
Regular Categories

We adopt some notation convention from Dr. Cockett’s online category theory notes. Unless stated otherwise, math-
boldface letters such as X are categories, X0 denotes X’s class of objects, and X1 denotes its class of arrows. We write
composition diagrammatically and indicate applicative compositiion with ‘◦.’

According to Peter Johnstone...

Definition 1. X, is regular if it is cartesian, has images, and covers in X are stable under pullback.

A cartesian category is defined to be a category satisfying any one of the following equivalent conditions.

Lemma 2. Let X be a category. The following are equivalent:

(1) X has finite limits
(2) X has finite products and equalizers of pairs of morphisms.
(3) X has a terminal object, products of pairs of objects, and equalizers of pairs of morphisms.
(4) X has terminal objects and pullbacks.

Proof. Here’s a sketch, details can be found in Robin’s category theory notes.

It’s clear that (1) implies (2) because finite products and equalizers of pairs of morphisms are examples of finite limits.

More precisely, products are given as limits of functors I X where I is a finite discrete category, and equalizers are

given by limits of functors K X , where K is the category with two objects and a single pair of parallel non-identity
arrows.

To see (2) implies (3) it’s enough to notice that terminal objects are given by the empty product, and finite products
imply binary products.

For (3) implies (4) it suffices to show how to construct pullbacks from binary products and equalizers of pairs of mor-
phisms. Namely, the pullback of two maps f, g, is given by taking the product of the their domains, post composing each of
the projections with f and g respectively, and equalizing the resulting pair of compositions.

Finally, (4) implies (1) is a bit of work. It helps to recall that the existence of terminal objects and pullbacks implies
the existence of finite products, and therefore binary products and pullbacks. In turn, the existence of binary products and
pullbacks implies the existence of equalizers. This is given as a proposition in Robin’s notes in the section about (co)limits
and (co)completeness.

From here the limit of a finite diagram, J XD , can be shown to be the equalizer:

E
!

X∈J0
D(X)

!
f∈J1

∂1(f)
e

〈π∂0(f)D(f)〉

〈π∂1(f)〉

That is, precomposing each projection from the middle product with e gives a family of maps in X, (eπD(X))X∈J0
, which

make E a cone over D (as a consequence of e equalizing the parallel arrows between the products above). Moreover, for any
other cone C (with maps (cD(X))X∈J0) over D, we can see

cD(∂0(f))D(f) = cD(∂1(f))

for any f in J1. The universal property of the product over J0 gives a unique map c′ from C into the product such that,

c′πD(X) = cX

for each X ∈ J0. This implies

c′π∂0(f)D(f) = c∂0(f)D(f) = c∂1(f) = c′π∂1(f),

which shows that C, along with c′, also equalize the parallel pair of arrows. Hence there’s a unique map k from C to E
making the following diagram commute:

1
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E
!

X∈J0
D(X)

!
f∈J1

∂1(f)

C

e
〈π∂0(f)D(f)〉

〈π∂1(f)〉

∃!c′∃!k

It’s clear from this diagram commuting that k is a morphism of cones and this the universal property of the equalizer
of this parallel pair of arrows is exactly the universal property of the limit of D. The right side of the following diagram
summarizes the argument we just used to show that E is the universal cone over D, and it should be read as, ”if the outside
commutes (for some cone C over D), then the dotted maps on the inside are guaranteed by the universal property of the
product and equalizer respectively.”

(J)

X Y
f

D

(X)

C

E

!
X∈J0

D(X) D(Y )

∃!c′

∃!k

cD(X)

cD(Y )

e

πD(Y )πD(X)

D(f)

□

Definition 3. Johnstone calls a functor F : X → Y between cartesian categories cartesian if it preserves the cartesian
structure up to isomorphism. That is, if F preserves finite limits.

Example 4. The category of sets with functions as maps, denoted Set, is a cartesian category with any singleton set as a
terminal object and the fibered product as the pullback. To be more precise, for any functions f : X → Z, g : Y → Z, their
pullback is the set {(x, y) ∈ X × Y : f(x) = g(y) ∈ Z} with projections to X or Y given by subset inclusion into the product
X × Y followed by projecting into X or Y respectively.

Example 5. Other categories structured over Set such as the categories of groups or topological spaces are also cartesian,
where the finite limits are limits in Set of the underlying sets with some extra structure that needs to be accounted for. I
think this is what Johnstone means when he says the cartesian structure can be chosen so that the underlying-set functor
preserves it strictly; one can choose these limits as representatives because they’re unique up to isomorphism, and their
underlying sets will recover them exactly when forgetting the extra structure in Set.

Example 6. Let Y be a cartesian category. Then for each X ∈ X0, the evaluation functor,

[X,Y] Y

F F (X)

G G(X)

evX

α αX
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is cartesian. Where the cartesian structure in the functor category, [X,Y], may be defined pointwise to pick up the
structure from Y and therefore preserve it strictly. To elaborate, it makes sense to define the product of two functors F and
G to be another functor which sends an object X in X, to the product F (X)×G(X) in Y:

X X×X Y ×Y Y

F×G

△ 〈F,G〉 (−)×(=)

The collections of pointwise projections in each variable determine natural transformations from F × G to F and G re-
spectively, and for any other functor K with natural transformations ϕ and ψ from K to F and G respectively, we have the
following commuting diagram:

F (Y )

K(Y ) F (Y )×G(Y )

F (X)) G(Y )

K(X) F (X)×G(X)

G(X)

∃!ωY

ϕY

ψY

pF,Y

pG,Y

F (f)

∃!ωX

K(f)

ϕX

ψX

pF,X

pG,X

G(f)

The unique ω’s come from the pointwise products in Y and together they determine a unique natural transformation from
K to F ×G. This gives the following product diagram in [X,Y]:

F

K F ×G

G

ϕ

ψ

∃!ω

pF

pG

Applying the evaluation functor, for some object X ∈ X0, to this product diagram picks out the pointwise product di-
agram in Y seen at the front of the funny looking cylinder above which determined natural transfromation ω. This shows
that products are strictly preserved by each evaluation functor when the functor category is given pointwise product structure.

The pullback of two natural transfromations α : F → G, β : G → H, is a functor which maps an object X ∈ X0 to the
pullback of the X-components of α and β in Y:
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X Y

X αX ∧ βX G(X)

F (X) H(X)

α(−)∧β(−)

πF,X

πG,X

βX

αX

Note this is only the object assignment for the functor. The collections of projections to F and G over all objects X ∈ X0

are the natural transformations which can be seen on the top and left faces of the following commuting cube:

αY ∧ βY G(Y )

αX ∧ βX G(X)

F (Y ) H(Y )

F (X) H(X)

πF,Y

πG,Y

βY

∃!θ

πG,X

πF,X

G(f)

αY

F (f)

αX

βX

H(f)

The front and back faces are pullbacks, while the bottom and right faces commute by naturality of α and β respectively.
The dotted arrow is given by the universal property of the pullback in the back and the top and left faces show that the
projections are natural transformations between the α− β−pullback functor and F or H respectively.

