole category trivial.
�

Note that we have shown that K is “creative” (i.e. given e = e
with Ke = 0 there is a point pe with pK = 0 = pe). Clearly a
creative idempotent in disjoin caretsian restriction category has a
complement only when the category is trivial.

Below we refine these results ...



Point discreteness ...

A Turing category is point discrete if given a point p and a
restriction idempotent e with pe = 0 then there is a restriction
idempotent e ′ with e ′e = 0 and pe ′ = p.

A point discrete topological space is always a discrete topological
space. However, only the following implication holds for Turing
(and restriction categories):

Lemma
Every discrete Turing category is point discrete.

Proof: In any discrete cartesian restriction category all points are
open. �



Point discreteness ...

We now show that, for point discreteness Turing categories, K
cannot even have an intuitionistic complement:

Theorem
A point discrete Turing category with disjoins which has an
intuitionistic complement of K must be trivial.

Proof: The point v produced earlier is disjoint from the join of K
with its intuitionist complement K⊥ = K ⇒ 0. Thus there is an e
containing v disjoint from both these. But eK = 0 implies
e ≤ (K ⇒ 0) and so as e(K ⇒ 0) = 0 this implies e = 0 which
collapses the category (by collapsing the total point v). �



Point discreteness ...

A Turing category which has arbitrary joins (this means each
O(T ) is a locale) always has intuitionistic complements defined by:
e⊥ = e ⇒ 0 =

∨
{e ′|e ′e = 0}.

Corollary

An (arbitrary) join Turing category cannot be point discrete or
discrete unless it is trivial.

This means non-trivial Topological Turing categories generated
from PCAs in Par(Top, open) cannot be discrete ...



Separability

A pair of total map f0 and f1 with common codomain are
separable if there are a pair of restriction idempotents e0 and e1

such that fiei = fi and e0e1 = 0.

If the total maps are points, following topological terminology, we
that the points satisfy the Hausdorff condition.

Theorem
It T is a split disjoin Turing category then the following are
equivalent:

(i) T is a distributive Turing category;

(ii) T has a Turing object T which has two separable total
endomorphisms f , g : T −→ T;

(iii) T has a Turing object T which has two points satisfying the
Hausdorff condition.

Note that this means a split Turing category with a pair of points
which can be separated necessarily has coproducts ...



Separability

Proof:

(i) ⇒ (ii) If T has coproducts then T
σi−−→ T + T

mT+T
−−−−−→ T

has the pair σ0mT+T and σ0mT+T separable by
rT+T (1 + 0) and rT+T (0 + 1).

(ii) ⇒ (iii) If f and g are separated by e0 and e1 then kf and kg
are separated by e0 and e1.

(ii) ⇒ (iii) Let v0 and v1 be elements separated by e0 and e1

then e0 + e1 = e0 t e1 (in the splitting) but ei !ti is an
idempotent of e1 whose splitting is the terminal
object so 1 + 1 is present. Finally (1 + 1) × T is
isomorphic to T + T . However, as T has copowers it
is clear that the copoduct of every pair of objects
exists.

�



Separability

Theorem
Every discrete disjoin split Turing category has coproducts (i.e. is
distributive).

Proof: Every point is an open set ... so all we need do is find a
couple of disjoint points. However, s and k must be disjoint. (The
slice category over their intersection is a Turing category in which
s = k so it collapses). �



Inseparability

A pair of disjoint restriction idempotents e0, e1 : X are recursively
inseparable in X if there is no complemented idempotent e such
that e0 ≤ e and e1 ≤ e ′.

Theorem (F. Lengyel)

Every non-trivial distributive Turing category has a disjoint pair of
inseparable restriction idempotents.

Proof: The above theorem assures us that we may find two
points t0, t1 : 1 −→ T and idempotents e0, e1 such that e0e1 = 0
(they are disjoint) and tiei = ti (that is t0 and t1 are separable).
Set ki = ◦ei = ∆ • ei now suppose that ki ≤ ui and u0u1 = 0.
We wish to show that assuming that u0 t u1 = 1T forces the
category to be trivial.



