
Itegories and PCAs
Robin Cockett

robin@cpsc.ucalgary.ca

University of Calgary

Ottawa 2007, Itegories and PCAs, April 29, 2007 – p. 1/47

Overview

1. Motivation
2. Restriction categories and partial maps
3. Independence spaces
4. Disjointness in restriction categories
5. Extensivity and disjointness
6. Itegories and the Kleene wand
7. Itegories and traces
8. Stack objects
9. PCAs in itegories

Ottawa 2007, Itegories and PCAs, April 29, 2007 – p. 2/47

Motivation

In a categorical development of computability it is natural to ask:
What basic settings support computation?
What models are there of these settings?
How do these settings link to practical computability in computer science?

Flow diagrams: they underlies modern compiler optimization techniques.
The λ-calculus: used in semantics and to implement functional languages.
Turing machines: used in the classroom!

This talk: the link to practical computability and flow diagrams

Ottawa 2007, Itegories and PCAs, April 29, 2007 – p. 3/47

Motivation

What is computability?

In this talk: a category “supports computability” means “contains a PCA.”

A partial combinatory algebra (in sets) consists of
A binary partial operation • : A × A −→ A

Two constants k and s such that
(k • x) • y = x

((s • x) • y) • z = (x • z) • (y • z) where (s • x) • y is always defined.

To describe a partial combinator algebras one needs a theory of “partiality” so that one can
say what “defined” means to start with.

Ottawa 2007, Itegories and PCAs, April 29, 2007 – p. 4/47

Motivation

WHAT IS THE SEMANTICS OF FLOW DIAGRAMS ...

Not a new problem! (Dana Scott, Calvin Elgot, Steve Bloom, Zoltan Esik, Ernie Manes, Phil
Scott, Esfan Haghverdi many others)

Certain ingredients are accepted:
A notion of partiality
Partial products
Extensive coproducts
A (particle style) trace on the coproduct.

Can we get by with less?

Ottawa 2007, Itegories and PCAs, April 29, 2007 – p. 5/47

Motivation

ALGEBRAIC INGREDIENTS:

Notion of partiality = restriction category

Partial products = cartesian restriction category

Extensive coproducts = extensive restriction category

Trace on coproduct = iteration.

Idea: an itegory should be a full subcategory of a setting with all these features ...

Ottawa 2007, Itegories and PCAs, April 29, 2007 – p. 6/47

Motivation

KEY TECHNICAL IDEA:

Macro-micro principle: large-scale properties are reflections of small-scale properties.

(works both ways!)

Extensive coproduct Local disjunction
A, B : Type

A + B : Type −→

f, g : X −→ Y

f t g : X −→ Y

Trace Kleene wand

X + A
f

−−→ X + B

A −−−−−−→
Tr(f)

B −→

A
f

−−→ A A
g

−−→ B f ⊥ g

A −−−−→
g|?f

B

What does f ⊥ g mean?

Ottawa 2007, Itegories and PCAs, April 29, 2007 – p. 7/47

Motivation

CLAIM: this gives a semantics of flow diagrams.

What do you have to add to get computability?

Answer: an appending stack object ...

Ottawa 2007, Itegories and PCAs, April 29, 2007 – p. 8/47

Motivation

Disclaimer: This is not original!

Alex Heller (1990) set out along the same route to produce off-beat examples of recursion
categories. His work was my starting point ...

(I hope there are some technical improvements ...)

