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This document describes a basic type theories which can be built on top of the λ-calculus in
order to create a simple programming language. The basic type theory which underlies functional
style programming languages is the simply typed calculus with fixed points. To this one adds, in
order to obtain a reasonable programming language, some basic programming “features” for pairs,
natural numbers and list. The result is what we refer to as the Basic Programming (language) for
Computable Functions: BPCF.

1 The simply typed λ-calculus with fixed points

The simply typed λ-calculus with fixed points and some basic programming features is sometimes
called PCF (Programming language for Computable Functions). We shall introduce a variant of
this language, BPCF (Basic Programming Language for Computable Functions) in which we use
the case construct on natural numbers and lists rather than booleans with a conditional construct
and the natural numbers with a test for being zero. Our language, consequently, is a slightly more
usable than the standard PCF.

1.1 The basic judgments

Below, in table 1, are the inference rules for the typed λ calculus with fixed points. A sequent,
such as

Γ ` t :: T

is called a type judgement. if it can be inferred (or proven) in a type theory, it is referred to
as a valid type judgment. Thus a valid type judgement has a proof that the term, t, may be
assigned the type T .

Each sequent Γ ` t :: Q consists of a type context, Γ, and a term t together with its type Q,
written as t :: Q. A type context is an association of types to list of distinct variables:

Γ := x1 :: Q1, x2 :: Q2, ..., xn : Qn

The order in which these associations is written does not matter.
The first three rules give respectively the ability to: choose a variable from the context, form

an application, and form an abstraction. The last rule introduces a slightly modified syntax to
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x :: P,Γ ` x :: P
prj

x :: P,Γ ` t :: Q

Γ ` λx.t :: P −→ Q
abst

Γ ` f :: P −→ Q Γ ` t :: P

Γ ` (ft) :: Q
app

Γ ` t :: Q −→ Q

Γ ` fix[t] :: Q
fix

Table 1: Annotated type system

handle the fixed points. This means that we do not have an explicit fixed point operator Y in the
language. However, as demonstrated below, we can construct a fixed point operator for each type.

Here some basic examples of typing judgments:

Example 1.1 Simple typing judgments

(1) One of the simplest terms is the identity function which may be typed as λx.x :: A −→ A:

x :: A ` x :: A
prj

` λx.x :: A −→ A
abst

(2) The next simplest are the curried projections. The first projection has a typing judgment as
λxy.x :: A −→ B −→ A:

x :: A, y :: B ` x :: A
prj

x :: A ` λy.x :: B −→ A
abst

` λxy.x :: A −→ B −→ A
abst

(3) Here is a fixed point combinator in this calculus with its typing judgment:

x :: A −→ A ` x :: A −→ A
prj

x :: A −→ A ` fix[x] :: A
fix

` λx.fix[x] :: (A −→ A) −→ A
abst

Notice that there is something rather unsatisfactory about these proofs as where did the types
A and B originally come from? The assumption behind this definition is that one has a predefined
set of types from which one can choose to form a projection judgment. Formally therefore we
should define this set. This can be done inductively by

type = type −→ type | A | B | ...
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where we allow upper case letters as basic types. Note if we do not have some basic types we cannot
get going! We will replace these basic types shortly by the types introduced by the programming
features we shall add.

Notice, however, with these judgments the term λx.x has many possible typing judgments:

λx.x :: B −→ B λx.x :: (A −→ B) −→ A −→ B ....

The effect of adding programming features is to narrow down what is a legal type as it must
be built from the types introduced by these features. However, it does not alleviate the above
problem, namely that a given term can have many type judgments. This problem will be revisited
in the section on type inference.

Remark 1.2 Syntax for defining recursive functions There is an alternative syntax for defining
recursive programs which is reminiscent of recursive programming:

f := t.N ≡ (λf.N)fix[λf.t]

Notice that we could equivalently have had a type judgment

f :: Y, z :: Γ ` N :: X f :: Y, z :: Γ ` t : Y

z :: Γ ` f := t.N :: X
recdef

and have defined
fix[t] ≡ f := tf.(λx.fx).

1.2 Judgments for products

One of the most basic programming constructs is the product: the ability to pair terms and to pull
them apart. To introduce products (or pairing at the level of terms) we use the judgments in table
2 below. They introduce two new syntactic constructs: pairing and the case on a product.