Hence there’s a commuting square in [X,Y],

α(−) ∧ β(−) G

F H

πH,−

πF,− β

α

.
and for any other functor K and natural transformations ϕ,ψ which make the square commute in place of the pointwise

pullback we have that for any f : X → Y in X1, the following diagram commutes:
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K(Y )

K(X) αY ∧ βY G(Y )

αX ∧ βX G(X)

F (Y ) H(Y )

F (X) H(X)

∃!γY

ϕY

ψY

∃!γX

ψX

ϕX

K(f)

πF,Y

πG,Y

βY

∃!θ

πG,X

πF,X

G(f)

αY

F (f)

αX

βX

H(f)

The family of unique γ’s is given by the universal properties of each of the pointwise pullbacks since the bent faces on the
top and left side of the cube commute by naturality of ϕ and ψ respectively. This determines a unique natural transformation
γ which shows the square above is a pullback in [X,Y]:

K

α(−) ∧ β(−) G

F H

∃!γ

ψ

ϕ

πH,−

πF,− β

α

.

It’s clear that evaluating this pullback diagram at an object X ∈ X0 (by applying the evX functor) just picks out a
particular pointwise pullback as pictured on the front of the cube above. Hence the evaluation functors all strictly preserve
pullbacks and are cartesian.

Definition 7. A conservative functor is functor which reflects isomorphisms. That is, F : X → Y reflects isomorphism if
and only if f ∈ X1 is an isomorphism whenever F (f) ∈ Y1 is an isomorphism.

Lemma 8. Let X be a small cartesian category. Then there exists a set S and a functor, X Set/SF , from X into

the slice category of sets over S such that F is cartesian and conservative.

Proof. Let S = X0 (since X is small) and let F denote the functor which sends an object X to the disjoint union of hom-sets,"
A∈X0

X(A,X). The slice map to S is induced by the collection of functions

X(A,X) → S; f '→ ∂0(f) = A

since the disjoint union is the coproduct in Set,

F (X) := ∂X
0 :

#

A∈X0

X(A,X) → S.
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To see F is functorial notice what happens when applying F to a triangle in X:

X Y

Z

fg

f

g
F

"
A∈S X(A,X)

"
A∈S X(A, Y ) S

"
A∈S X(A,Z)

∂X
0

F (fg)=(−)fg=((−)f)g=F (g)(F (f))=F (f)F (g)

F (f)=(−)f

F (g):=(−)g

∂Y
0

∂Z
0

where F (f) is defined by taking a map from A to X and post composing it with f to give a map from A to Y (similarly for
F (g)). In this way F (f) restricts to a family of functions, FA(f) : X(A,X) → X(A, Y ), between the fibers of the coproduct.
It’s clear that the identity map on an object X ∈ X0 would get mapped to the identity arrow between the coproducts because
post-composition with the identity arrow on the codomain leaves the original function unchanged and implies identity maps
between each of the respective components/fibers. It follows that F is a functor.

To see F is cartesian, take any finite diagram D : J → X. Since X is cartesian the limit of D exists and to show this limit

is preserved by F take any I J
g

in J, and notice the inside of the following diagram commutes:

"
A∈S X(A,D(I))

C
"

A∈S X(A, lim←−D) S

"
A∈S X(A,D(J))

(−)g

∂
D(I)
0

cI

cJ

∃!ϕ
∂
lim←−D

0

(−)dJ

(−)dI

∂
D(J)
0

,

where dI : lim←−D → D(I) and dJ : lim←−D → D(J) such that dIg = dJ . If there exists a set C with arrows cI for each I ∈ J
which makes the rest of the diagram commute, then we have that for each x ∈ C

cI(x)g = cJ(x) : A → D(J).

Hence the collection of maps {cI(x)}I∈J makes A a cone over D and there exists a unique θx : A → lim←−D. Doing the
same for all x ∈ C yields a map

θ : C →
#

A∈S

X(A, lim←−D);x '→ θx,

which is unique because each θx is unique. This shows the coproduct satisfies the same universal property as the limit of
the diagram DF : J → Set/S, and the isormophism follows.

Finally, to see F reflects isomorphisms, suppose the following arrow, F (f), is an isomorphism:

X Y
f F "

A∈S X(A,X))
"

A∈S X(A, Y ))
(−)f

Then it’s necessarily an isomorphism between each of the fibres, so for any A ∈ S, given a map g : A → X, there’s a
unique h : A → Y such that gf = h. Conversely given a map h, there’s a unique g satisfying the same equation.

So first taking g = 1X , there exists a unique map such that f : X → Y such that 1Xf = f . Next, taking h = 1Y gives a
unique g : Y → X such that gf = 1Y . Moreover,
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1Xf = f = f(gf) = (fg)f

shows that 1X and fg are both mapped to the same arrow by the bijection (−)f . It follows they’re equal and F reflects
isomorphisms. □

Example 9. Another example of a cartesian functor is the yoneda embedding. For a locally small cartesian category X, the
yoneda embedding X(=,−) : X → [Xop,Set] is a full and faithful cartesian embedding because the ‘hom’ functor preserves
(finite) limits in its second argument.

Definition 10. Let M denote the class of monomorphisms in X. We say X has images if there exists an assignment

X1 → M; (f : X → Y ) '→ (imf : Imf ↣ Y )

such that imf is the smallest proper subobject of Y through which f factors, as shown by the universal property in the
diagram below:

X Y

Imf

W

f

imf

∃!k

∀h

Definition 11. A cover is a morphism which can’t factor through a proper subobject of its codomain, and is denoted by
the open headed triangle arrow: .

Proposition 12. In any category with binary pullbacks, covers are closed under composition.

Proof. Let X be a category with binary pullbacks, f and g composable covers, and a factorization of fg = em through some
monic m. Then consider the pullback of m along g,

A

P B

E C

e

f

∃!ϕ

g∗(m)

πE g

m

,

which shows that f = ϕg∗(m) factors through a monomorphism g∗(m) since monics are stable under pullback. This
implies g∗(m) is an isomorphism since f is a cover and therefore g = (g∗(m)−1πE)m factors through m. But g is a cover so
m is monic and it follows that fg is also a cover. □

Lemma 13. For any category X, the following are equivalent.