Ottawa 2007, Itegories and PCAs, April 29, 2007 – p. 9/47

Restriction categories and partial maps

A restriction category is a category with a restriction operator

X
f

−−→ Y

X −−→

f
X

which satisfies the following four axioms:
[R.1] ff = f

[R.2] gf = fg

[R.3] gf = gf

[R.4] gf = fgf

Restriction functors are functors, which, in addition, preserve the restriction: F (x) = F (x).
These axioms are independent ... here is a sample equality:

gf = fgf = f gf = gf f = gff = gf

Ottawa 2007, Itegories and PCAs, April 29, 2007 – p. 10/47

Basic properties of restriction categories

The total maps, x such that x = 1, form a subcategory.
Parallel maps can be partially ordered by x ≤ y iff x = yx; this is a partial order
enrichment (that is if x ≤ y then gxf ≤ gyf).
Parallel maps are compatible when they agree where they are both defined gf = fg.
The restricted isomorphisms, f : X −→ Y with a (necessarily unique) “partial inverse”
g = f (−1) : Y −→ X such that gf = f and fg = g, form a subcategory (which is an
inverse category).

As f = f = ff = f f , maps e with e = e are called restriction idempotents. The set
of restriction idempotents at an object X , written O(X) = {e : X −→ X | e = e} form
a commutative monoid of idempotents and therefore is a semilattice.
Restriction monics are monic restricted isomorphisms and are splittings of restriction
idempotents.

Ottawa 2007, Itegories and PCAs, April 29, 2007 – p. 11/47

Completeness of restriction categories

An M-stable system of monics satisfies:
Each m ∈ M is monic
Composites of maps in M are themselves in M

All isomorphisms are in M

Pullbacks along of an M-map along any map always exists and is an M-map.

A ×C B

f ′

��

// m′

// A

f

��
B //

m
// C

Theorem 1. (Cockett-Lack) Every restriction category has a fully structure preserving embedded
into the M-partial map category of a category with a stable system of monics M.

Ottawa 2007, Itegories and PCAs, April 29, 2007 – p. 12/47

Partial map categories

Let (X,M) be a category with a stable system of monics then Par(X,M), the category of
M-partial maps, is the following:
Objects: X ∈ X

Maps: Spans (m, f) : X −→ Y where m ∈ M up to equivalence:

X′
~~

m

~~||
||

||
||

f

((QQQQQQQQQQQQQQQ
α // X′′vv

m′

vvmmmmmmmmmmmmmmm
f ′

!!B
BB

BB
BB

B

X Y

Where (m, f) ∼ (m′f ′) when there is an isomorphism α′ making the diagram
commute.

Identities: (1X , 1X) : X −→ X

Ottawa 2007, Itegories and PCAs, April 29, 2007 – p. 13/47

Partial map categories

Composition: By pullback:

X′′
}}

n′

}}

f ′

((
X′
~~

m

~~||
||

||
|| f

((QQQQQQQQQQQQQQQ Y ′
~~

n

~~}}
}}

}}
}} g

''NNNNNNNNNNNNN

X Y Z

Proposition 2. All partial map categories Par(X,M), as above, are (split) restriction categories
with (m, f) = (m, m).

The completeness theorem is proved by spitting the idempotents of a restriction category, X,
to obtain a total map category in which the restricted monics form a system of M-maps. The
original restriction category X then sits elegantly inside Par(Total(X,M)).

Ottawa 2007, Itegories and PCAs, April 29, 2007 – p. 14/47

Partial products

A restriction category has a partial terminal object, 1, in case for each object A there is a total
map !A : A −→ 1 such that given any other map h : A −→ 1 we have h =!Ah.

A restriction category has partial products in case for each pair of object A and B there is an
object A× B and total maps π0 : A ×B −→ A and π1 : A× B −→ B such that given any pair
of maps f : X −→ A and g : X −→ B there is a map 〈f, g〉 : X −→ A × B with fg = 〈f.g〉π0

and gf = 〈f, g〉π1.
A

X

f

>>~~~~~~~~

g
 @

@@
@@

@@
@

〈f,g〉 //

≥

≥

A × B

π0

bbFFFFFFFF

π1

||xxxxxxxx

B

A restriction category has partial products and a partial terminal object if and only if its total
category has products and a terminal object.

A restriction category which has partial products is a cartesian restriction category.