This allows us to create some new terms. Here are some examples of type judgments using
these constructs:

Example 1.3 Simple typing judgments

(1) We may express the projections from a pair using the following definitions:

π0 ≡ λz.
(

case z
of (x, y) 7→ x

)

π0 ≡ λz.
(

case z
of (x, y) 7→ y

)
we derive a typing judgment for the first:

z :: A×B ` z :: A×B prj
z :: A×B, x :: A, y :: B ` x :: A

prj

z :: A×B ` case z
of (x, y) 7→ x

:: A

pcase

` λz.
(

case z
of (x, y) 7→ x

)
:: A×B −→ A

app
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Γ ` t :: P Γ ` s :: Q

Γ ` (t, s) :: P ×Q
pair

Γ ` t : P ×Q Γ, x :: P, y :: Q ` s :: W

Γ ` case t
of (x, y) 7→ s

:: W

pcase

Γ ` () :: 1
unit

Γ ` t : 1 Γ ` s :: W

Γ ` case t
of () 7→ s

:: W

ucase

Table 2: Judgments for products

(2) Another simple term is the symmetry map on the product which swaps the components of a
pair. Here is the derivation of a typing judgment for it:

z :: A×B ` z :: A×B prj
z :: A×B, x :: A, y :: B ` y :: B

prj
z :: A×B, x :: A, y :: B ` x :: A

prj

z :: A×B, x :: A, y :: B ` (y, x) :: B ×A
pair

z :: A×B ` case z
of (x, y) 7→ (y, x)

:: B ×A
pcase

` λz.
(

case z
of (x, y) 7→ (y, x)

)
:: A×B −→ B ×A

app

Notice that an alternative approach to this is to use the projections to define the case construct:

case z
of (x, y) 7→ t

≡ (λxy.t)(π0z)(π1z).

An interesting question is to determine whether these are actually equal by using the rewriting
semantics which will be described shortly.

For completeness we have also given the typing rules for the “unit” or final type. This type
only has one element, namely ().

We can also introduce an n-ary product:

Remark 1.4 Syntax for defining mutually recursive functions It is also useful to have a convenient
syntax for define mutually recursive functions. To accomplish this is it is useful to use the syntax
for n-ary products:

f1 := t1&...&fn := tn.N ≡
(
λz.

case z
of (f1, .., fn) 7→ N

)
fix

[
λz.

case z
of (f1, .., fn) 7→ (t1, .., tn)

]
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Γ ` t1 :: P ... Γ ` tn :: Pn

Γ ` (t1, .., tn) :: P1 × ...× Pn
tuple

Γ ` t : P1 × ...× Pn Γ, x1 :: P1, ..., xn :: Pn ` s :: W

Γ ` case t
of (x1, ..., xn) 7→ s

:: W

pcase

Table 3: Judgments for n-ary products

Γ ` succ :: N −→ N succ

Γ ` zero :: N zero

Γ ` t :: N Γ ` t0 :: W Γ, n :: N ` t1 :: W

Γ `
case t

of

∣∣∣∣ zero 7→ t0
succ n 7→ t1

:: W

N case

Table 4: Judgments for the Natural Numbers

1.3 Judgments for natural numbers

To get a programming language a very basic requirement is to be able to represent numbers.
Accordingly we introduce a type of natural numbers with its typing judgments. These are described
in table 4. To introduce the natural numbers we introduce two constructors zero and succ together
with a case statement for the natural numbers which allows one to test the form of the number
and act accordingly.

Once one has the natural numbers one can write some non-trivial programs in this language.
Here are some examples.