Inseparability

Consider the map q = u0!t1 t u1!t0 then q◦ is a total map with
q◦◦ = q. Observe that

q◦k0 = q◦k0q
◦ = q◦ ◦ e0q

◦ = qe0q
◦

= (u0!t1 t u1!t0)e0q
◦ = u0!t1e0 t u1!t0e0q

◦

= u1!t0q
◦ = u1q

◦

and similarly q◦k1 = u0q
◦. This shows:

q◦u1 = q◦u1q
◦ = q◦u1q◦q◦u1 = q◦k0q

◦u1 = q◦k0u1 = 0

and similarly that q◦u0 = 0. Finally this gives the following
calculation:

1T = q◦ = q◦(u0 t u1) = q◦u0 t q◦u1 = 0

which suffices to show the category is trivial! �



Recursion theorems

The recursion theorems hold in any Turing category. Here is the
“second recursion theorem”:

Theorem
In any Turing category, for any F : T × T −→ T. where T is a
Turing object there is a point e : 1 −→ T such that
(e × 1)• = (e × 1)F .

Proof: This is proven most easily using the term logic: e is the
element λ∗fx .(λ∗z .f (zz)x)(λ∗z .f (zz)x). �

This allows us to obtain a version of Rice’s theorem for disjoin
Turing categories.



Extensionality

I We say that a restriction idempotent e on a Turing object is
extensional (with respect to a given choice of Turing
structure) in case the following implication holds for every f
and g (using the term logic):

(e(f (x)) • y = g(x) • y ⇒ g(x)|e(f (x)) = e(gx)|e(f (x))).

I Say that a restriction idempotent e on a Turing object is
non-trivial in case there are two points, p0 and p1 with
p0e = p0 and p1e = 0.

Think of f and g as an indexes whose behaviors are the same then
the extensionality of e requires that g lies in e in so far as f lies in
e and is defined.



Extensionality

Lemma
If e is extensional and has a complement e ′ then e ′ is extensional.

Proof: Suppose e ′(f (x)) • y = h(x) • y then we always have

h(x)|e′(f (x)) = e(h(x)|e′(f (x))) t e ′(h(x)|e′(f (x)))

so it suffices to show that e(h(x)|e′(f (x))) = e(h(x))|e′(f (x)) = 0.
Consider

e(h(x)|e′(f (x))) • y = h(x) • y|e(h(x)),e′(f (x))

= e ′(f (x)) • y|e(h(x)),e′(f (x))

= e ′(f (x))|e(h(x)) • y

Now using extensionality of e:

e ′(f (x))|e(h(x)) = e(e ′(f (x))|e(h(x))) = 0

�



Rice’s theorem

Theorem (Rice’s theorem)

In a non-trivial disjoin Turing category no non-trivial extensional
idempotent is complemented.

Proof: Suppose e with complement e ′ is extensional (so both
are) and non-trivial (so both are). Thus, there are points p0 and p1

with p0e = p0 and p1e
′ = p1. Using the second recursion theorem

define a point h by:

h • x = p1 • x|e(h) t p0 • x|e′(h)

then

e(h) • x = h • x|e(h) = (p1 • x|e(h) t p0 • x|e′(h))|e(h)

= p1 • x|e(h) = (p1)|e(h) • x

so using extensionality we have:

(p1)|e(h) = e((p1)|e(h)) = e(p1)|e(h) = 0

which implies e(h) = 0 but by symmetry e ′(h) = 0 giving h = 0
showing the category must collapse. �



Conclusion ...

The basic ideas of computability can be expressed quite smoothly
in Turing Categories but ...

The BIG Question:

Can Turing categories bring new insights to computability theory?


	Restriction categories
	Turing categories
	Reducibility
	Partial combinatory algebras
	Forever undecided