(1) X has images

(2) ∀A ∈ X0 , the inclusion functor

i : SubX(A) → X/A

has a left adjoint
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(3) If X has pullbacks, then for each f : A → B in X1, the pullback functor

f∗ : SubX(B) → SubX(A)

has a left adjoint.

Proof. (1) =⇒ (2)
Define a functor

X/A SubX(A)

X Y Imx Imy

A A

im

x

f

y imx

f#

imy

im

where f# is induced by the universal property of the image since x also factors through Imy as follows:

X Y

A Imy

x

f

y
ey

imy

To show im ⊣ i, we’ll exhibit the universal property. Let x : X ↣ A be a subobject and suppose that f : x → i(β) is a
map of subobjects of A for some β : B ↣. Since fβ = x, there’s a unique map f# : Imx ↣ B such that f#β = imx given
by the universal property of the image. Then we have

X Imx B

A

x

ex

imx

f#

β

which shows the triangle,

x i(im(x))

β

f

ex

i(f#)

commutes. Hence im ⊣ i.

(2) =⇒ (3)

Assume im ⊣ i and f : A → B. Define

SubX(A) X/A X/B SubX(B)i

∃f

!
f im
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where
$

f denotes the base change functor that post-composes a subobject of A with f and makes it a subobject of B.
To see ∃f ⊣ f∗, first let α : X ↣ A be a subobject of A. Post-composing α with f , taking the image of the composition, and
then taking the pullback of the image along f gives the map f∗(∃f (α)):

X

im(αf) ∧ f A

Im(αf) B

eαf

α

∃!ηα

f∗(∃f (α))

f

im(αf)

where the bottom of the outer part of the diagram is just the image factorization of the top part, so the outer square
commutes. Now if β : B′ ↣ B, and g : α → f∗(β), that is:

X

β ∧ f A

B′ B

gpB′

g

α

pB′ f

β

then we get the following diagram in X/B,

αf i(im(x))

i(β)

gpB′

ex

i((gpB′ )#)

where (gpB′)# : Im(αf) ↣ B is the unique map from the adjunction im ⊣ i. Since im(αf) = ∃f (α), this defines a unique
g# : ∃f (α) → β such that

α f∗(∃f (α))

i(β)

g

ηα

f∗(g#)

commutes. Hence ∃f ⊣ f∗, which shows (2) =⇒ (3).

(3) =⇒ (1)

Suppose X has pullbacks there’s an adjunction, ∃f ⊣ f∗. Let f : A → B ∈ X1 and suppose f = eβ for some β : B′ ↣ B
in SubX(B). Then consider the pullback diagram
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A

P A

B′ B

1A

e

∃!α

p

f∗(β)

f

β

and in particular notice that the top triangle shows α : 1A → f∗(β) is a map in SubX(A). The universal property of the
adjunction then says

1A f∗(∃f (1A))

f∗(β)

η1A

α f∗(g#)

commutes for a unique map g# : ∃f (1A) → β in SubX(B). This is exactly the universal property which justifies defining
the image of f to be ∃f (1A), where A = ∂0(f) more generally.

□

Note 14. Notice the unit of the adjunction, im ⊣ i, in (2) =⇒ (3) between the domain of a map and the domain of its
image cannot factor through a proper subobject of its codomain, so it’s a cover.

Lemma 15. Suppose X has pullbacks and f : A → B ∈ X1. Then the following are equivalent,

(1) f is a cover

(2) f is orthogonal to M (the class of monics in X).

(3) If covers are stable under pullback, then the pullback functor, f∗ : X/B → X/A, is conservative.

Proof. (1) =⇒ (2)
Suppose f : A → B is a cover and the square,

A B

C D

g

f

h

m

,

commutes. Then the cover, f , factors through h∗(m),

A

P B

C D

f

g

∃!α

p

h∗(m)

h

m

,

and therefore h∗(m) must be an isomorphism. Let k := h∗(m)−1p : B → C and notice it splits the first square, and
uniqueness follows immediately from the fact that m is monic.
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(2) =⇒ (3)
Suppose f is is orthogonal to M and f∗(β) is an isomorphism for some β : B′ → B. Consider the pullback:

P A

B′ B

f∗(β)

p f

β

.

The top arrow is an isomorphism, so the following diagram commutes:

A B

B′ B

B′

f∗(β)−1p

f

∃!k

β

k

This shows kβ = 1B and βk = 1B′ , therefore β is an isomorphism and f∗ is conservative.

(3) =⇒ (1)

Suppose f factors as f = em for some monic m. Then pulling m back along f , considering the universal property from
the factorization, and precomposing with f∗(m) gives the commuting diagram:

A

A

A A

M B

f∗(m)

f∗(m)e

f∗(m) ∃!1A

∃!ω

1A

e

p

f∗(m)

f

m

where the dotted arrows show that ωf∗(m) = 1A = f∗(m)ω. Since f∗(m) is an isomorphism and f∗ is conservative, it
follows that m is an isomorphism. Hence f doesn’t factor through an proper subobjects of its codomain, ie. it’s a cover. □

Definition 16. A family of maps which cannot factor through proper subobjects of a common codomain is called a covering
family.

Notes 17. Maps which are orthogonal to the class of monomorphisms are usually referred to as strong epimorphisms. If X
has equalizers, then for any cover f , if gf = hf for some g, h, then taking the equalizer of f and itself in the middle between
gives,

eq(f, f) A B

C

e f

∃!σ
g

h

,

which shows there exists σ such that g = σe = h, and f is epic. This means every cover is epic but in order for an epic
map to be a cover we need regularity.
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Another property of interest is the stability of images under pullback. Since monics are stable under pullback, it’s enough
to ask that covers are stable under pullback. This is a key part of the definition of a regular category, which we recall to be
a cartesian category with images whose covers are stable under pullback.

Now, let’s look at some important monomorphisms, because they will be relevant in later sections.

Definition 18. Let R A
a

b
be a pair of parallel arrows in a cartesian category X.

(1) (a, b) is a relation if (a, b) : R → A×A is monic.

(2) (a, b) is reflexive if there exists a retraction r of both a and b.

(3) (a, b) is symmetric if there exists a section s of both a and b.

(4) (a, b) is transitive if there exists a map t : P → R where P is the pullback of a along b and ta = pa, tb = qb where

P R

R A

p

q

a

b

.

(5) (a, b) is an equivalence relation if it satisfies all of the above.

Notice (2), (3), (4) and (5) only make sense if (1) is already satisfied.