Example 1.5 Type judgments for programs on the natural numbers

(1) The simples program for the natural numbers is the predecessor:

pred ≡ λn.

 case n

of

∣∣∣∣ zero 7→ zero
succ m 7→ m


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Here is the derivation of its type:

n :: N ` n :: N prj
n :: N ` zero :: N zero

n :: N,m :: N ` m :: N prj

n :: N `
case n

of

∣∣∣∣ zero 7→ zero
succ m 7→ m

:: N

N case

` λn.

 case n

of

∣∣∣∣ zero 7→ zero
succ m 7→ m

 :: N −→ N

app

(2) One of the most basic things that one might wish to do with two numbers is to add them. This
is defined using the fixed point operator as follows:

add ≡ fix

λfz.


case z

of (n,m) 7→
case n

of

∣∣∣∣ zero −→ m
succ n′ −→ succ (f(n′,m))




or using the syntax introduced for recursive functions:

add := λz.


case z

of (n,m) 7→
case n

of

∣∣∣∣ zero −→ m
succ n′ −→ succ (add (n′,m))

 .add

Here is the type judgment for this term:

f :: N× N −→ N, z :: N× N ` z :: N× N
prj

f :: N× N −→ N, z :: N× N, n :: N,m :: N `
case n

of

∣∣∣∣ zero 7→ m
succ n′ 7→ succ (f(n′,m))

:: N

f :: N× N −→ N, z :: N× N `

case z

of (n,m) 7→
case n

of

∣∣∣∣ zero 7→ m
succ n′ 7→ succ (f(n′,m))

:: N

pcase

f :: N× N −→ N ` λz.(

case z

of (n,m) 7→
case n

of

∣∣∣∣ zero 7→ m
succ n′ 7→ succ (f(n′,m))

) :: N× N −→ N

app

` λfz.(

case z

of (n,m) 7→
case n

of

∣∣∣∣ zero 7→ m
succ n′ 7→ succ (f(n′,m))

) :: (N× N −→ N) −→ N× N −→ N

app

` fix[λfz.(

case z

of (n,m) 7→
case n

of

∣∣∣∣ zero 7→ m
succ n′ 7→ succ (f(n′,m))

)] :: N× N −→ N

fix

and, letting Γ = f :: N× N −→ N, z :: N× N, n :: N,m :: N, n′ :: N, where

f :: N× N −→ N, z :: N× N, n :: N,m :: N ` zero
zero

Γ ` succ
succ

Γ ` f :: N× N −→ N
prj

Γ ` n′ :: N
prj

Γ ` m :: N
prj

Γ ` (n′,m)
pair

Γ ` f(n′,m)
app

Γ ` succ (f(n′,m))
app

f :: N× N −→ N, z :: N× N, n :: N,m :: N `
case n

of

∣∣∣∣ zero 7→ m
succ n′ 7→ succ (f(n′,m))

:: N

N case
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Γ ` cons :: A× L(A) −→ L(A)
cons

Γ ` nil :: L(A)
nil

Γ ` t :: L(A) Γ ` t0 :: W Γ, v :: A× L(A) ` t1 :: W

Γ `
case t

of

∣∣∣∣ nil −→ t0
cons v −→ t1

:: W

L case

Table 5: Judgments for Lists

1.4 Judgments for lists

After being able to represent the natural numbers the next most important data type is lists. Below
in table 5 we introduce a type of lists with its typing judgments. The list type is itself dependent
on a type which is a slightly new wrinkle. Otherwise these rules follow exactly the same pattern as
those for the natural numbers.

The resulting language with these features has its types defined inductively by:

type = type× type | type −→ type | L(type) | N | 1

so that all its types are built inductively from the basic types.

Example 1.6 Programs for list

(1) The append function is the analogue of addition:

append := λxy.

case x

of

∣∣∣∣∣∣
nil 7→ y

cons z 7→ case z
of (x, xs) 7→ cons (x, append xs y)

.append

Derive a type judgment for this.

(2) The real use of the extended syntax is to give a series of definitions as in:

append := λxy.

case x

of

∣∣∣∣∣∣
nil 7→ y

cons z 7→ case z
of (x, xs) 7→ cons (x, append xs y)

.

reverse := λx.

case x

of

∣∣∣∣∣∣
nil 7→ nil

cons z 7→ case z
of (x, xs) 7→ append (reverse xs)(cons (x, nil ))

.