Ottawa 2007, Itegories and PCAs, April 29, 2007 – p. 15/47

The restriction category sSLat
op

The category of semilattices in which the homomorphisms are stable, in the sense that they
preserve binary products, sSLat, is defined as follows:
Objects: Semilattices (X,>,∧)

Maps: f : X −→ Y is a stable (or binary meet preserving) map. That is
f(x ∧ y) = f(x) ∧ f(y) (but f does not necessarily preserve the top, >).

This category has a corestriction defined by:
coRestriction: If f : X −→ Y then f : Y −→ Y has f(x) = f(>) ∧ x.
It is easy to check this is a corestriction category. Therefore, sSLatop, the dual of the category
of semilattices with stable maps, is a restriction category.

sSLatop has partial products given by the coproduct in SLat (which is the same as the
product).

Ottawa 2007, Itegories and PCAs, April 29, 2007 – p. 16/47

The fundamental functor

Every restriction category has a “fundamental” restriction functor to sSLatop:

O : X −→ sSLatop;

X

f

��
7→

O(X)

Y O(Y)

O(f)

OO

where O(X) = {e : X −→ X | e = e} and

O(f) : O(Y) −→ O(X); e 7→ ef

Note that f = O(f)(1Y).

X has a partial terminal object if and only if this “fundamental” functor is representable

O(X) = X(X, 1)

Ottawa 2007, Itegories and PCAs, April 29, 2007 – p. 17/47

PCAs revisited

Once one has a partial product one can express arbitrary partial algebras. Here is a PCA
again:

• : A × A −→ A k, s : 1 −→ A such that k = 11 and s = 11

A × A

π0

&&LLLLLLLLLLL

k×1×1// A × A × A

•2

��
A

(A × A) × A

θ×

��

s×1×1×1 // A × A × A × A

•3

��
(A × A) × (A × A)

(•×•)•
// A

(s × 1 × 1)•2 = 1

Ottawa 2007, Itegories and PCAs, April 29, 2007 – p. 18/47

Examples of restriction categories

1. The category of sets and partial maps Par(Set, monic).
2. Any partial map category: a favorite is CRingop with localizations L. Then

Par(CRingop,L) is a restriction category (of relevance in algebraic geometry).
3. The category of topological spaces with partial maps defined on an open subset and a

continuous map on that subset.
4. The category sSLatop with stable maps (i.e. binary meet preserving maps). The

category of locales with stable maps (i.e. binary meet and join preserving maps).
5. Partial recursive maps on the natural numbers.
6. Given any partial algebraic theory T there is a classifying cartesian restriction

category C(T) with a generic model of the partial algebraic theory. For example,
there is a generic partial combinatory algebra which lives in its own environment and
gives a generic version of computability.
One can also form the generic category with an appending stack object ...

Ottawa 2007, Itegories and PCAs, April 29, 2007 – p. 19/47

Restriction zeros

A restriction category has a restriction zeros if for each pair of objects A and B there is a map
0 : A −→ B such that

f0g = 0

0 = 0

If a zero map splits then the category has a zero object.

If a restriction category has restriction zeros then it is enriched over pointed sets. Note that
the category of pointed sets is isomorphic to the category of sets and partial maps.

Sets and partial maps have restriction zeros.

Ottawa 2007, Itegories and PCAs, April 29, 2007 – p. 20/47

Coproducts and extensivity

A restriction category which has coproducts is extensive in case it has restriction zeros and a
decision operator:

f : X −→ Y + Z

〈f〉 : X −→ X + X

[Dec.1] ∇〈f〉 = f

[Dec.2] (f + f)〈f〉 = (σ0 + σ1)f

A map d : X −→ X + X is a decision in case d = 〈d〉. Binary decisions implies n-ary
decisions d : A −→ A + ... + A (these satisfy ∇d = d and (d + ... + d)d = (σ1 + ... + σn)d).
An extensive restriction category is a unique decomposition category on the coproduct as
the coproduct in an extensive restriction category becomes a pre-biproduct with respect to
the injections and their restricted inverses:

f = ((σ
(−1)
0 σ0) + (σ

(−1)
1 σ1)f = (σ

(−1)
0 + σ

(−1)
1)(f + f)〈f〉

= ∇(σ
(−1)
0 f + σ

(−1)
1 f)〈f〉 = (σ

(−1)
0 f t σ

(−1)
1 f)

where _ t _ is the join in the homset so that it is uniquely determined.