Example 19. Taking the pullback, R, p, q, of any morphism, f along itself gives a relation (p, q) : R → A × A from the
universal property of the product as follows,

R

A×A A

A B

p

∃!(p,q)

q

π0

π1 f

f

,

where the outer square is a pullback. Since we can interchange p and q in the pullback diagram without consequence, its
universal property shows it’s reflexive and symmetric by taking A and its identity as shown:

A

R A

A B

1A

∃!ζ

1A

p

q f

f

,

Taking the pullback of p along q on both sides of the original pullback square gives a commuting diagram,
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P P R

P R A

R A B

∃!ξ

πp

πq p

πp

πq

q

p f

q f

.

where the induced map ξ shows (p, q) is transitive, since ξq = πpq and ξp = πqp. It follows that kernel pairs of morphisms
are equivalence relations.

Definition 20. An equivalence relation is called effective if it occurs as the kernel pair of its coequalizer.

Definition 21. An effective regular category is a regular category in which all equivalence relations are effective.

Example 22. Not every regular category is effective. Consider equivalence relation

R := {(a, b) : a ≡ b mod 2} Z
π0

π1

in the category of free abelian groups. Its coequalizer in this category is the zero group, and the kernel pair of this
coequalizer is all of Z ⊕ Z so it can’t be effective. Effectiveness fails here because the quotient group Z/2Z should be the
coequalizer (and it is in the category of abelian groups), but it’s not free, so it can’t be.

Lemma 23. Let X be a regular category and f : A → B in X. For any a : A′ → A, b : B′ → B,

∃f (A′ ∩ f∗(B′)) ∼= ∃f (A′) ∩B′

Proof. Consider the commuting square,

A′ ∩ F ∗(B′) ∃f (A′) ∩B′

F ∗(B′) B′

A′ ∃f (A′)

A B
f

,

where the front, left, and right faces are all pullbacks. This means that the rectangle made up of the left and front face
is also a pullback and therefore the back face is a pullback as well, where the universal property is induced by the universal
properties of the other three pullbacks and chasing around the square a little. Since covers are stable under pullback, this
means the top edge of the back face is a cover. The diagonal of the right face is a monomorphism so ∃f (A′) ∩ B′ is (the
domain of) the image of the composite maps from the back left top to the front right bottom. Then we have the following
commuting diagram of subobjects of B:
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∃f (A′) ∩B′

A′ ∩ f∗(B′) B

A′ ∩ f∗(B′)

∃f (A′) ∩B′

∃!θ

∃!1∃F (A′)∩B′

.

The top left triangle involving θ shows that θ is a post-compositional inverse of the cover on the top of the back face of
the cube above, while the middle composition involving both dotted arrows shows θ is also a pre-compositional inverse for
it. This θ is the necessary isomorphism. □
Note 24. Johnstone says this is sometimes called Frobenius Reciprocity.

Proposition 25. In a regular category, the regular epimorphisms are exactly the covers.

Proof. First going forwards, suppose f : A → B is a regular epimorphism, and it factors as f = em for some monic m. Say
f is the coequalizer of g and h, then

C A. B

E

B

g

h

em

f

e ∃!β

∃!1B

m

m

shows that βm = 1B for some β. On the other hand, we have that

(mβ)m = m(βm) = m1B = 1Em

and since m is monic, mβ = 1E . This shows m is an isomorphism and so f is a cover.

Conversely, let f ∈ X(A,B) be a cover, and let r0, r1 : R → A be its kernel pair. To see f is the coequalizer of r0 and
r1, we just need to show that c factors through f because it coequalizes the kernel pair by definition and uniqueness follows
immediately from f being epic (as seen in Notes 16).

R A

A B

r1

r0 f

f

Suppose there exists some c : A → C which coequalizes the kernel pair, and let d(g, h) denote the (cover-)image factorization
of the pairing map (f, c):
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A B × C

D

(f,c)

d (g,h)

If g is an isomorphism, then

fg−1 = (f, c)π0g
−1 = d(g, h)π0g

−1 = dgg−1 = d

implies

c = (f, c)π1 = d(g, h)π1 = dh = (fg−1)h = f(g−1h)

which shows that c factors through f . Since f = dg factors through g after applying π0 : B × C → B, it suffices to show
g is monic to show it’s an isomorphism.

Suppose kg = lg for some k, l : E → D and form the pullback,

P E

A×A D ×D

p

(m,n) (k,l)

d×d

.

Now notice

mf = m(dg) = (md)g = (pk)g = p(kg) = p(lg) = (pl)g = (nd)g = nf

which induces a map q : P → R,

P

R A

A B

m

n

∃!q

r1

r0 f

f

,

such that

p(kh) = (pk)h = (md)h = m(dh) = mc = (qr0)c = 1(r0c) = q(r1c) = (qr1)c = nc = n(dh) = (nd)h = (pl)h = p(lh)

Now d× d = (1A × d) ◦ (d× 1A), where d× 1A = (π1d)
∗(d) is a pullback of d as shown by the following pullback diagram:
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C

A×A D ×A A

A D

c1π1

c0

c1

∃!(c0,c1π1)

d×1A

π0 π1d

π1

d

d

.

Since covers are stable under pullback, d × 1A is a cover, and an identical argument shows 1A × d is a cover. Moreover,
covers are closed under composition by proposition 12, so it follows that d × d is a cover, and stability of covers under
pullbacks also tells us p = (k, l)∗(d× d) is a cover:

P E

A×A D ×D

p

(m,n) (k,l)

d×d

.

In particular p is epic, so p(kh) = p(lh) implies kh = lh. Recalling the assumption that kg = lh, we have k(g, h) = l(g, h),
which implies k = l since (g, h) is monic. We’ve shown g is monic, hence it’s an isomorphism because f = dg factors through
it, and therefore f is the coequalizer of its kernel pair.

□

Note 26. We needed to define and play with cartesian categories a bit before doing the same with regular categories, be-
cause every regular category is cartesian. Of course not every cartesian category is regular, so we might ask if it’s possible
to ”regularize” a cartesian category. The main theorem we’ll prove at the end answers this question in the affirmative. The
general idea behind its proof is to define a regular category Reg(X) and a functor I so that every object of Reg(X) is a
morphism in X, every embedded object I(X) is projective.

First we’ll recall projective objects and define Reg(X). Then we’ll see it’s a regular category before we define I and show
it’s full, faithful, and cartesian. Finally we’ll show this embedding is universal by showing that any regular functor out of X
extends to a regular functor out of Reg(X) which is unique up to canonical isomorphism in the functor category.

