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1 Cartesian Closed Categories

Throughout these two sections, when referring to a Cartesian category we mean a
category which has all finite limits. Of course, such a category will have all pullbacks,
and thus any morphism f : A Ñ B in a Cartesian category C induces a functor
between slice categories

f˚ : C{B Ñ C{A

so that for any object ϕ : X Ñ B in C{B, its image under f˚ is given by the morphism
ϕ^ f :Ñ C given by the pullback diagram

ϕ^ f X

A B

ϕ

f

Any Cartesian category has a terminal object as it is the limit of the empty diagram.
Thus, in the case where the considered morphism is the unique map into the terminal
object B Ñ 1, for an object B in C, then according functor

B˚ : C Ñ C{B

will send an object A in C to the map B˚pAq Ñ B given by the pullback diagram

B˚pAq – B ˆ A A

B 1

Note that this construction is a special case of our previous construction by realizing
the obvious isomorphism of categories C{1 – C.

This functor has an important left adjoint, likewise induced by the morphism
f : AÑ B, which is denoted

Σf : C{AÑ C{B

and sends any object g : X Ñ A in C{A to the object in C{B given by postcompo-
sition with f , i.e. gf : X Ñ B. As was the case above, if the morphism inducing the
functor is given by the unique morphism into the terminal object, say B Ñ 1, then
we denote the functor as

ΣB : C{B Ñ C

appealing once again to the isomorphism C{1 – C.
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Definition 1.1. Let C be a category with finite products. We say an object A in C
is exponentiable if its associated (left) product functor

p´q ˆ A : C Ñ C

exists and has a right adjoint, usually denoted p´qA. We say C is Cartesian closed if
every object in the category is exponentiable.

It does seem odd that we do not insist that a Cartesian closed category be a
Cartesian category, but [1] insists that there are important examples of categories
that are Cartesian closed but do not have all finite limits (e.g. the relationship be-
tween Cartesian closure and the lambda calculus, which we shall see later in the
course). However, if a category is both Cartesian and Cartesian closed, we say that it
is properly Cartesian closed, and note that it suffices for a Cartesian closed category
to have all equalizers.

To understand the adjunction providing Cartesian closure, it is useful to con-
sider the equivalent construction of the couniversal property, where the counit of the
adjunction is (suggestively) denoted as the evaluation map

ev : BA
ˆ AÑ B

such that it satisfies the usual couniversal property being that for any map h : CˆAÑ
B in C, there exists a unique h : C Ñ BA so that the diagram

C ˆ A BA ˆ A

B

hˆ1A

h
ev

commutes. Here, the map h is commonly referred to as the exponential transpose of
h and simply corresponds to the usual transpose provided by natural isomorphism

CpC ˆ A,Bq – CpC,BA
q

corresponding to the adjunction.

Example 1.1. The category Set obviously has finite products, and is, in fact, Carte-
sian closed where the exponential functor is given by the covariant hom-functor i.e.
the structure is given by the well known adjunction

p´q ˆ A % SetpA,´q : Set Ñ Set

for any set A. As mentioned before, one can check that in this case, the counit of the
adjunction is exactly the evaluation map

ev : SetpA,Bq ˆ AÑ B; pf, aq ÞÑ fpaq

3



Example 1.2. [2] Let C be any small category. Then, we can see that the category of
presheaves rCop,Sets is Cartesian closed. Given the precedent given by the Cartesian
closure of Set, one would think that the proper adjoint to the product functor would
take the form

QP
pCq “ SetpP pCq, QpCqq

for presheavesQ and P . However, it is a simple exercise to check that this construction
is not functorial. Instead, we suppose what would result should such a functor exist
and work backwards. If this were the case, then we would have the natural bijection

rCop,SetspR ˆ P,Qq – rCop,SetspR,QP
q

for any presheaves P,Q, and R. Then, considering the case where R is representable,
say R “ Cp´, Cq for some object C in C, then we would have

QP
pCq – rCop,SetspCp´, Cq, QP

q

– rCop,SetspCp´, Cq ˆ P,Qq

And thus the proper adjoint turns out to be the construction

QP
pCq :“ rCop,SetspCp´, Cq ˆ P,Qq

being the set of all natural transformations from Cp´, Cq ˆ P Ñ Q.

