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Abstract. In this paper I aim to summarize the important concepts, defini-

tions, examples and theorems in sections A2.1 and A2.2 in the book sketches
of an elephant a topos theory compendium by Peter Johnstone.

1. Preliminary information

In this section I include some concepts in previous sections that I felt for com-
pleteness sake to include, this also has the advantage of letting the reader have
consistent notation with the new and previous material (that other authors may
differ from). Also I believe it will be a nice review for the reader to the recall the
important notions that this section will be using as prerequisite knowledge.

Definition 1.1. Let C be a category with finite products, we say an object A ∈ C0
is Exponentiable if we are given an operation assigning to each object B ∈ C0 an
object BA ∈ C0 equipped with a morphism ev : BA → B such that ∀h : C × A→
B, ∃!h̄ : C → BA such that the following diagram commutes

C ×A BA ×A

B

h̄×1A

h ev

h̄ is called the exponential transpose of h

Definition 1.2. A category C is called Cartesian closed if every object is expo-
nentiable.

Definition 1.3. A Cartesian closed category is called Properly Cartesian closed
if the category also has equalizers.

Definition 1.4. Let C be a category with pullbacks. A generic subobject in C is
a monic > : 1 � Ω (1 denotes the terminal object in C) such that, given any other
monic m : A′ � A there exists a unique f : A→ Ω making the following diagram a
pullback

A′ 1

A Ω

!A′

m >

f
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f is called the Classifying Map of the subobject m and Ω is called the subobject
classifier. It should be noted that classifying maps classify subobjects uniquely up
to isomorphism.

2. Defining with Examples a Topos

Johnstone informally describes what a topos is as: a category with all the nice
Set like features one would want out of a category. This is a nice definition and can
give the reader an intuition of what a topos is like. But what fascinated myself with
topos’s is how many ways one can look at a topos differently. Johnstone starts the
book with giving 14 descriptions of ”what a topos is like” and goes on to list them,
here are some of them: 1. A topos is a category of sheaves on a site 2. A topos is the
embodiment of an intuitionistic higher order theory 3. A topos is a generalized space
4. A topos is a semantics for intuitionistic formal systems 5. A topos is a setting
for synthetic differential geometry. The formal definition Johnstone give is as follows.

Definition 2.1. A Topos is a properly Cartesian closed category with a subobject
classifier.

Let E be a topos, we denote the exponential ΩA = PA and ∈A� PA × A for
the subobject by classified by the evaluation map ev : PA×A→ Ω. This subobject
has the following universal property: given an object B and a subobject R� B×A
∃!r : B → PA for which there is a pullback square

R ∈A

B ×A PA×A

ev

r×1A

This phenomenon is a central notion in what power objects are.

Definition 2.2. In a Cartesian category E , a power object of an object A ∈ E0
is an object PA equipped with a subobject ∈A� PA×A such that given an object
B and subobject R � B × A ∃!r : B → PA such that the following diagram is a
pullback.

R ∈A

B ×A PA×A

ev

r×1A

Definition 2.3. We say a Cartesian category E has power objects if there exists
an operation assigning each object a power object.

Notice that by the discussion before these definitions Topos’s have power objects
and conversely if we are given a Cartesian category with power objects we have a
subobject classifier as this is (up to isomorphism) the same thing as a power object
for 1. It will be shown later in the book that a category which is Cartesian and
has power objects will also be Cartesian closed but for now we distinguish between
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Cartesian categories with power objects and Topos’s (even though later on we will
see that these are the same) with the following definition

Definition 2.4. A category E which is Cartesian and has power objects is a Weak
Topos

It will be shown in later sections that weak topos’s are topos’s and vice versa
but for now to avoid confusion (as this has not been shown yet) we use this termi-
nology.
The first example of a topos is the category of sets. Which better be the case as
Set is the informal basis for what we want a topos to be like.

