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This exam is worth 20%. Each question is marked out of 25 points making a total of 100 points
available:

1. (a) (10 points) Give the description of the Monad class and provide as instances the list
monad and the exception monad.

(b) (10 points) Describe the translation from “do” syntax to core Haskell and translate the
following function:

image:: Eq b => (a -> b) -> [a] -> [b] -> [b]

image f xs ys = do x <- xs

y <- ys

if y == f x then return y else []

(c) (5 points) Rewrite this function using list comprehension: what does it do?
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2. (a) (12 points) Demonstrate the leftmost outermost reduction strategy on the following
λ-terms:

i. (λzx.z(xz))(λy.xy)z

ii. (λxy.x)(λxy.x)((λx.xx)(λx.xx))

iii. (λxy.xy(xx))(λx.y)(λx.xx)(λx.xx)

What are the advantages and disadvantages of this reduction strategy? What is lazy
reduction and in what regard is it a better reduction strategy?

(b) (8 points) How do you represent lists in the λ-calculus? What are the λ-terms for the
constructors and the associated map and fold function?

(c) (5 points) Explain what it means to say that β-reduction is confluent. Explain why this
means that true 6= false (i.e. the λ-calculus is consistent).
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3. (a) (6 points) Explain how “pairs” are represented in the lambda calculus. How are the two
projection functions programmed?

(b) (6 points ) Explain what a fixed point combinator is. Prove that

Y := (λfx.f(xxf))(λfx.f(xxf))

is a fixed point combinator.

(c) (8 points) Explain how the recursive gcd function

gcd x y = if x<y then gcd x (y-x)

else if x>y then gcd (x-y) y

else x

is programmed in the λ-calculus (assume the If combinator and arithmetic functions).

(d) (5 points) Explain briefly why all computable functions can be programmed in the λ-
calculus.
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4. The aim is to write a function to determine the height and width of a tree with edges weighted
by integers. The height is the maximum weighted length of a path from the root to a leaf.
The width is the maximum weighted length of path between any two leaves.

We shall hold the tree as Rose Int, where this is the following sort of rose tree:

data Rose a = Rose [(a,Rose a)]

Here is an example of such a tree

Rose [(1,t1),(2,Rose [])] where

t1 = Rose [(4,Rose [(2,Rose []),(3,Rose []),(4,Rose [])])

,(2,Rose [])

,(1,Rose [(2,Rose []),(1,Rose []),(3,Rose [])])

]

(a) (3 marks) Draw the tree above and give its height and width.

(b) (6 marks) Write a foldRose function for this data type. Its type should be:

foldRose:: ([(a,c)] -> c) -> (Rose a) -> c

(c) (8 marks) Write a height function (do not forget the edge lengths!):

hgt: Rose Int -> Int

(d) (8 marks) Use the fold to write a width function:

width: Rose Int -> Int

Here are extensive hints!!

The “node width” at a node of such a rose tree is the sum of the two largest heights of
the subtrees below it (plus the edge lengths to reach those subtrees, of course) – if there
are no subtrees this is zero, and if there is one it is that height (plus edge length).

However, to be the “best-width” it must also exceed any width that any subtree has
seen!

The first step is to process a list of edge lengths and best-width, height pairs to produce
a new best-width and height:

best_width_hgt: [(Int,(Int,Int))] -> (Int,Int)

To do this one needs to foldr over this list to produce at each stage the best height
and best width seen so far (starting at (0, 0) of course). To calculate the new best-width
take the maximum of:

i. The node-width produced by the current subtree (i.e. best height so far summed
with the current edge length and subtree height);

ii. The best-width of the current tree;

iii. The best-width seen so far.

Now use a rose-fold to produce the tree width.
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