Ottawa 2007, Itegories and PCAs, April 29, 2007 – p. 21/47

Extensivity cont.

Why is extensivity important?

Every map between coproducts an be written as a matrix ..

X1 + ... + Xn −−−−−−−−−−−−−−−−−−−−−−−→

A =









a11 ... a1n

...

am1 ... amn









Y1 + ... + Ym

where the ith rows must be separated by a decision di such that aij = σjdi

Ottawa 2007, Itegories and PCAs, April 29, 2007 – p. 22/47

Independence spaces

An independence space (X,X) is a set with a set of finite subsets X ⊆ Pf (X) which are
down-closed and contain all singleton subsets.

A morphism f : (X,X) −→ (Y,Y) between independence spaces is a partial map f : X

−→ Y such that restricted to each independent subset is a restricted isomorphism which
preserves independence.

Each X ′ ∈ X determines a restriction idempotent eX′ : X −→ X , we require fe is a
restricted isomorphism and (fe)(−1) determines an independent subset of Y .

The idea is that independent subsets cannot be “squashed” by the maps ...

The category of independence spaces is an extensive restriction category. It does not have
partial products but it has various tensors

Ottawa 2007, Itegories and PCAs, April 29, 2007 – p. 23/47

Independence spaces

There is the following (non-symmetric) tensor product on the category:

(A,A) C (B,B) = (A × B,A C B)

where
X′ ∈ A C B if and only if {a|∃b.(a, b) ∈ X ′} ∈ A

& X′
a = {b|(a, b) ∈ X ′|(a, b) ∈ X ′} ∈ B

b11

...

bm1

...
b1n

��

· · · bmnm

��
a1 · · · am

Every object has naturally a coassociative comultiplication ...

Ottawa 2007, Itegories and PCAs, April 29, 2007 – p. 24/47

Independence restriction categories

Idea: enrich restriction categories in independence spaces ...
Require that (_) : X(A, B) −→ X(A, A) is an independence space map (note: cannot enrich
all the restriction identities). This has various consequences:

There must be a restriction zero.
Parallel arrows {f1, ..., fn} are independent if and only if {f1, ..., fn}.
If {f1, ..., fn} are independent and fi ≤ f ′

i then {f ′
1, ..., f ′

n} are independent.

f and g are independent the fg = 0.

PROOF: (of last) If {f, g} is independent then

{(f, f), (f, g), (g, f), (g, g)}

is independent in X(A, A) C X(A, A) but under composition f g = g f so these
non-diagonal pairs are squashed under composition and so cannot be defined for the partial
map of composition. However, this means that these composites must be zero. �

Ottawa 2007, Itegories and PCAs, April 29, 2007 – p. 25/47

Examples of independences

Given any restriction category X with a restriction zero declare the independent sets
on X(A, B)∗ (where we remove the zero) to be the singleton sets.
Given any restriction category X with a restriction zero declare the independent sets
on X(A, B)∗ to consist of the finite sets X ′ ⊆ X(A, B)∗ such that for each distinct
pair f, g ∈ X ′ we have fg = 0.
Given any extensive category X declare {f1, ..., fn} ⊆ X(A, B)∗ independent in
case there is a decision d : A −→ A + ... + A such that fi ≤ σ

(−1)
i d.

Does separation in extensive categories cover all examples?