Example 2.5. The category Set is a Topos

Proof. In order to show that Set is a topos I need to show 2 things.
1. Properly Cartesian closed
In order to show this I need to show 3 things: a) Set has finite products, this is
indeed true and these products are just Cartesian products. b) Has equalizers, this
is also true as given two maps f, g : X → Y we define the equalizer of these two
maps to be {x ∈ X|f(x) = g(x)} with the equalizing map being the inclusion of
this set into X it is straight forward to verify that this satisfies the desired universal
property. c) Every object is exponentiable, to show this let A ∈ Set0 I need to show
that ∀B ∈ Set0 that there exists BA ∈ Set0 with a map ev : BA ×A→ B ∈ Set1

satisfying that ∀h : C ×A→ B ∈ Set1 ∃!h̄ : C → BA ∈ Set1 making the following
diagram commute

C ×A BA ×A

B

h

h̄×1A

ev

We define the exponential BA = [A,B] = homSet(A,B) with evaluation map
ev : [A,B] × A → B defined element wise by ev(f : A → B, a ∈ A) = f(a) ∈ B,
given that map h : C×A→ B we define the unique h̄ : C → [A,B] by h̄(c) = h(c, a)
which we can verify make the diagram commute by

(c, a) (h̄(c), a)

h(c, a) = h̄(c)(a) = h(c, a)

h

h̄×1A

ev

To check that this h̄ is unique suppose there exists another map h̄′ : C → [A,B]
making the following diagram commute
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C ×A BA ×A

B

h

h̄×1A

h̄′×1A

ev

Such that h̄ 6= h̄′ ⇐⇒ ∃c ∈ C such that h̄(c) : A→ B 6= h̄′(c) : A→ B but this is
only true ⇐⇒ ∃a ∈ A such that h̄(c)(a) 6= h̄′(c)(a) but then the following diagram
must not commute

(c, a) (h̄(c), a)

h(c, a) = h̄(c)(a) 6= h̄′(c)(a)

h

h̄′×1A

ev

Contradicting our assumption that h̄′ made the diagram commute in the first place
so h̄ is unique. This shows that Set is properly Cartesian closed
2. The second thing I have to show is that Set has a subobject classifier. To
show that Set has a subobject classifier I need to show that it has a generic
subobject 1 � Ω such that given any monic (injective set function) m : A � B
that ∃!f : B → Ω making the following diagram commute and a pullback

A 1

B Ω

!A

m

f

I will define Ω = {4,�} (any two element set) and let 1 = {?} (any one element set)
and define the generic subobject 1 � Ω by ?→ � (which is injective). Now given
any monic m : A� B I will define the unique f : B → Ω pointwise by f(b) = � if
b ∈ im(m) and f(b) = 4 if b /∈ im(m). With these defined we can check that these
maps indeed make the diagram commute as

a ?

m(a) ∈ im(m) �

!A

m

f

Commutes, and we can verify that this forms a pull back as given the following
diagram commuting
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A′

A 1

B Ω

f ′

!A′

∃!θ

!A

m

f

We can define the unique theta as θ : A′ → A by θ(a′) = a such that m(a) = f ′(a′).
I first must show that this is a set function, but first an observation is needed, Since
the outer square commutes and elements from A′ will be mapped to � ∈ Ω going
across and the down this implies that going down and then across from A′ everything
will also be mapped to � which is true ⇐⇒ im(f ′) ⊂ im(m) by the construction
of f . To show that θ is a set function I need to show two things 1. Well defined:
suppose a′ = a′′ ∈ A′ then θ(a′) is equal to the a ∈ A such that m(a) = f ′(a′) but
m is monic (injective) which implies there is only one such a ∈ A =⇒ θ(a′′) = a as
there is no choice but the one element dictated by the monic m. 2. Total: Suppose
a′ ∈ A′ then since im(f ′) ⊂ im(m), ∀a′ ∈ A ∃a ∈ A such that f ′(a′) = m(a) but
this implies that θ(a′) = a so θ is total and well defined and therefore a function. In
order to show that this θ makes the diagram commute it is sufficient to show that
θm = f ′ commutes, which we can see by m◦θ(a′) = m(a) = f ′(a′) by definition of θ.
This θ is unique as if there was another θ′ making the following diagram commute

A′

A 1

B Ω

f ′

!A′

θ

θ′

!A

m

f

Such that θ 6= θ′ ⇐⇒ ∃a′ ∈ A′ such that θ(a′) 6= θ′(a′) but then since m is monic

f ′(a′) = m ◦ θ(a′) 6= m ◦ θ′(a′)

Which shows that θ′ does not make the diagram commute contradicting out as-
sumption that θ is not unique so θ must be unique which implies the category Set
has a sub object classifier and is hence a Topos. �

Remark 2.6. The category Setf is a topos as well. The proof is the same by
replacing sets with finite sets, our power object [A,B] is also finite sets as A,B are
finite and our subobject classifier is a finite set already so nothing really changes.