Recall that characterizing a category as Cartesian is a local property i.e. for any
Cartesian category C, the slice category C{B is a Cartesian category for any object
B in C.

Lemma 1.1. Let C be a Cartesian category. Then, the following properties hold:

1. An object B of C is exponentiable if and only if the functor B˚ : C Ñ C{B
has a right adjoint

ΠB : C{B,Ñ C.

2. If A is exponentiable in C, then B˚pAq is exponentiable in C{B for any B.
Moreover, B˚ preserves any exponentiabls which exist in C.

Proof. (i): pðq : Suppose that pB˚ % ΠBq form an adjoint pair. It is easy to check
that p´q ˆB is equal to the composite

C
B˚
´́Ñ C{B

ΣB
´́Ñ C

So, if ΠB exists, define p´qB :“ ΠB ˝B
˚. Then, we have the diagram
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C K C{B K C

B˚ ΣB

ΠB B˚

and thus p´q ˆB % p´qB, since adjoints compose.

pñq : Conversely suppose B is exponentiable in C. Then, for every object f :
AÑ B in C{B, define ΠBpfq to be the pullback given by the diagram

ΠBpfq AB

1 BB

fB

q

where q is the exponential transpose of q : 1ˆ B Ñ B. Now, for any object C of C,
the universal property of pullbacks says that any morphism C Ñ ΠBpfq corresponds
to a morphism h : C Ñ AB, as in the diagram

C

ΠBpfq AB

1 BB

h

fB

q

By the adjoint, these morphism then correspond to morphisms h : C ˆ B Ñ A so
that hf : C ˆB Ñ B is the product projection. There are then isomorsphism

C ˆB – B ˆ C – B˚pCq

thus providing the final correspondence with morphsisms B˚pCq Ñ f in C{B. After
checking for naturality, we can infer the natural isomorphism

CpC,ΠBpfqq – C{BpB˚pCq, fq

piiq : Given an object f : C Ñ B in C{B, define fB
˚pAq to be the left vertical map

in the pullback square
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fA ^ p CA

B BA

fB
˚pAq fA

p

where p is the exponential transpose of the projection p : B ˆ A Ñ B. Then, if
g : D Ñ B is another object of C{B, the product g ˆB˚pAq is the diagonal map (in
C) of the diagram

D ˆ A B ˆ A

D B

xg,1Ay

π0 p

g

which is easily verified to be a pullback square. Then, morphisms h : gˆB˚pAq Ñ f
in C{B correspond to morphisms h : D Ñ CA in C so that hfA “ gp. This is given
explicitly in the following two diagrams

D ˆB˚pAq C D CA

B B B DA

h

xg,π0y f

h

g fA

p

where the correspondence is given using the acknowledgement of the isomorphism
B˚pAq – BˆA. This must then correspond to morphisms g Ñ fB

˚pAq in C{B, using
the universal property of pullbacks to achieve the diagram

D

fA ^ p CA

B DA

h

g

D!

fB
˚pAq fA

p

Finally, if f is itself of the form B˚pEq for some object E in C, then the pullbacks
square we considered above is reduced to

EA ˆB EA ˆBA

B BA

x1,py

p
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since the functor p´qA preserves products as it is a right adjoint. This shows that
exponentials are preserved.

Corollary 1.1. Let C be a Cartesian category. Then C is locally Cartesian closed,
i.e. C{B is Cartesian closed for every object B of C, if and only if, for every morphism
f : AÑ B in C, the functor f˚ : C{B Ñ C{A has a right adjoint Πf : C{AÑ C{B.

Proof. This result follows immediately from the previous lemma and the well known
equivalence pC{Bq{f – C{A, for a morphism f : AÑ B.