Answer: Yes

Ottawa 2007, Itegories and PCAs, April 29, 2007 – p. 26/47

Disjoint restriction categories

An independence restriction category is a disjoint restriction category if independent pairs of
parallel maps f, g : X −→ Y with {f, g} independent have a join f t g which satisfies;

It is the join:
f ≤ f t g and g ≤ f t g

Given f ≤ h and g ≤ h then f t g ≤ h.
It is stable (f t g)h = (fh) t (gh) (and universal k(f t g) = (kf) t (kg)).
{fij |i ∈ I, j ∈ Ji} is independent if and only if {

F

j∈Ji
fij |i ∈ I} is independent.

In a disjoint restriction category it suffices to give the binary independences f ⊥ g as
{f1, ..., fn} is independent iff and only if

fn−1 ⊥ fn

fn−2 ⊥ fn−1 t fn

...

f1 ⊥ f2 t ... t fn

Every extensive restriction category is disjoint with respect to separation.

Ottawa 2007, Itegories and PCAs, April 29, 2007 – p. 27/47

Constructions ...

There are a series of constructions:

Independence restriction

dj

��
Disjoint restriction

Mat

��

dj
∞ // Infinitely disjoint restriction

Extensive restriction

Ottawa 2007, Itegories and PCAs, April 29, 2007 – p. 28/47

Constructions ...

Given any independence restriction category there is a universal disjoint restriction category
into which it embeds η : X −→ dj(X)

dj(X) is defined as follows:
Objects: The same as X, X ∈ X;
Maps: A map F : X −→ Y in dj(X) is an independent subset F ⊆ X(X, Y)∗;
Composition: FG = {fg|f ∈ F, g ∈ G};
Identities: 1X = {1X};
Restriction: F = {f |f ∈ F};
Disjointness: {Fi|i ∈ I} is independent if and only if

S

i Fi is independent.
Join: F t G = F ∪ G.

The embedding preserves the independence structure ...

Ottawa 2007, Itegories and PCAs, April 29, 2007 – p. 29/47

Constructions ...

Given any disjoint restriction category there is a universal extensive restriction category into
which it embeds η : X −→ Mat(X) preserving the disjointness and independence properties:

Objects: Maps A : IA −→ obj(X) where I is a finite set.
Maps: Matrices M : A −→ B where M : IA × IB −→ Map(X) with ∂0(M(i, j)) = A(i) and

∂1(M(i, j)) = B(j) and {M(i, j)|j ∈ IB} independent.
Composition: MN(i, j) =

F

k M(i, k)N(k, j)

Identities: 1A : A −→ A has 1A(i, i) = 1A(i) and 1A(i, i′) = 0 otherwise.

Restriction: M(i, i) =
F

j M(i, j) and M(i.i′) = 0 otherwise.
Disjointness: M ⊥ M ′ if and only if M(i, j) ⊥ M ′(i, j).
Join: (M t N)(i, j) = M(i, j) t N(i, j).

Note Mat(Mat(X)) ≡ Mat(X) ...

Ottawa 2007, Itegories and PCAs, April 29, 2007 – p. 30/47

Constructions ...

One last construction which will be useful:

Given any disjoint restriction category there is a universal infinitely disjoint restriction
category into which it embeds η : X −→ dj∞(X) preserving the disjointness and
independence properties.

A set is infinitely disjoint if all its finite subsets are disjoint.

objects: As for X.
Maps: F ; A −→ B down-closed compatible subsets F ⊆ X(A, B) which are closed to finite

disjoint joins.
composition: FG =⇓ {

F

i,j figj |f ∈ F, g ∈ G} where we must add disjoint joins and
down-close the set of composites.

Identity: 1A = {e|e ≤ 1A}.
Restriction: F = {f |f ∈ F}.
Disjointness: F ⊥ G if and only if for every f ∈ F and g ∈ G we have f ⊥ g.
Join: The disjoint join closure of the union.