Proving that a category is a topos takes a lot of work (as seen above) and it
is because of that I will not go into as much details as I did for Set when showing
something is a topos. As demonstrated in the next example.

Example 2.7. Let C be a small category then the functor category [C,Set] is a
topos.
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Proof. This proof is in the book under two statements covered in previous sections:
proposition 1.5.5 and lemma 1.6.6, I will not go over them fully but to give you
a brief picture, our subobject classifier Ω ∈ [C,Set]0 will be a functor. What
this does to objects is, elements of Ω(A) correspond to morphisms C(A,−) → Ω
and exponentials GF by the Yoneda lemma implies that elements of GF (A) must
correspond bijectively to morphisms C(A,−) → GF . Details are in the previous
sections mentioned at the beginning. �

We will see later on in the book that this example generalizes substantially and
that if C is a finite category and E is any topos then [C, E ] is a topos.
This example is used mostly as a stepping stone to introduce some notions of
presheaves and sheaves and to generalize these concepts further. We start with the
definition of a presheaf.

Definition 2.8. Let X be a topological space with open set latticeO(X) (considered
a small preorder), then a Presheaf on X is a functor F : O(X)op → Set

Example 2.9. Since O(X) is a small preorder O(X)op is a small preorder which
can be considered a category (objects: Open sets, morphisms: Superset relations)
and by the previous example since O(X)op is a small category the the functor
category or the cateogry of presheaves [O(X)op,Set] is a topos.

Some terminology regarding sheaves and presheaves is that if U ∈ O(X)op0 and
F ∈ [O(X)op,Set] then elements of F (U) are called sections and maps F (U)→ F (V )
induced by V ⊂ U are restrictions of sections. The next definition tells us what a
sheaf is.

Definition 2.10. A presheaf F ∈ [O(X)op,Set] is a Sheaf if given any open
covering (Ui|i ∈ I) of an open set U ∈ O(X)op0 and any family (si|i ∈ I) of elements
of F (Ui) which are compatible (in the sense that for each pair (i, j) for i, j ∈ I the
restrictions of si and sj are equal in F (Ui ∩ Uj)) ∃!s ∈ F (U) whose restriction to
each Ui equals si,∀i ∈ I

Example 2.11. The category of sheaves on a topologacal space denoted Sh(X) is
a Topos

Proof. Johnstone leaves this proof later in the book as well but for the idea of the
proof is that we can get this category is Cartesian from the category being closed
under finite limits. It can be show that if G is a sheaf and F is a presheaf then
GF is a sheaf and so in the category of sheaves G and F are sheaves and so there
exponential is a sheaf. So Sh(X) is Cartesian closed. The subobject classifier Ω
will be a functor which send objects to the set of all open subsets of U . �

What I found interesting in this section is that we can generalize this notion of
presheaves and sheaves to arbitrary small categories. To this end we need to define
a notion of a covering to objects of this small category described below.

Definition 2.12. Let C be a small category. A Coverage of C is a function,
assigning each object A ∈ C0 a collection T (A) of families (fi : Ai → A|i ∈ I)
called a T -covering family, such that if g : B → A ∈ C1 then ∃ a T -covering family
(hj : Bj → B|j ∈ J) such that each ghj factors through some fi
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Definition 2.13. A Site is a small category with a coverage

The ”old name” as Johnstone refers to it is a Grothendieck pre-topology, and
with this coverage we can form a notion of sheaves (just like what we did before)
which is given in the following definition.

Definition 2.14. Let C be a small category we say that a functor f ∈ [C,Set]
satisfies the sheaf axiom for a family of morphisms (fi : Ai → A|i ∈ I) if,
whenever we are given a family of elements si ∈ F (Ai) which are compatible in the
sense that, whenever g : B → Ai and h : B → Aj satisfies fig = fjh (i and j not
necessarily distinct) then ∃!s ∈ F (A) such that F (fi)(s) = si for each i ∈ I.