Definition 1.2. Let C and D be Cartesian closed categories and let F : C Ñ D be
a functor that preserves finite products. Then F is called Cartesian closed if the map
θA,B : F pBAq Ñ F pBqF pAq is an isomorphism for all objects A,B in C, where θA,B is
the transpose of the counit

F pBA
q ˆ F pAq – F pBA

ˆ Aq
F pevq
´́ Ñ́ F pBq

under the natural isomorphism given by the adjunction,

DpF pBA
q ˆ F pAq, F pBqq – CpF pBA

q, F pBqF pAqq.

Lemma 1.2. Let F : C Ñ D be a functor between categories that are Cartesian
closed with a left adjoint L. Then F is Cartesian closed if and only if the cannonical
morphism

pLpπ0q, Lpπ1qεAq : LpB ˆ F pAqq Ñ LpBq ˆ A

is an isomorphism for all object A and B of C and D respectively, where ε is the
counit of the adjunction pL % F q.

In practice, this lemma has obvious utility for testing for the Cartesian closure
of functors. However we omit the proof as it necessitates the verification that quite
an intricate pair of compositions provide the required inverse morphisms, though an
exposition of these inverses can be found in r1s, pp. 51,52.

To conclude this section, we state without proof one final result connecting Carte-
sian closed categories with regular categories studied in the previous seminar. The
proof of this proposition can be found in r1s, pp. 55,56.

Proposition 1.1. For any properly Cartesian closed category C, the category RegpCq
is Cartesian closed.
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2 Subobject Classifiers

Before we begin, it is worth noting that many authours introduce subobject classifiers
through a construction defining its domain to be the terminal object in the category.
Johnstone, on the other hand, introduces this concept showing that this property
is, in fact, a consequence of the subobject classifier we wish to see in a subobject
classifier. We follow this construction:

Definition 2.1. Let C be a category with pullbacks. A generic subobject in C is a
monomorphism J : B1 � B so that for any other monomorphism m : A1 � A in C,
there exists a unique morphism f : A Ñ B such that the following diagram forms a
pullback square:

A1 B1

A B

m J

D!f

In this case, f is call the classifying map or characterstic morphism associated to m.

Lemma 2.1. Let C be a category with pullbacks and a generic subobject. Then, the
domain of the generic subobject is necessarily the terminal object in C.

Proof. Let J : B1 � B be a generic subobject in a category with pullbacks C. The
identiy on any object A in C is monic, and so there exists a map ψ : A Ñ B1 which
is given by the pullback

A B1

A B

ψ

J

D!ϕ

Moreover, if ω : AÑ B1 is any other morphism, then

A B1

A B

ω

J

ωJ

But ϕ is the unique charictaristic map for 1A, and so ωJ “ ϕ “ ψJ and hence ω “ ψ
since J is monic.

Definition 2.2. Let C be a category with pullbacks and a generic subobject 1Ω.
Then the codomain of the generic subobject Ω is called the subobject classifier of C.
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Lemma 2.2. In any category, the pullback of a regular monomorphism, should it
exist, is itself regular.

Proof. In a category C, suppose that m : A� B is a regular monomorphism so that
it equalizes g, h : B Ñ C. Furthermore, suppose that f : D Ñ B is some morphism
so that the pullback

f ^m D

A B

f˚pmq

f

m

exists. Then, it is easy to see that f˚pmq equalises the pair fg, fh. Indeed, if e : XD
is any other arrow so that efg “ efh, then ef equalizes the pair pg, hq, and so the
universal property of equalizers gives a map ẽ : X Ñ m so that ẽm “ ef . In this
case, there is then a unique arrow X Ñ f ^m so that the diagram

X

f ^m D

A B

e

ẽ

D!

f˚pmq

f

m

by the universal property of pullbacks. By the uniqueness of this arrow and the
uniqueness of ẽ, we can see that f˚pmq is an equalizer and thus a regular monomor-
phism.

Corollary 2.1. In any category with pullbacks and a subobject classifier, every
monomorphism is regular. In particular, any such category is balanced (every mor-
phism that is both epic and monic is an isomorphism).