Definition 27. An object X ∈ X0 is projective if for any map g ∈ X(X,A) and any cover h ∈ X(Y,A), there exists an
f ∈ X(X,Y ) such that fh = g. Here’s the accompanying diagram:

X

Y A

∃f
f

h

Definition 28. Let X be a cartesian category. The regular category generated by X is denoted Reg(X). It has morphisms
of X as objects, ie.

Reg(X)0 := X1,

and a morphism [g] : f1 → f2 in Reg(X) is an equivalence class of morphisms

{g : ∂0(f1) → ∂0(f2) | gf2 coequalizes the kernel pair of f1}
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in X under the relation g ≡ h if and only if f2 coequalizes them. An equivalent characterization of this relation asks that
g and h factor through the kernel pair of f2, and this equivalence can be seen by staring at the following diagram:

X

P A2

A2 B2

g

h

∃!θ

p2

q2 f2

f2

.

If f2 coequalizes g and h, then the outside commutes and both g and h factor through the kernel pair of f2 via θ. Conversely,
if they factor through the kernel pair, then there exists a θ such that the triangles at the top left of the diagram commute,
and it follows that f2 coequalizes g and h:

gf2 = (θq2)f2 = (θp2)f2 = hf2.

We’ll use both of these characterizations as we see fit.

Define composition of morphisms to be the obvious choice,

[g][h] := [gh],

and for any object f : A → B in Reg(X), define the identity morphism to be equivalence classes of identity morphisms
on its domain,

1f := [1∂0(f)].

Notice that for any composable [f ], [g], [h] in Reg(X)1, associativity,

[f ][gh] = [f ][g][h] = [fg][h],

and the identity law,

[1A][f ] = [1Af ] = [f ] = [f1A′ ] = [f ][1A′ ],

are trivial if composition is well defined. So to justify this definition and show that Reg(X) is a category it’s sufficient to
show that ≡ is an equivalence relation and composition is well defined.

Proposition 29. The relation , ≡, from the previous definition is an equivalence relation.

Proof. Let fi : Ai → Bi for i ∈ N as necessary, g, h : A1 → A2 as above.

Reflexivity is clear because if we have gf2 : A1 → A2 → B2, then gf2 = gf2 shows g ≡ g.

To see symmetry, suppose g ≡ h. Then gf2 = hf2, and equivalently hf2 = gf2 shows that h ≡ g.
Finally to show transitivity, suppose g ≡ h ≡ k. Then gf2 = hf2 = kf2 shows that gf2 = kf2, which means g ≡ h, and it

follows that ≡ is transitive. □

Proposition 30. Composition, as defined in Definition 28, is well defined.

Proof. Consider the following arrows in Reg(X):

f1 f2 f3
[g] h



18

where

A1 A2 A3

B1 B2 B3

f1

g h

f2 f3

in X. Now suppose g1 ≡ g2 ∈ [g] and h1 ≡ h2 ∈ [h] we need to show g1h1 ≡ g2h2. To do this we’ll use both of the
equivalent characterizations of ≡.

We’ll start with the first characterization and deduce that f3 coequalizes h1 and h2,

h1f3 = h2f3,

and precompose with g1 to get

g1(h1f3) = g1(h2f3).

Now we’ll use the second characterization, that g1 and g2 factor through the kernel pair of f2, (q2, p2) by a common first
map, to get a map θ such that g1 = θq2 and g2 = θp2. Substituting g1 on the left side of the equality above we see,

g1(h2f3) = θq2(h2f3) = θ(q2h2)f3 = θ(p2h2)f3 = (θp2)h2f3 = (g2h2)f3,

where the fifth equality from the left is from the fact that h2 coequalizes the kernel pair of f2 (by definition of [h2] : f2 → f3
in Reg(X)). Putting everything together we have

(g1h1)f3 = g1(h1f3) = g1(h2f3) = (g2h2)f3,

as desired. □

Corollary 31. Reg(X) is a category.

Proof. See the last two sentences of Definition 28. □

Proposition 32. Reg(X) is a cartesian category.

Proof. Appealing way back to Lemma 2, we’ll show that X has terminal objects and pullbacks.

SinceX is cartesian, it has a terminal object, ⊤, and we’ll show its identity morphism, 1⊤, is the terminal object inReg(X).

Take any f : A → B in X. We need a unique morphism f → 1⊤ in Reg(X), and we claim this is is the equivalence class
of the unique morphism from the domain of f to the terminal object in X , [!A]. To see [!A] : f → 1⊤ exists, let p, q be the
kernel pair of f and notice !A coequalizes them:

p!A =!P = q!A.

For uniqueness, suppose [g] : f → 1⊤. Then g : A → ⊤ implies g =!A by uniqueness of !A, hence [g] = [!A] and [!A] is
unique. It follows that 1⊤ is terminal in Reg(X).

Now we’ll define the pullback of arbitrary morphisms [g1] : f1 → f3 and [g2] : f2 → f3, where fi : Ai → Bi for i = 1, 2, 3
in X. This is done by post composing the pullback projections of g1f3 and g2f3 with f1 and f2 respectively, and using the
universal property of the product:
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P A2 B2

A1 B3

B1 B1 ×B2

∃!f4

ρ2

ρ1 g2f3

f2

f1

g1f3

π1

π2

More precisely, f4 = (ρ1f1, ρ2f2) is the unique pairing map. Now, if g1 ≡ h1 and g2 ≡ h2, then gjf3 = hjf3 for j = 1, 2 so
ρ1 and ρ2 don’t depend on the choice of representatives for [g1] and [g2]. The pullback square implies ρ1g1 ≡ ρ2g2 so

[ρ1][g1] = [ρ1g1] = [ρ2g2] = [ρ2][g2]

and the candidate pullback square in X,

f4 f2

f1 f3

[ρ1]

[ρ2]

[g2]

[g1]

,

commutes. Suppose there exist [hi] : h → fi such that [h1][g1] = [h2][g2]. Then [h1g1] = [h2g2], which means h1g1f3 =
h2g2f3 and induces a unique map ω as shown:

H

P A2

A1 B3

h1

h2

∃!ω

ρ2

ρ1 g2f3

g1f3

To see [ω] : h → f4 in Reg(X), let (k, ℓ) be the kernel pair of h and compute, kωf4 and ℓωf4 by post composing with
both projections π1 and π2:

kω(f4πi) = kω(ρifi) = k(ωρi)fi = khifi = ℓhifi = ℓ(ωρi)fi = ℓω(ρifi) = ℓω(f4πi)

By the universal property of the product, B1×B2, the kernel pair is coequalized by ωf4,

kωf4πi = ℓωf4πi.