reverse
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We shall call the resulting language with all these features BPCF (Basic Programming language
for Computable Functions).
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λx.N ; λx.N (N,M) ; (N,M)

zero ; zero succ M ; succ M

nil ; nil cons M ; cons M

N ; λx.N ′ N ′[M/x] ; R

NM ; R

Mfix[M ] ; R

fix[M ] ; R

N ; (N1, N2) M [N1/x,N2/y] ; R

case N
of (x, y) 7→M

; R

N ; zero M0 ; R

case N

of

∣∣∣∣ zero 7→ M0

succ n 7→ M1

; R

N ; succ N ′ M1[N ′/n] ; R

case N

of

∣∣∣∣ zero 7→ M0

succ n 7→ M1

; R

L; nil M0 ; R

case L

of

∣∣∣∣ nil 7→ M0

cons z 7→ M1

; R

L; cons N ′ M1[N ′/z] ; R

case L

of

∣∣∣∣ nil 7→ M0

cons z 7→ M1

; R

Table 6: Reduction rules for BPCF

2 Program evaluation in BPCF

We may define a simple operational semantics for this language by describing how a term in the
language can be reduced. The simplest way to do this is to describe a reduction system using
inference rules much as above. The meaning of these inferences is, however, somewhat different.
The strategy is basically to do a normal order reduction, however, as we have some new constructs
we must define the reduction strategy for these terms as well. The reduction strategy is defined in
table 6.

Notice how all of the reduction rules, except for the fixed point rule, are of the same general
form as a β-reduction. These rules should be read as sequential evaluation recipes. Thus, the
first rule may be read as follows: N M reduces to R in case N reduces to λx.N ′ and when M is
substituted for x in N ′ then this reduces to R.

Here are some simple examples of evaluation:
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Example 2.1 Reductions in BPCF

1. Here we calculate the predecessor of 2:

pred ; pred

succ (succ zero ) ; succ (succ zero ) m[succ zero /m] ; succ zero case n

of

∣∣∣∣ zero 7→ zero
succ m 7→ m

 [succ (succ zero )/n] ; succ zero

pred (succ (succ zero )) ; succ zero

2. Here we do the reduction of adding one and one!

λfz.


case z

of (n,m) 7→
case n

of

∣∣∣∣ zero −→ m
succ n′ −→ succ (f(n′,m))

 add

;

λz.


case z

of (n,m) 7→
case n

of

∣∣∣∣ zero −→ m
succ n′ −→ succ (add (n′,m))


add
;

λz.


case z

of (n,m) 7→
case n

of

∣∣∣∣ zero −→ m
succ n′ −→ succ (add (n′,m))



(1, 1) ; (1, 1)

1 ; 1 succ (add (0, 1)) ; succ (add (0, 1))

case 1

of

∣∣∣∣ zero −→ 1
succ n′ −→ succ (add (n′, 1))

;

succ (add (0, 1))
case (1, 1)

of (n,m) 7→
case n

of

∣∣∣∣ zero −→ m
succ n′ −→ succ (add (n′,m))


;

succ (add (0, 1))

add (1, 1) ; succ (add (0, 1))

Notice that the final result has an unevaluated argument: all we really know is that the answer
is succ of something.

The reduction rules apply only to closed term. Thus, we should show that closedness of terms
is preserved by reductions: this is easily checked. More significantly, notice that the reduction rules
do not refer to the type. This means that to show that the rules make sense it is necessary to
establish that, despite this omission, they do actually behave well with respect to the types. Thus,
a very basic requirement is that when a reduction is performed the term which results can still be
judged to have the same type as the original before the reduction. The calculus is said to satisfy
subject reduction if this is the case. To check that this is true it is necessary to do a proof by
induction.

We are only interested in terms which have a head normal form: in which case to each term
which has a head normal form we may attach the number of reduction inferences required to reduce
it to that form. For terms which are already in head normal form this number is zero and clearly
subject reduction holds for them. Now suppose the current term requires n-reduction inferences
then we may take as our induction hypothesis that any term which requires m < n reduction
inferences satisfies subject reduction.

With this in mind consider the first rule:

N ; λx.N ′ N ′[M/x] ; R

NM ; R

if NM :: Y then N :: X −→ Y and M :: X. By inductive assumption as N requires strictly less
reduction inferences we may conclude that λx.N ′ :: X −→ Y . whence x :: X ` N ′ :: Y is a type
judgment. We now need the following lemma:
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Lemma 2.2 (Substitutions lemma)

z : Γ `M :: X x :: X ` N ′ :: Y
z : Γ ` N ′[M/x] :: Y

is a valid type judgment.