Proof. Let C be a category with pullbacks and a subobject classifier 1 � Ω. Notice
that the triangle

1 Ω

1

J

!

commutes, and so J equalizes the pair p!J, 1Ωq. So, J is a regular monomorphim
and any other monomorphism in C is the pullback along J along its characteristic
map, and thus must also be regular by the previous lemma. Furthermore, it is a well
known fact that any epic equalizer is an isomorphism, and thus C is balanced.
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Example 2.1. In the category Set, the subobject classifier is given by

J : t˚u� Ω :“ t0, 1u; ˚ ÞÑ 1

Then, if m : A� B is any other monomorphism of sets, that is an injective function,
define the set function f : B Ñ Ω so that for any b P B,

fpbq “

#

1 if b “ mpaq for some a P A;

0 otherwise.

Then, from a brief diagram chase, one can check that

A t˚u

B Ω

m

!

J

f

is a pullback square, and that f is the unique map allowing this property.

Example 2.2. [2] For any small category C, the category of copresheaves rC,Sets
has a subobject classifier, given by the following construction: Let F be a subfunctor
of CpA,´q for A an object of C. Then, this functor is completely characterized by
the set

R “ tf P C1 | dom f “ A and f P F pcodom fqu.

Then R is called a cosieve on A. Thus, the subobject classifer Ω in rC,Sets is defined
to behave on objects so that

ΩpAq “ tcosieves on Au

and on morphisms so that, for any R P ΩpAq and any morphism f : AÑ B,

ΩpfqpRq “ tg P C1 | dom g “ B and gf P Ru

The case for the presheaf category rCop,Sets is of course given by dualizing this no-
tion. Importantly, in the case where C “ OpenpXq, the open lattice of a topological
space X, then, for any open subset U Ď X, we have

ΩpUq “ tV | V is open and V Ă Uu.

In fact, one can check that, in this case as well as in the more general case above, the
presheaf Ω is, in fact, a sheaf.
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Lemma 2.3. If Ω is a subobject classifier in a category C (with pullbacks), then the
triangle

B B ˆ Ω – B˚pΩq

B

B˚pJq

π0

is a generic subobject, and thus defines a subobject classifier, in the slice category
C{B, for any object B of C.

Proof. Let the triangle

A1 A

B

m

f 1 f

denote a monomorphism in the category C. Then m : A1 � A is a monomorphism
in C, so let g : AÑ Ω be its classifying map in this category. Define the component
map xf, gy : AÑ B ˆ Ω. Then, it is easy to check that the prism

A1 B

A B ˆ Ω

B

f 1

B˚pJq

xf,gy

f π0

forms a pullback C{B, and the uniqueness of xf, gy is given by the uniqueness of g in
C (since the forgetful functor U : C{B Ñ C creates limits).

We end with a fun little lemma, describing the behaviour of monic endomorphism
on a subobject classifier, as the proof provides a good explication of the behaviour of
the subobject classifier itself.

Lemma 2.4. Let f : Ω Ñ Ω be a monomorphism between subobject classifiers.
Then, ff “ 1Ω.

Proof. First, form the pullback diagram given by the subobject classifier

U 1 V 1

Ω Ω U Ω

!

g J

!

h J

f g
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Since f is monic, this implies that there are monomorphisms V
h
Ñ́ U Ñ 1, which we

can use to form the diagram

V V U 1

U 1 Ω Ω

h

h !

g J

! J f

from which it is easy to verify that each square, and hence the outer rectangle, is a
pullback square. Therefore, the composition of the three bottom arrows is a classifying
map, and we have !UJf “ g. Furthermore, this gives gff “ g since !UJ “ gf , and
so the diagram

U U

Ω Ω

g g

ff

which is a pullback, which is seen using the fact that ff and g are both monic. Putting
this diagram together with what we started with gives that the outer rectangle

U U 1

Ω Ω Ω

g g

!

J

ff f

is a pullback square, and hence fff “ f by the uniques of the classifying map.
Furthermore, since f is monic, and monomorphisms compose, we have ff “ 1Ω, as
required.
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