Notice if hi ≡ h′
i (i = 1, 2), then

[higi] = [hi][gi] = [h′
i][gi]

shows that higif3 = h′
igif3, which means the universal map ω in the pullback diagram above doesn’t depend on the choice

of representative for [hi]. Now we can simply compute,

[ω][ρi] = [ωρi] = [hi]

to get a commuting diagram in Reg(X):
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h

f4 f2

f1 f3

[h1]

[h2]

[ω]

[ρ2]

[ρ1] [g2]

[g1]

It remains to show [ω] is unique, so suppose we can substitute [σ] for [ω] in the last diagram. Then for i = 1, 2,

[ωρigi] = [ω][ρi][gi] = [hi] = [σ][ρi][gi] = [σρigi]

which says,

ωρigif3 = σρigif3.

This means σ can replace ω : H → P in the second last pullback diagram in X. The universal property of the pullback
tells us σ = ω, which implies [σ] = [ω] of course. Hence [ω] is unique and (f4, [ρ1], [ρ2]) is the pullback of [g1] and [g2] in
Reg(X).

Having shown Reg(X) has a terminal object and pullbacks of pairs of morphisms, we can conclude by Lemma 2 that it
satisfies Johnstone’s definition of cartesian. □

Proposition 33. A morphism [g] : f1 → f2 in Reg(X) is monic if and only if the kernel pairs of gf2 and f1 coincide.

Proof. Suppose [g] is monic and let p1, q1 denote the kernel pair of f1, and p2, g2 denote the kernel pair of gf2. Since gf2
coequalizes both kernel pairs by definition(s), we can see [1A1

] : f1 → gf2 induces a unique map ω : P1 → P2 in the diagram
below.

P1 A1

P2 A1

A1 B1

A1 B2

∃!ω

q1

p1

f1

1A1

q2

p2

gf2
1A1

f1

gf2

Since p2 and q2 are coequalized by gf2. Then [q2], [p2] : 1P2 → f1 since the kernel pair of the identity map is a pair of
identity maps, which are clearly coequalized by q2f1 and p2 and f1 respectively. Moreover, we have that

1P2 f1 f2
[p2]

[q2]

[g]

,
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and since [g] is monic, [p2] = [q2]. This means p2f1 = q2f1, and the universal property of the following pullback diagram
guarantees a unique θ : C → P1 such that θp1 = p2, θq1 = q2:

P2

P1

P2 A1

A1 B2

B1

1P2

θ
p2

q2
q1

p1

ω

p2

q2 gf2

f1

f1

gf2

.

Note that the pullback starting at P1 ends at B1 in the bottom right. It’s clear that precomposing once more with
P1, p1, q1, and ω shows ωθ = 1P1 by using the universal property of P1.

From this we can see that the pullbacks are isomorphic. This must be what Johnstone means when he says the kernel
pairs ”coincide,” because nothing in our assumptions guarantees that P1 and P2 are equal. For the kernel pairs to be exactly
equal we would require that θ and ω are identity maps and consequently for the pullback objects Pi to be equal for i = 1, 2.

Conversely, suppose the pullbacks in question are isomorphic via θ and ω as pictured in the previous diagram. Also assume
that [h][g] = [k][g] in Reg(X). Then hgf2 = kgf2, and the universal property of P2 gives a unique map α : A0 → P2 such
that αp2 = h and αq2 = k. Since θω = 1P2

, we have

αθp1 = αθωp2 = αp2 = h , αθq1 = αθωq2 = αq2 = k

and consequently,

kf1 = αθq1f1 = αθp1f1 = hf1 . In other words, [k] = [h].

□

Proposition 34. Split epimorphisms in X are covers in Reg(X).

Proof. Johnstone notes that this condition is unnecessary but sufficient to ensure the equivalence class in Reg(X) of a given
morphism in X is a cover in Reg(X).

Let [e] : f1 → f2 where e is epic in X. Suppose m : A2 ↣ A1 is monic in X and it splits the epic e : A1 → A2, that is
me = 1A2 . Further suppose that [e] = [h][g] factors through some monic [g]:

f1 f2

f3

[h]

[e]

[g]

Let a, b denote the kernel pair of f2, then the diagram,
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A2 A1 A2

P2 B2 P1 B1 B2

A2 A1 A2

f2

m

ef2
f1

hg

f2

b

a

q1

p1

f2

m

ef2
f1

hg

f2

commutes, because

(amh)gf2 = am(hg)f2 = a(me)f2 = a1P2 .f2 = af2 = bf2 = b(me)f2 = bm(hg)f2 = (bmh)gf2

This means we have a parallel pair of arrows in Reg(X),

1P2 f1 f2
[amh]

[bmh]

[g]

,

and since [g] is monic, amhf1 = bmhf1. This shows [mh] : f2 → f3 is in Reg(X), now we just need to show that it’s the
inverse of [g]. First show it’s a precompositional inverse,

[mh][g] = [m][h][g] = [m][e] = [me] = [1A2 ]

and then use that fact to show

([g][mh])[g] = [g]([mh][g]) = [g][1A2
] = [1A1

][g].

Since [g] is monic we get g][mh] = [1A1
] and it follows that [g] is an ismorphism. We’ve shown [e] cannot factor through

a proper subobject of its codomain if e is split epic, hence morphisms in Reg(X) containing split epimorphisms from X are
covers. □

Proposition 35. Reg(X) has a cover-image factorization system.

Proof. Let [g] : f1 → f2, fi : A1 → Bi in X as above. Then we claim that [g] factors through a cover followed by an image
as follows:

f1 f2

gf2

[1A1
]

[g]

[g]

It’s clear that the triangle commutes, as [1A1 ][g] = [1A1g] = [g]. To see the first arrow is a cover notice that 1A1 is trivially
a split epimorphism invoke proposition 34. For the second arrow being monic, use proposition 33 along with the fact that the
kernel pair of gf2 (the domain of the arrow) is equal to the kernel pair of gf2 (a representative of the arrow post composed
with the arrow’s codomain). □

Proposition 36. Covers are stable under pullback in Reg(X).

Proof. We’ll show that any morphism in Reg(X) which can be represented by a split epic in X is stable under pullback and
this will suffice by proposition 33.

Let e : A1 → A2 be split by some monic m : A2 ↣ A1 in X, and let the following diagram be a pullback square in Reg(X):
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f4 f1

f3 f2

[ρ3]

[ρ1]

[e]

[g]

where f4 = (ρ2f2, ρ1f1) : P → B1 × B2 is the universal pairing map as constructed in proposition 32 by post composing
the pullback projections of ρ1 and ρ3 with f1 and f3 respectively, and taking the universal morphism pairing map into the
product as seen from the square(s) in the diagram below.