Proof: The proof of this is a straightforward (if tedious) induction on the structure of the term
N ′. One starts by assuming that N ′ is a variable and then considers all the term construction
steps. 2

So this allows us to conclude that N ′[M/x] :: X and whence by inductive assumption that
R :: X. Except for the fixed point rule all the remaining rules follow a similar pattern as they rely
at some stage on the substitution lemma. Let us therefore look at the fixed point rule:

M fix[M ] ; R

fix[M ] ; R

here it suffices to observe that M fix[M ] has the same type as M always so that we may use our
inductive assumption on the number of reduction instances to show that this reduction satisfies
subject reduction.
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3 Type inference for BPCF

The last aspect we consider for BPCF in this document is the question of type inference. When
a term has a number of different type judgments there is a type, possibly with some free type
variables, which can be substituted to give all the possible type judgments. This type is called the
most general type of the the term and is a parametric (or sometimes polymorphic) type as it may
contain type variables.

The purpose of this section is to explain how this most general type can be derived. To do this
we shall show how the type system allows one to derive equations for the type. These equations
can then be solved using the unification algorithm.

3.1 Rules for type inference

To do this type inference it is necessary to read the inference trees “backwards”: this is sometimes
called the “proof search” direction. Starting at the bottom of the proof tree the idea is to develop
it while accumulating type equations. At each node in the proof tree some new type variables and
some equations relating them to the existing type variables are introduced. We will indicate this
as a list of equations in which the introduced variables are bound:

∃X1, .., Xn.T1 = T ′
1, ..., Tm = T ′

m

where the fresh type variables are on the left and the type equations are on the right. Although
we shall use the notation ∃ this is not to be viewed as being existential quantification (in the sense
of predicate logic or existential types) it is more prosaically notation for a type binder.

In table 7 the inference rules have been modified to derive the type equations which any types
for the judgment must satisfy.

The idea is that as one does the derivation of a type judgment one collects type equations which
must bind the list of variables introduced. Any final type must then satisfy all these equations. We
shall delay the discussion of how we can determine whether the equations are satisfied (this is the
unification algorithm). For the moment we shall focus on seeing how these inferences allow us to
collect equations.

Example 3.1 Simple parametric type inference

1. Consider the term λx.x this has the following derivation:

x :: X ` x :: Y 〈X = Y 〉
prj

` λx.x :: Q 〈∃X,Y.Q = X −→ Y,X = Y
abst

The resulting type equation is ∃X,Y.Q = X −→ Y,X = Y and can be solved to give ∃Y.Q = Y
−→ Y as expected.

2. Consider the symmetry map λz.

(
case z
of (x, y) 7→ (y, x)

)
:

z :: A ` z :: Z 〈A = Z〉
prj

z :: A, x :: C, y :: D ` y :: E 〈E = D〉
prj

z :: A, x :: C, y :: D ` x :: F 〈F = C〉
prj

z :: A, x :: C, y :: D ` (y, x) :: B 〈∃E, F.B = E × F,E = D,F = C〉
pair

z :: A ` case z
of (x, y) 7→ (y, x)

:: B 〈∃C,D,Z.Z = C ×D,A = Z, (∃E, F.B = E × F,E = D,F = C)〉
pcase

` λz.
(

case z
of (x, y) 7→ (y, x)

)
:: Q 〈∃A,B.Q = A −→ B(∃C,DZ.Z = C ×D,A = Z, (∃E, F.B = E × F,E = D,F = C))〉

abst
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x :: P,Γ ` x :: Q 〈P = Q〉
proj