Ottawa 2007, Itegories and PCAs, April 29, 2007 – p. 31/47

Itegories

An itegory is a disjoint restriction category with a combinator, which we call the Kleene
wand:

A
f

−−→ A A
g

−−→ B f ⊥ g

A −−−−→
f |?g

B

which satisfies (Conway equations):
[W.1] When f ⊥ h then (gf)|?h = h t ((fg)|?(hg))f ;
[W.2] When f ⊥ g, g ⊥ h, and h ⊥ g then (f t g)|?h = (f |?g)|?(f |?h).
The Kleene wand f |?g means intuitively “iterate the endomorphism f until the result lies in
the definition of g and then apply g.”

... it is repeat f until g do g.

Note f and g must be disjoint, where f ⊥ g means {f, g} is independent, so that the
decision to continue or finish in this iteration is unambiguous.

Ottawa 2007, Itegories and PCAs, April 29, 2007 – p. 32/47

Itegories

The Kleene wand is a combinator (uniform) and a lax combinator (lax uniform). This means.

A

≥a

��

f // A

a

��
A′

f ′

// A′

A

≥a

��

g // B

b

��
A′

g′

// B′

f ⊥ g

A

a

��
≥

f |?g // B

b

��
A′

f ′|?g′

// B′

where equality (resp. inequality) above the line implies equality (resp. inequality) below the
line. With inequalities we call this condition lax uniformity while with equalities it is often
called uniformity. Uniformity and lax uniformity are independent requirements.

Ottawa 2007, Itegories and PCAs, April 29, 2007 – p. 33/47

Itegories

A full subcategory of an itegory is an itegory. If E is any set of idempotents then SplitE(X)

is an itegory whenever X is.
f |?h = (f |?h)f t h;
0|?g = g;
f |?h = h(f |?h);
If c ⊥ d then (bac|?d)ba = (acb|?db)a = cba|?dba;
(f |?h)h = h;
If h∗f = f and h∗ ⊥ h then f |?h = h.
f |?0 = 0;
f |?(hg) = h(f |?g);
When g ⊥ g′ then f |?g ⊥ f |?g′ and f |?(g t g′) = (f |?g) t (f |?g′);
If f ≤ f ′ and g ≤ g′ then f |?g ≤ f ′|?g′;

Ottawa 2007, Itegories and PCAs, April 29, 2007 – p. 34/47

Inductive itegories

A combinator on a disjoint restriction category with the typing of a Kleene wand is an
inductive Kleene wand in case it is a combinator - this means it is uniform - which satisfies
the following conditions:
[iW.1] (f |?g)f t g ≤ f |?g;
[iW.2] xf ≤ x and hg ≤ x implies (f |?g)h ≤ x;

Proposition 3. A disjoint restriction category with an inductive Kleene wand is an itegory.

This has the important consequence:
Corollary 4. Every disjoint restriction category can be embedded into an itegory.
PROOF: Take the disjoint restriction category and infinitely complete it.
Define the Kleene wand in the completion as

f |?g =

∞
G

i=0

gf i

We must show {f ig|i ≤ n} is independent. To establish this note that g ⊥ fg and
g ⊥ f(g t fg) = fg t f2g, but then g ⊥ f(g t fg t f2g = fg t f2g t f3g etc. �

Ottawa 2007, Itegories and PCAs, April 29, 2007 – p. 35/47

Traces and itegories

We shall denote the trace of a map

f =

2

4

f00 f01

f10 f11

3

5 : A + X −→ B + X

Tr(f) =

2

4

f00 f01

f10 f11

3

5 : A −→ B

In a traced extensive restriction category we may define:

f |?g =

2

4

0 1

g f

3

5

Theorem 5. A disjoint restriction category is an itegory if and only if Mat(X) is a (laxly and
uniformly) traced extensive category whose trace reduces to the Kleene wand as above.