A3

P A1 B1

A3 B2

B3 B3 ×B1

1A3

gm

ζ

∃!f4

ρ1

ρ3 ef2

f1

f3

gf2

π3

π1

Moreover, notice ρ2 splits from the universal property of the pullback. It’s easy to see ρ2 is epic now because if ρ2h = ρ2k,
then

h = ζρ2h = ζρ2k = k.

Hence [ρ2] is a cover by proposition 34, and covers are stable under pullback. □

Lemma 37. Reg(X) is a regular category

Proof. Combine corollary 31 and propositions 32, 35, and 36. □

Theorem 38. There exists a fully faithful cartesian embedding I : X → Reg(X) whose image on objects is contained in
the class of projective objects in Reg(X). Moreover, this embedding is universal in the sense that any cartesian functor
F : X → Y where Y is a regular category, extends uniquely (up to natural isomorphism) to a functor F̄ :

X Reg(X)

Y

F

I

F̄

Proof. Define I as follows:

X Reg(X)

A 1A

B 1B

I

f [f ]

The assignment of morphisms is well defined because kernel pairs of identity arrows are identities which are coequalized by
any arrow with a suitable domain, and if f = g, then [f ] = [g] immediately. To see identities and composition are preserved,
let f : A → B, g : B → C, in X and [h], [k] arbitrary arrows Reg(X) represented by h : Z → A, k : A → B in X respectively.
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Then we can see in the following equalities that composition is preserved on the left,

I(fg) = [fg] = [f ][g] = I(f)I(g) ; [h]I(1A) = [h][1A] = [h1A] = [h] ; I(1A)[k] = [1A][k] = [1Ak] = [k],

and identities are preserved in the middle and right. It follows that I is a functor.

It’s also easy to see I is full and faithful. Suppose [f ] : I(A) → I(B), then any representative f : A → B is a map in X
by definition, and applying I recovers [f ] so I is full. Now suppose I(f) = I(g) : 1A → 1B for two maps f, g : A → B. Then
[f ] = [g] : 1A → 1B in the regular category and by definition f = f1B = g1B = g, which shows I is faithful.

In the first part of the proof of proposition 32 we saw that 1⊤ = I(⊤) is the terminal object in Reg(X), so I preserves
the terminal object. To see pullbacks are preserved up to canonical isomorphism suppose we have a pullback diagram,

P A2

A1 B

p1

p2

f2

f1

in X. Applying I gives a commuting square in Reg(X) but notice that the pullback candidate in this case is 1P rather
than the pullback object we constructed in proposition 32. That construction is given by the square in the following diagram,
and we can see the setup for proving the isomorphism bubbling out from the left corner:

1

P A2 A2

A1 B

A1 A1 ×A2

1A3

gm

ζ

∃!f4

p2

p1 f21B

1A2

1A1

f11B

π1

π2

Let ρ1, ρ2 denote the kernel pair of f4. Then ρif4πi = ρipi, which shows that [ρi] : f4 → 1Ai for i = 1, 2. Now using the
universal property of the pullback we constructed we can see the canonical the isomorphism we were after from one direction:

f4

1P

f4 1A2

1A1 1B

[1P ]
[1P ]

[p2]

[p1] [p1]

[p2]

[1P ]

[p1]

[p2] [f2]

[f1]

.
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Notice that the dotted arrows are unique, and this implies the solid arrow, [1p] : f4 → 1P , is is also unique for if any
other [g] did the trick, we would have [1P ] = [g][1P ] = [g1P ] = [g] from the composition involving the dotted arrows in the
diagram above, and hence 1P = g1P = g. The other composition is trivial because the entire isomorphism is, so pullbacks
are preserved by I up to the most canonical isomorphism we could hope for.

Up to this point, we’ve shown that I is a fully faithful cartesian functor. To see that the image of every object is projective,
consider the following diagram in Reg(X),

1A1 = I(A1)

f2 f3

[g]

[e]

.

where [e] is a cover. If [e] is not representable by a split epimorphism, then the monomorphism in its cover-image
factorization is an isomorphism because it’s already a cover:

f2 f3

ef3

[1A1
]

[e]

∼=
[e]

.

Then we can post compose [g] with the inverse of this isomorphism to get a commuting diagram,

1A1
= I(A1)

f2 f3

ef3

[g][g][e]−1

[1A1
]

[e]

∼=
[e]

,

which shows that I(A1) is projective. On the other hand, if [e] is representable by an epic e : A2 → A3 which is split by a
monic, m : A3 ↣ A2, then since the kernel pair of I(A1) is a pair of identity morphisms on A1, they’re coequalized by any
morphism, in particular by gm : A1 → A3. Hence [gm] : I(A1) → f2 is an arrow in Reg(X), and immediately we get

[gm][e] = [g(me)] = [g1A3 ] = [g]

by the splitting of e, which shows that I(A1) is projective.

It only remains to show that any other cartesian functor F : X → Y, where Y is a regular category, extends uniquely to
a regular functor F̄ : Reg(X) → Y. Define F̄ as follows:
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Reg(X) Y

f1 im(F (f1))

f2 im(F (f2))

F̄

[g] F̄ ([g])

where F̄ (g) is the unique map given from the following coequalizer diagram:

F (B1)

F (P1) F (A1) F̄ (f1)

F (A2) F̄ (f2)

F (B2)

F (p1)

F (q1)

F (f1)

F (g) F̄ ([g])

F (f2)

.

Since F preserves pullbacks, it preserves kernel pairs and so F (p1) and F (q1) are the kernel pair of F (f1), as shown at the
top. By proposition 24 covers are regular epics, in particular the first map in the factorization of F (f1) is the coequalizer of
its kernel pair, and since the second map in the factorization is monic, we can see the cover coequalizes F (p1) and F (q1). To
see the cover is actually the coequalizer of F (p1) and F (q1), consider the pullback diagram below:

Y

F (P1) F (A1)

F (A1) F̄ (f1)

F (B1)

∃!ζ

y1

y2

F (q1)

F (p1)

F (f1)

F (f1)

.

From this diagram it’s clear that pulling the cover back along itself gives the same kernel pair as pulling F (f1) back along
itself, because they satisfy the same universal property. It follows that the cover is the coequalizer of the kernel pair of F (f1),
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which induces the arrow defined as F̄ ([g]) above. Moreover, uniqueness immediately implies composition and identities are
preserved.

Now suppose g ≡ h, then gf2 = hf2 and applying F we see F (g)F (f2) = F (gf2) = F (hf2) = F (h)F (f2). This means
we could sub F (g) for F (h) in the coequalizer diagram above to induce a unique F̄ ([h]). Notice F̄ ([g]) and F̄ (h) are both
coequalized by the monic in the image factorization of f2 that follows, so they must be equal. This shows F̄ is a well defined
functor.