x :: X,Γ ` t :: Y 〈E〉
Γ ` λx.t :: Q 〈∃X,Y.Q = X −→ Y,E〉 abst

Γ ` f :: Z 〈E1〉 Γ ` t :: X 〈E2〉
Γ ` (ft) :: Q 〈∃X,Z.Z = X −→ Q,E1, E2〉

app

Γ ` t :: Z 〈E〉
Γ ` fix[t] :: Q 〈∃Z.Z = Q −→ Q,E〉 fix

Γ ` t :: X 〈E1〉 Γ ` s :: Y 〈E2〉
Γ ` (t, s) :: Q 〈∃X,Y.Q = X × Y,E1, E2〉

pair

Γ ` t : Z 〈E1〉 zΓ, x :: X, y :: Y ` s :: Q 〈E2〉

Γ ` case t
of (x, y) 7→ s

:: Q 〈∃X,Y, Z.Z = X × Y,E1, E2〉
pcase

Γ ` () :: Q 〈Q = 1〉 unit

Γ ` t :: Z 〈E1〉 Γ ` s :: Q 〈E2〉

Γ ` case t
of () 7→ s

:: Q 〈∃Z.Z = 1, E1, E2〉
ucase

Γ ` succ :: Q 〈Q = N −→ N〉
succ

Γ ` zero :: Q 〈Q = N〉
zero

Γ ` t :: X1 〈E1〉 Γ ` t0 :: Y1 〈E2〉 Γ, n :: X2 ` t1 :: Y2 〈E3〉

Γ `
case t

of

∣∣∣∣ zero 7→ t0
succ n 7→ t1

:: Q

〈
∃X1, Y1, X2, Y2.

X1 = N, Y1 = Q,
X2 = N, Y2 = Q,
E1, E2, E3

〉 N case

Γ ` cons :: Q 〈∃A.Q = A× L(A) −→ L(A)〉
cons

Γ ` nil :: Q 〈∃A.Q = L(A)〉 nil

Γ ` t :: X1 〈E1〉 Γ ` t0 :: Y1 〈E2〉 Γ, v :: X2 ` t1 :: Y2 〈E3〉

Γ `
case t

of

∣∣∣∣ nil −→ t0
cons v −→ t1

:: Q

〈
∃X,X1, Y1, X2, Y2.

X1 = L(X), Y1 = Q,
X2 = X × L(X), Y2 = Q,
E1, E2, E3

〉 L case

Table 7: Rules for type inference
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When one collects the equations one gets:

∃A,B.Q = A −→ B(∃C,D,Z.Z = C ×D,A = Z, (∃E,F.B = E × F,E = D,F = C))

this can be solved to give:
∃C,D.Q = C ×D −→ D × C.

This example shows that the number of equations generated increases (linearly) with the size
of the proof. Thus the importance of having a method of cleaning up the equations is clear!

3.2 Solving type equations

Type inference may be divided into two parts: the first part described above involves collecting the
equations which must hold between the types, while the second part is to solve these equations.
This latter problem is called a unification problem and fortunately there is a well-known algorithm
for solving it. However, it is necessary to modify the basic algorithm to fit with the type inference.

3.2.1 Basic unification

The parametric types – that is the types which include type variables – may be described induc-
tively:

type = type× type | type −→ type | L(type) | N | 1 | X1 | X2 | ...

where X1, X2, ... are type variables.
Given an equation between parametric types

S =X1,..,Xn T

where we indicate the free variables by sub-scripting the equality with them, a unifier is a substi-
tution list

Y1, .., Ym ` [T1/X1, ..., Tn/Xn]

(where the parametric types T1, ..., Tn have free variables from {Y1, .., Ym}), such that

S[T1/X1, ..., Tn/Xn] ≡Y1,..,Ym T [T1/X1, ..., Tn/Xn].

The meaning of ≡ here is that the two types are now structurally absolutely identical once the
substitution is made.

The book-keeping required to keep track of the free variables can be relaxed: often we will not
wish to change the name of a variable and strictly speaking, from the above, we should then add
the trivial substitution X/X for any variable which is not changed. However, it is convenient to
omit these trivial substitutions and treat them as understood.

A most general unifier for the equation S =∆ T is a unifier ∆′� (T1, ..., Tn)/∆ such that any
other unifier Θ � (T ′

1, ..., T
′
n)/∆ can be obtained by a substitution, [(S1, .., Sm)/∆′] of this

(T ′
1, ..., T

′
n) =Θ (T1, ..., Tn)[(S1, .., Sm)/∆′].

It is a useful fact that for “free terms” if two terms can be unified then there is a most general
unifier. The proof of this is in its construction which we is described in table 8.