Ottawa 2007, Itegories and PCAs, April 29, 2007 – p. 36/47

Traces and itegories

In this notation the identities required of a trace may be written:

Yanking: 1 =

2

4

0 1

1 0

3

5

Tightening: g

2

4

a b

c d

3

5 f =

2

4

gaf bf

gc d

3

5

Superposition:

2

6

6

4

f 0

0

2

4

a b

c d

3

5

3

7

7

5

=

2

6

6

4

f 0 0

0 a b

0 c d

3

7

7

5

Compatibility:

2

6

6

4

a b c

d e f

h i j

3

7

7

5

=

2

6

6

4

a c b

h j i

d f e

3

7

7

5

Ottawa 2007, Itegories and PCAs, April 29, 2007 – p. 37/47

Traces and itegories

Lemma 6. In any extensive restriction category with a trace on the coproduct:

(i)

2

4

a b

c d

3

5 = a t (d|?c)b = a t

2

4

0 1

c d

3

5 b;

(ii)

2

6

6

6

6

6

4

a00 ... a0n b0

...

am0 ... amn bm

c0 ... cn d

3

7

7

7

7

7

5

=

2

6

6

6

6

6

6

6

6

4

2

4

a00 b0

c0 d

3

5 ...

2

4

a0n b0

cn d

3

5

...
2

4

am0 bm

c0 d

3

5 ...

2

4

amn bm

cn d

3

5

3

7

7

7

7

7

7

7

7

5

=

2

6

6

4

a00 t (d|?c0)b0 ... a0n t (d|?cn)b0

...

am0 t (d|?c0)bm ... amn t (d|?cn)bm

3

7

7

5

Ottawa 2007, Itegories and PCAs, April 29, 2007 – p. 38/47

Traces and itegories

Here is the proof of the second identity from being traced:

(f |?g)|?(f |?h) =

2

4

0 1

f |?h f |?g

3

5 =

2

6

6

6

6

6

6

4

2

4

0 0

h f

3

5

2

4

1 0

g f

3

5

2

4

0 1

h f

3

5

2

4

0 1

g f

3

5

3

7

7

7

7

7

7

5

=

2

6

6

4

0 1 0

0 0 1

h g f

3

7

7

5

=

2

6

6

4

0 0 1

h f g

0 1 0

3

7

7

5

=

2

6

6

6

6

6

6

4

2

4

0 1

0 0

3

5

2

4

0 1

1 0

3

5

2

4

h g

0 0

3

5

2

4

f g

1 0

3

5

3

7

7

7

7

7

7

5

=

2

4

0 1

h f t g

3

5

= (f t g)|?h

Ottawa 2007, Itegories and PCAs, April 29, 2007 – p. 39/47

Cartesian itegories

Proposition 7. In any extensive restriction category which has partial products necessarily the
product distributes over the coproduct.

Conversely, when one has restriction zeros, if the partial products distribute over the coproducts, one
necessarily has an extensive restriction category.

SO a cartesian extensive restriction category is a distributive restriction category.

A cartesian disjoint restriction category is a disjoint restriction category with partial
products in which the product functors A × _ preserve disjunction and independence.

Proposition 8. The extensive (matrix) completion of a cartesian disjoint restriction category has
partial products and, thus, is a distributive restriction category.

The product is constructed by distributing the product structure through the coproduct
structure ...

Ottawa 2007, Itegories and PCAs, April 29, 2007 – p. 40/47

Cartesian itegories

In a cartesian itegory is a cartesian disjoin restriction category in which one requires that the
product functors preserve iteration: that

(A × f)|?(A × g) = A × (f |?g)

This ensures that context variables are not affected by iteration.

Claim that these provide the semantics of flow diagrams ...

Ottawa 2007, Itegories and PCAs, April 29, 2007 – p. 41/47

Computability in cartesian itegories

We can work without loss in the extensive completion ...

SO assume we are working in a distributive itegory ...

Ottawa 2007, Itegories and PCAs, April 29, 2007 – p. 42/47

Stack objects

Our aim is to build a partial combinator algebra for this we need:
A stack object is an object with maps:

put : 1 + A × A −→ A

get : A −→ 1 + A × A

such that put get = 11+A×A .