It’s immediate that F̄ preserves the terminal object because F preserves the terminal object of X. In particular, the image
factorization of F (1⊤X

) = 1F (⊤X) = 1⊤F (X)
= 1⊤Y

is trivial because every morphism into the terminal object is unique.

To show pullbacks are preserved, assume the following is a pullback square,

f4 f2

f1 f3

[ρ2]

[ρ1] [g2]

[g1]

,

in Reg(X). Consider F (fi) for each 1 ≤ i ≤ 3 and take their cover-image factorizations in Y:

F (Ai) F (Bi)

F̄ (fi)

F (fi)

.

Note that the domain of f4 is the pullback P of the composites g1f3 and g2f3, as constructed in proposition 32, so its
image factorization looks slightly different. Now apply F̄ to the pullback diagram in Reg(X), and we get a commuting
square. Further suppose there exists some Y, y1, y2 such that the diagram,

Y

F̄ (f4) F̄ (f2)

F̄ (f1) F̄ (f3)

y1

y2

F̄ ([ρ2])

F̄ ([ρ1])

F̄ ([g1])

F̄ ([g2])

,

commutes. Well we can pull each yi back along the cover of the image factorization of fi and obtain two covers of Y since
covers are stable under pullback:

Pi Y

F (Ai) F̄ (fi)

pi .

Similarly we can pull these covers back along one another to obtain covers of each of the pullbacks Pi. Moreover, we
showed that covers are closed under composition so the diagonal of the last pullback is a cover. All of this can be seen by
the following pullbacks:
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P1,2 P2 F (A2) F (B2)

P1 Y F̄ (f2)

F (A1) F̄ (f1) F̄ (f3)

F (B1) F (B3)

ϕ
q1

q2 p2 F (f2)

p1 y1

y2

F̄ ([g2])

m2

F (f1) m1

F̄ ([g1]

m3

F (g2f3)

F (g1f3)

.

The outer square commuting above induces a unique map γ : P1,2 → P in the following pullback:

P1,2

F (P ) F (A2)

F (A1) F (B3)

q1p1

q2p2

γ

F (ρ2)

F (ρ1) F (g2f3)

F (g1f3)

Post-composing γ with the cover from the image factorization of F̄ (f4) gives a map Y → F̄ (f4). On the other hand, F is
cartesian so it preserves binary products and post composing the yi with the monics in the image factorization of fi induces
a unique pairing map out of Y pictured below.

F (A1) F̄ (f1) F (B1)

F (P ) F̄ (f4) Y F (B1)× F (B2)

F (A2) F̄ (f2) F (B2)

F (f1)

m1

F (ρ2)

F (ρ1)
F̄ ([ρ1]

m4

F̄ ([ρ2])

y1

y2

(y1m1,y2m2)

F (π2)

F (π1)

F (f2)

m2

Putting all our efforts together we get a commuting square,
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P1,2 Y

F (P )

F̄ (f4) F (B1 ×B2)

γ

ϕ

(y1m1,y2m2)

F (f4)

m4

,

which can be verified by computing the projections and referring back to the diagrams drawn above/ On that note, for
i = 1, 2 we have,

γF (f4)F (πi) = γF (f4πi) = γF (ρifi) = γF (ρi)F (fi) = qipiF (fi) = ϕyimi.

But covers are left orthogonal to monics by lemma 12, so there exists a unique splitting morphism, k : Y → F̄ (f4) which
makes both triangles in the previous square commute. Once more we can post-compose with the projects to see,

kF̄ ([ρi])mi = km3πi = (y1m1, y2m2)πi = yimi

and since mi is monic, we conclude that kF̄ ([ρo]) = yi. Since k is unique we can see that F̄ applied to a pullback square in
Reg(X) is still a pullback in Y, which is exactly what it means for F̄ to preserve pullbacks. Having already seen it preserves
the terminal object, we’ve shown that F̄ is cartesian by lemma 2.

Now let f1 f2
[g]

be an arbitrary cover in Reg(X) with image factorization,

f1 gf2 f2
[1A1

] [g]
.

Back in X, this looks like

A1 A1 A2

B1 B1 B2

f1 gf2

g

f2

Applying F and taking the image factorization (in Y) of the vertical arrows, we can see F̄ applied to the factorization of
[g] sitting in the middle:

F (A1) F (A1) F (A2)

F̄ (f1) F̄ (gf2) F̄ (f2)

F (B1) F (B1) F (B2)

F (f1)

F (gf2)

F (g)

f2

m1

F̄ [1A1
] F̄ [g]

m′ m2

.

We already know F̄ ([g]) is monic because F̄ is cartesian and monomorphisms are (finite) limits, so we only need to show
that F̄ ([1A1 ]) is a cover. The top left square in the previous diagram reduces to a triangle for which two of the three
morphisms are covers, and if we factorize the third morphism we get a factorization of a cover through a monic,
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F̄ (f1) F (A1)

ImF̄ ([1(A1)]) F̄ (gf2)

,

which implies the monic is an isomorphism. This implies the map we started with factors as a composite of two covers
and must be a cover itself.

So far we’ve shown that F̄ is a cartesian functor which preserves the cover-monic factorization system of Reg(X), which
means it’s a regular functor.

Now suppose there exists another regular functor G : Reg(X) → Y such that F = IG. Then IF̄ = F = IG, which means
that for any object A and morphism f : A → B in X we get the following equalities in Y:

F̄ ([1A]) G([1A])

F̄ (1B ]) G(1B)

F̄ ([f ]) G([f ])

This means they must have the same image factorization, but we can see these images are exactly F̄ (f1) and G(f1) by
factoring [f ] in Reg(X) and apply F̄ and G, which both preserve the factorizations.

F̄ (1A) G(1A)

F̄ (f) G(f)

F̄ (1B) G(1B)

F̄ ([f ]) G([f ])

Let ηf denote the isomorphism between the subobjects F̄ (f) and G(f). Then for any [g] : f1 → f2 in Reg(X), we have a
naturality square,

F̄ ([1A]) G([1A])

F̄ (f1) G(f)

F̄ (1B ]) G(1B)

F̄ ([1A]) G([1A])

F̄ (f) G(f)

F̄ (1B ]) G(1B)

ηf1

F̄ ([g]) G([g])

ηf2

,

where the ηfi are isomorphisms. Hence η : F̄ =⇒ G is a natural isomorphism and F̄ is unique up to natural isomorphism.
□