The function unify attempts to solve the equations S = T . It does so in two steps:
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check(X/X) = []

check(T/X) =

{
[T/X] if X does not occur in T
fail otherwise

match(X,T ) = check(T/X)
match(T ,X) = check(T/X)

match(F (~T ),G(~S)) =

{
flatten(map match (zip (~T ,~S))) if F ≡ G
fail otherwise

coalesce(T/X,[]) = []

coalesce(T/X,S/Y :Rest) =

{
append(match(T ,S),coalesce(T/X,Rest)) if X ≡ Y
append(check(S[T/X]/Y ),coalesce(T/X,Rest)) otherwise

linearize([]) = []
linearize(S/A:Rest) = S/A:(linearize(coalesce(S/A,Rest))

unify(S,T ) = linearize(match(S,T ))

Table 8: The unification algorithm

1. The match function given two terms (or parametric types) builds a list of substitutions:

[S1/X1, ..., Sn/Xn]

such that Xi does not occur in Si: this is the occurs check and is one of the two places at
which the algorithm can fail.

It builds these substitutions by overlaying one term with the other: if they differ structurally,
because they differ in their type constructors (×, −→, L, or N) then unification will fail. When
they differ because one or the other is a variable then one obtains an assignment (an equality
in which the first term is a variable) which is carried forward by the algorithm if it satisfies
the occurs check.

2. The linearize function takes the output of the match function and produces a list of assign-
ments

[X1 = S1, ..., Xn = Sn]

such that X1, .., Xn are distinct variables and for each 1 ≤ i ≤ j ≤ n, Xi does not occur in Sj .
To achieve this we remove the earlier variables from the later substitutions using the coalesce
function. Here there are two cases to consider as one recursively builds this list by adding
an assignment. If the variable occurs in the term of an earlier assignment one removes the
occurrence by using the given assignment as a substitution. However, it is also possible that
the variable of the assignment being added already occurs as the variable of an assignment
in the list of assignments collected so far: in this case removes all occurrences of the variable
by substitution (as before) until one reaches the earlier assignment occurrence at which stage
one uses the match function to remove that occurrence.
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3.2.2 Solving type equations

Type inference generates a list of type equations with “existential” variable bindings and when one
solves the equations generated by a type inference algorithm it is worth using the extra information
inherent in the variable bindings: this information not only simplifies the problem but in a real
implementation can help one to locate where the typing went wrong (if it did). This is because
the modified algorithm works by trying to eliminate the existentially bound variables. Thus, if one
associates with each existentially bound variable the line number (and term) at which the equation
collection introduced that quantified variable, then that area of the code can be identified as the
source of failure when an attempt to eliminate that variable causes a failure of typing.

It should be mentioned that, in general, the cause of a type error is rather hard to track ...
and indeed could have many sources which need not be particularly local. From the perspective of
error reporting this does create a difficulty. The above suggestion has the merit of usually placing
the problem in the right area and being relatively easy to implement.

The equation collection from the the first stage of inference returns a tree of equations in a data
type of the general form:

data TypeEqns v = TypeExist [v] [TypeEqns v]

| TypeEqn (TypeExp v,TypeExp v)

where v is the type of the variable (usually integers). The objective of the type inference is to
return either a type failure or an element of the type ([v],[v],[(v,TypeExp v)]). This consists
of a list of free variables whose substitutions one is trying to determine, a list of bound variables
one could not eliminate, and a list of assignments (or substitutions) for the free variables – variables
not mentioned are assumed to be substituted by the identity substitution x/x.

We may express what must be done to solve these equations in various ways: one method is to
give a set of rules for simplifying type equations:

1. Any occurrence of an equation of the form x = t where x ∈ t and x 6= t causes FAILURE
(occurs check failure).

2. Any occurrence of an equation of the form f(t1, .., tn) = g(t′1, .., t
′
m) where either f 6= g or

n 6= m causes FAILURE (match failure)

3. Any occurrence of an equation of the form f(t1, .., tn) = f(t′1, .., t
′
n) can be replaced by the

equations t1 = t′1, ..., , tn = t′n (matching).

4. Existentially quantified empty lists of equations, ∃x.(), can be removed.

5. Existentially bound variables can be eliminated if there is an occurs check free substitution
for them ∃x.(x = t, E) = ∃x.E[t/x].

6. Scope manipulations:

∃x.∃y.E = ∃y.∃x.E E1,∃y.E2 = ∃y.E1, E2 y 6∈ E1.