This does force put to be a total map but there is, importantly, no requirement that get need
be total.
Lemma 9. The following are equivalent conditions for an object:

(i) 1 ≺ A, A + A ≺ A and A × A ≺ A;
(ii) 1 + A ≺ A and A × A ≺ A;

(iii) 1 + A × A ≺ A (it is a stack object).

A stack object is like an old warehouse ... if you put something in you can retrieve it BUT if you forget
where you put it you will never find it!

Ottawa 2007, Itegories and PCAs, April 29, 2007 – p. 43/47

Creating a PCA

Code Value Stack Code Value Stack
end x [] exit with x

k x S end k0(x) S

k0(x) y S end x S

s x S end s0(x) S

s0(x) y S end s1(x, y) S

s1(x, y) z S x z cons(c0(y, z), S

end v cons(c0(y, z), S) y z cons(c1(v), S)

end v′ cons(c1(v), S) v v′ S

Partial combinator reduction

A × A × A
(step exit)

−−−−−−−−−−→ A × A × A + A

A × A × A −−−−−−−−→
step|?exit

A

_ • _ = (step|?exit)(1 × 1 × [])

Ottawa 2007, Itegories and PCAs, April 29, 2007 – p. 44/47

The identity for s is the only difficulty:

((s • x) • y) • z = s1(x, y) • z

= step|?exit(s1(x, y), z, [])

=

8

<

:

σ0(c, v, d) 7→ step|?exit(c, v, d)

σ1(x) 7→ x

9

=

;

step(s1(x, y), z, [])

= step|?exit(x, z, cons(c1(y, z), []))

= step|?exit(x • z, end, cons(c1(y, z), []))

= step|?exit(y, z, cons(c0(x • z), []))

= step|?exit(y • z, end, cons(c0(x • z), []))

= step|?exit(y • z, x • z, [])

= (y • z) • (x • z)

Where we use repeatedly the identity: step|?exit(x, y, S) = step|?exit(x • y, end, S) which,
unfortunately, for a general trace and stack object may not hold!

Ottawa 2007, Itegories and PCAs, April 29, 2007 – p. 45/47

For this identity we require that our stack object is appending that is has a map
append : A × A −→ A which satisfies

A × A × A

cons×1

��

1×append // A × A

cons

��
A × A

append

// A

1 × A
nil×1 //

π1

&&LLLLLLLLLLL
A × A

append

��
A

A × A

snoc×1

��

append // A

snoc

��

(1 + A × A) × A

'

��
A + A × A × A

snoc+1

��
1 + A × A + A × A × A

〈σ0|(1×nil×1)σ1|σ1〉

��
1 + A × A × A

1+1×append

// 1 + A × A

Ottawa 2007, Itegories and PCAs, April 29, 2007 – p. 46/47

EXIT!

Ottawa 2007, Itegories and PCAs, April 29, 2007 – p. 47/47

	Overview
	Motivation
	Motivation
	Motivation
	Motivation
	Motivation
	Motivation
	Motivation
	Restriction categories and partial maps
	Basic properties of restriction categories
	Completeness of restriction categories
	Partial map categories
	Partial map categories
	Partial products
	The restriction category ${sf sSLat}^{
m op}$
	The fundamental functor
	PCAs revisited
	Examples of restriction categories
	Restriction zeros
	Coproducts and extensivity
	Extensivity cont.
	Independence spaces
	Independence spaces
	Independence restriction categories
	Examples of independences
	Disjoint restriction categories
	Constructions ...
	Constructions ...
	Constructions ...
	Constructions ...
	Itegories
	Itegories
	Itegories
	Inductive itegories
	Traces and itegories
	Traces and itegories
	Traces and itegories
	Traces and itegories
	Cartesian itegories
	Cartesian itegories
	Computability in cartesian itegories
	Stack objects
	Creating a PCA