Lemma 2.15. If (C, T ) is a site (C a category and T a coverage) then sh(C, T )
which is the category of functors satisfying the sheaf axiom, is a topos

Proof. Left till a later section where Johnstone proves a more general result. �

An interesting consequence of this lemma is that given any regular category one
can put a covering on it (called a regular covering) and then embed it (fully and
faithfully) into a category of sheaves which is a topos.

3. Monadicity theorem

In this section the book covers 5 results leading up to the main theorem called
the Monadicity theorem. We first start with a definition of a special functor relating
to power objects.

Definition 3.1. Let E be a weak topos, then the assignment A→ PA = ΩA can
be made into a functor P : Eop → E

A B PB

B A PA

in E in Eop in E

f f

P (B)

P (f)

P (A)

P

Where P (f) : PB → PA is the name of the relation Ef � PB ×A where Ef and
the map is defined by the following pullback.

Ef εB

PB ×A PB ×B1PB×f

It has been awhile since we talked about names of relations but to remind the reader
P (f) being the name of the relation Ef � PB ×A means that P (f) is the unique
map making the following a pullback.
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Ef εA

PB ×A PA×A

ev

P (f)×1A

Here P defined above is a contravariant functor, but we can define a covariant
functor which is identical to P with what it does to objects (which will be used
later on).

Definition 3.2. Let Em be the subcateogry of monomorphisms in E (A topos)
define ∃ : Em → E where if m : A� B is monic then ∃m : PA→ PB is the name
of the composite (thought of as a relation) of

εA � PA×A� PA×B

Lemma 3.3. The functor P : Eop → E has a left adjoint namely P : E → Eop

Proof. In order to show that these two functors are adjoints it is sufficient to set
up natural bijections between A → PB and B → PA. B → PA is in natural
bijection to B → ΩA by definition, which is in natural bijection with A×B → Ω
since our topos is Cartesian. Which is in natural bijection with Subobject(A×B)
since we have a subobject classifier. Which is in natural bijection to Q� A×B
(said subobject). Which is in natural bijection to Q� B ×A by applying the twist
isomorphism A×B → B ×A, and by reserving the steps with Q� B ×A we get
that this is in natural bijection with A→ PB �

Now for a definition that will be used later on.

Definition 3.4. {−} : A→ PA is the name of the relation (1A, 1A) : A� A×A

The reason for this notation is that in Set this morphism send elements a ∈ A to
{a} ∈ PA.

Lemma 3.5. Let f : A→ B be a morphism in a weak topos, then
i) {−}f : A→ B → PB names the relation (1A, f) : A� A×B
ii) Pf{−} : B → PB → PA names the relation (f, 1A) : A� B ×A

Proof. i) Consider the diagram

A B εB

A×B B ×B PB ×B

f

(1A,f) (1B ,1B)

f×1B {−}×1B

Both of these squares are pullbacks and it is clear from considering the composite
of the bottom row of arrows that {−} × 1B ◦ f × 1B = {−} ◦ f × 1B names the
relation (1A, f).
ii) follows from i) and Lemma 3.3 specifically the natural bijection (call it θA,B)
between A → PB and B → PA and so {−}f : A → PB is in natural bijection
with θA,B({−}f) : B → PA = θA,B(f)θB,B({−}) = Pf{−} as theta maps {−} to
itself. �
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Corollary 3.6. i) {−} : B → PB is monic for any object B
ii) the functor P : Eop → E is conservative.

Proof. i) Suppose f, g : A→ B such that {−}f = {−}g, then by the previous lemma
there names must be the same up to isomorphism which implies (1A, f) ∼= (1A, g) in
Sub(A×B) but this implies that there is an isomoprhism i : A→ A where gi = f
and 1Ai = 1A but 1Ai = i = 1A so gi = g1A = g = f so g = f and hence {−} is
monic.
ii) To prove this statement we first need a lemma specifically Corollary 1.6.2 which
states that: in a category with a subobject classifier, every monomorphism is regular.
In particular such a category is balanced. Since E and hence Eop has a subobject
classifier, these categories must be balanced and so to show that P is a conservative
functor it is sufficient to show that P is a faithful functor. Let f, g : A→ B such that
Pf = Pg then Pf{−} = Pg{−} and so (as in i)) (f, 1A) ∼= (g, 1A) in Sub(B × A)
but this implies (just as in i)) that f = g and so P is faithful and therefor P is
conservative. �

The next lemma allows us to form a relationship between ∃f and Pf . This is
also our last lemma until the Monadicity theorem.