Notice that we can always remove an equation of the form x = x as substitution using it will do
nothing. If x = t is an equation where x is a variable and x 6∈ t , then substitution will remove all
occurrences of x, this, in turn, will allow the quantification over x to be removed. This is presented
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as two step above, however, it may usefully be viewed as a single step ∃x.(x = t, E) = E[t/x],
allowing the complete removal of a quantified variable from the equations.

This may be translated into an algorithm: the type solving algorithm starts at the leaves of the
tree of type equations and works down towards the root (that is it is a fold).

It has to perform the following actions:

1. Given any existentially quantified empty list of type equations one returns an empty substi-
tution list and empty sets of bound and free variables.

2. Given a basic type equation TypeEqn (TypeExp v,TypeExp v) the expressions must be
matched to obtain a list of substitutions together with the list of free variables and an empty
list of bound variables.

3. To add a type equation to an already processed type equation list (which either fails or returns
([v],[v],[(v,TypeExp v)])) one evaluates the added type equation (my matching) to the
same form (a list of free and bound variables and substitutions): the resulting free variables
are the union of the two sets of free variables and the bound variables are similarly the disjoint
union (as they must be distinct) of the two sets of bound variables. The two substitution
lists must be then be combined into one by appending the first onto the second.

4. Given an existential quantification one must go through all the bound variables and try to
eliminate them. To do this one performs essentially the “linearize” step above but restricted
to the bound variables – both those passed down and those newly introduced:

(a) One locates an assignment of a bound variable and uses it to eliminate that variable
from the list. This is done by substituting it into the term of all assignments (failing on
occurs check) and matching it with substitutions of the same variable (failing on a match
failure).

(b) One keeps doing this until there are no more assignments associated with bound variables.
The variables that remain are passed on as the new bound variables. The new free
variables are the old free variables less all the variables in the new binding.

5. The final result of this may have an assignment/substitution list which still contains repeated
assignments to variables (the free ones) and so it must be “linearized” with respect to the free
variables and then substituted out to get the final substitution of the free variables: recall
that there may still be some bound variables left and the solution is now parametric in these.

When one is doing type inference in the last step above all variables except for the principle
variable Q should be quantified. Thus, Q is the variable which should eventually hold the most
general type. However, it is quite possible after solving and eliminating all the bound variables
to reach a state with multiple substitutions for Q (e.g. ∃A,B,C.Q = T1, Q = T2, ...., Q = Tn. In
this case you want to hang on to a substitution for Q – as this will hold the most general type.
However, you only want one substitution for Q! So you use (say) the first substitution for Q to
eliminate all the other occurrences of Q, to obtain ∃A,B,C.Q = T1, T1 = T2, ..., T1 = Tn. One then
continues the process above, likely with some matching followed by further variable elimination,
until you reach a state with only one equation for Q.

Here are the two examples we considered earlier:
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Example 3.2 Simple parametric type inference

1. The term λx.x gave the following type equations:

∃X,Y.Q = X −→ Y,X = Y

It remains to eliminate the quantified variables: eliminating X gives ∃Y.Q = Y −→ Y and
this give ∃Y.Q = Y −→ Y as the answer.

2. The term λz.

(
case z
of (x, y) 7→ (y, x)

)
gives the equations:

∃A,B.Q = A −→ B(∃C,D,Z.Z = C ×D,A = Z, (∃E,F.B = E × F,E = D,F = C))

Starting on the inside we solve ∃E,F.B = E × F,E = D,F = C to obtain B = D × C so
that now we must solve:

∃A,B.Q = A −→ B(∃C,D,Z.Z = C ×D,A = Z,B = D × C)

Working next on ∃C,D,Z.Z = C × D,A = Z,B = D × C one has no substitutions for the
bound variables C and D but one can eliminate Z so one must now solve:

∃A,B,C,D.Q = A −→ B,A = C ×D,B = D × C

Elimination applied to this yields

∃C,D.Q = (C ×D) −→ (D × C).

These example shows that although the number of equations generated increases (linearly) with
the size of the proof, the variable elimination is very effective at keeping the number of equations
actually passed small. This illustrates another important algorithmic aspect of the variable binding
in this algorithm.
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