# CPSC 521: Fall 2016 midterm exam

#### Robin Cockett

### November 8, 2016

This exam is worth 20% of the course. There are four questions and a total of 100 points available:

- 1. (30 points) Explain your answers!
  - (a) (4 points) Explain what it means for two  $\lambda$ -terms to be  $\alpha$ -equivalent and how to use de Bruijn notation to decide whether two terms are  $\alpha$ -equivalent. Demonstrate the technique on the following two terms:

$$(\lambda xx.x)(\lambda x.xx)$$
 and  $(\lambda zy.z)(\lambda v.vv)$ 

- (b) (3 points) What does it mean for two  $\lambda$ -terms to be  $\beta$ -equivalent? Is it possible to decide whether two terms are  $\beta$ -equivalent?
- (c) (4 points) When is a term in  $\beta$ -normal form? Provide an example of a term which has a  $\beta$ -normal form and yet may be  $\beta$ -reduced an arbitrary many times.
- (d) (4 points) Explain why each  $\lambda$ -term is  $\beta$ -equivalent to at most one  $\beta$ -normal form.
- (e) (12 points) Demonstrate leftmost outermost  $\beta$ -reductions on the following  $\lambda$ -terms:
  - (i)  $(\lambda zx.z(xz))(\lambda z.zx)(\lambda x.xx)$
  - (ii)  $(\lambda xy.xyx)(\lambda xz.z(yx))yy$
  - (iii)  $(\lambda xy.xy(xx))(\lambda x.y)(\lambda x.xx)y$
- (f) (3 points) Give an advantage and a disadvantage of a leftmost outermost reduction strategy over a by-value (rightmost innermost) reduction strategy.

2. (35 points) Consider the following Haskell code:

- (a) (5 points) Explain how this code implements substitution.
- (b) (6 points) Write the fold(right) for lists required for foldlist in the above code.
- (c) (12 points) Translate the above "do" syntax for subst into "core" Haskell explaining the steps.
- (d) (12 points) Write the fold function for Exp f v and show how you can use it to collect the free variables of an expression.

### 3. (30 points)

(a) (12 points) How do you represent the datatype of trees

in the  $\lambda$ -calculus?

What are the  $\lambda$ -terms for the constructors, the fold, and the case combinator for trees?

(b) (7 points ) Explain what a fixed point combinator is. Prove that

$$\mathbf{Y} := \Theta\Theta$$
 where  $\Theta := \lambda x f. f(xxf)$ 

is a fixed point combinator.

(c) (7 points) Explain how the recursive factorial function

```
factorial n = if (iszero n) then (succ zero) else n * (factorial (pred <math>n))
```

is programmed in the  $\lambda$ -calculus (you may assume the if combinator and the arithmetic functions).

(d) (4 points) Is it possible to decide whether a given  $\lambda$ -term normalizes to True :=  $\lambda xy.x$ ? Explain your answer.

## 4. (5 points!)

- (a) What was Curry's first name? Who was Curry's (formal) thesis supervisor?
- (b) What is the Turing award? Name two Turing award recipients.
- (c) What did Turing do during World War II? Where did he do this?
- (d) When/how did Turing die? At which University was he working at the time?
- (e) The sentence: "If this sentence is true then Calgary is smaller than Edmonton." is an example of Curry's paradox. Explain why it is a paradox. What does it have to do with the  $\lambda$ -calculus?