Lemma 3.7. Let

A B

C D

f

g h

k

Be a pullback square in a weak topos with g, h being monomorphisms. The the
following square commutes.

PB PA

PD PC

Pf

∃h ∃g

Pk

Proof. We can see that the above square commutes (aka ∃g ◦ Pf = Pk ◦ ∃h) by
showing that they both name the same relation, and since names of relations are
unique if we can show this then these would have to be the same morphism. To
show that these name the same relation consider the following diagram.

Ef εB

PB ×A PB ×B

PB × C PB ×D

1PB×f

1PB×g 1PB×h

1PB×k
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Both squares in this diagram are a pullback, the top one by definition and the
bottom one is a pullback since PB × (−) preserves pullbacks, and this bottom
square is just the image of our original pullback. The left vertical composite is
named by both ∃g ◦ Pf and Pk ◦ ∃h �

This lemma allows us to make some connection with P and ∃ but it is quite abstract
and not very intuitive but a final corollary of this lemma lets us make a more
concrete connection to these functors.

Corollary 3.8. If m : A� B is monic then Pm ◦ ∃m = 1PA

Proof. By applying the previous lemma to the following pullback square

A A

A B

1A

1A m

m

We obtain that the following diagram commutes

PA PA

PB PA

P (1A)=1PA

∃m ∃1A=1PA

Pm

Which clear implies the desired equality. �

Now that we have obtained all of these results we are finally ready to state the
punchline of this section and really what we have been building towards throughout
this paper.

Theorem 3.9. Let E be a weak topos, then the functor P : Eop → E is monadic.
In other words this functor induces an equivalence between Eop and the category of
algebras induced by the adjunction (P a P )

Proof. In order to prove this statment we use a theorem proved from an earlier
section of the book,

Theorem 3.10. Let U : D → C be a functor and suppose,
1. U has a left adjoint
2. U is conservative
3. D has and U preserves coequalizers of reflexive pairs, then U is monadic.
We have already shown 1. in Lemma 3.3 and we showed 2. in Corollary 3.6 so it
suffices to show 3. first thing we need to check is that Eop has coequalizers, but
since E has equalizers Eop will have coequalizers. What is left to show is that P
preserves coequalizers of reflexive pairs. Let

E A Bm

f

g
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Be an equalizer diagram in E such that the pair (f, g) is coreflexive. Then by the
following lemma (which appeared earlier in the book as well)

Lemma 3.11. let f, g : A → B be a corelfexive pair in C Then a morphism
e : E → A is an equalizer of f and g if and only if the square

E A

A B

e

e g

f

is a pullback.
Using this lemma the following diagram must be a pullback.

E A

A B

m

m g

f

Since this square is a pullback applying Lemma 3.7 we obtain that Pf ◦∃g = ∃m◦Pm
but by Corollary 3.8 we have Pm◦∃m = 1PE and Pg◦∃g = 1PA. Since the diagram
above commutes and since P is a functor it must be the case that Pm◦Pf = Pm◦Pg
and so the diagram below

PB PA PE

Pf

Pg

Pm

Commutes and with the morphisms ∃g and ∃m will form the desired split coequalizer
system in E and so this diagram is a coequalizer diagram. �

Corollary 3.12. A (weak) topos is cocartesian

Proof. This is due to any category which is monadic over a cartesian cateogyr
is cartesian due to the forgetful functor from the category of algebras creating
limits �

When people first started studying topos’s they required that for a category to be
considered a topos it must be both cartesian and cocartesian but after discovering
this corolory they realized that the condition of cocartesian is redundant, so the
definition was modified to just require a topos be Cartesian.
This concludes the two sections.
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